salim-barzani

1685 Reputation

9 Badges

1 years, 146 days

MaplePrimes Activity


These are questions asked by salim-barzani

before run file remove all (:) i want calculate equation but with a condition for example: when a=4 then find other parameter in my equation with respect to a=4 find other

usesol.mw

when i finding parameter i want just choose a case for example a_1=a_1  and any other case a_2=0,and remove other case how i can do in maple

restart

with(PDEtools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

with(DEtools)

with(DifferentialAlgebra)

"with(Student[ODEs][Solve]): "

with(IntegrationTools)

with(inttrans)

with(PDEtools)

with(Physics)

with(PolynomialTools)

with(RootFinding)

with(SolveTools)

with(LinearAlgebra)

with(sumtools)

``

ode := F(xi)^5*a[4]+F(xi)^4*a[3]+F(xi)^3*a[2]+(-k^2*a[1]+(diff(diff(F(xi), xi), xi))*a[5]-w)*F(xi)^2+(1/2)*F(xi)*(diff(diff(F(xi), xi), xi))*a[1]-(1/4)*(diff(F(xi), xi))^2*a[1] = 0

NULL

L := convert((cosh(xi)+sinh(xi))/(cosh(xi)-sinh(xi)), trig)

"Q(xi):=L:"

S := sum(A[i]*Q(xi)^i, i = 0 .. 1)+sum(B[i]*Q(xi)^(-i), i = 1 .. 1)

``

(2)

S

K := F(xi) = S

F1 := eval(ode, K)

simplify(%)

P := numer(lhs())*denom(rhs()) = numer(rhs())*denom(lhs())

Warning,  computation interrupted

 

NULL

solve(identity(P, xi), {k, w, A[0], A[1], B[1], a[1], a[2], a[3], a[4], a[5]})

Warning, solutions may have been lost

 

{k = k, w = w, A[0] = 0, A[1] = A[1], B[1] = 0, a[1] = a[1], a[2] = a[2], a[3] = a[3], a[4] = a[4], a[5] = a[5]}, {k = k, w = -4*A[0]*a[5], A[0] = A[0], A[1] = A[1], B[1] = B[1], a[1] = 0, a[2] = -4*a[5], a[3] = 0, a[4] = 0, a[5] = a[5]}, {k = k, w = (1/2)*A[0]*(3*k^2*A[0]^2*a[4]+2*k^2*A[0]*a[3]+k^2*a[2]+4*k^2*a[5]+2*A[0]^2*a[4]+2*A[0]*a[3]+2*a[2]), A[0] = A[0], A[1] = 0, B[1] = 0, a[1] = -(1/2)*A[0]*(3*A[0]^2*a[4]+2*A[0]*a[3]+a[2]+4*a[5]), a[2] = a[2], a[3] = a[3], a[4] = a[4], a[5] = a[5]}, {k = k, w = w, A[0] = A[0], A[1] = 0, B[1] = 0, a[1] = a[1], a[2] = (-A[0]^3*a[4]+k^2*a[1]-A[0]^2*a[3]+w)/A[0], a[3] = a[3], a[4] = a[4], a[5] = a[5]}, {k = k, w = 4*A[1]*a[5]+4*B[1]*a[5], A[0] = -A[1]-B[1], A[1] = A[1], B[1] = B[1], a[1] = 0, a[2] = -4*a[5], a[3] = 0, a[4] = 0, a[5] = a[5]}, {k = k, w = -k^2*a[1]-4*A[0]*a[5]+a[1], A[0] = A[0], A[1] = (1/4)*A[0]^2/B[1], B[1] = B[1], a[1] = a[1], a[2] = -4*a[5], a[3] = 0, a[4] = 0, a[5] = a[5]}, {k = k, w = w, A[0] = 2*B[1], A[1] = B[1], B[1] = B[1], a[1] = a[1], a[2] = (1/2)*(k^2*a[1]+w-a[1])/B[1], a[3] = 0, a[4] = 0, a[5] = -(1/8)*(k^2*a[1]+w-a[1])/B[1]}, {k = k, w = w, A[0] = A[0], A[1] = B[1], B[1] = B[1], a[1] = 0, a[2] = w/A[0], a[3] = 0, a[4] = 0, a[5] = -(1/4)*w/A[0]}, {k = k, w = 0, A[0] = 0, A[1] = B[1], B[1] = B[1], a[1] = 0, a[2] = a[2], a[3] = 0, a[4] = 0, a[5] = -(1/4)*a[2]}

(3)

Download choose_case.mw

i am looking for simplify this type of simplifying assume beta is Real and there is any stuf package for working with complex and conjugate automaticaly

NULL

restart

with(inttrans)

with(PDEtools)

with(DEtools)

with(DifferentialAlgebra)

"with(Student[ODEs][Solve]): "

with(IntegrationTools)

with(inttrans)

with(PDEtools)

with(Physics)

with(PolynomialTools)

with(RootFinding)

with(SolveTools)

with(LinearAlgebra)

with(sumtools)

declare(u(x, t), conjugate(u(x, t)))

u(x, t)*`will now be displayed as`*u

(1)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(2)

B__0 := I*G(x)^3*conjugate(G(x))^2+(2*I)*G(x)^2*(diff(G(x), x))+(2*I)*(diff(G(x), x))*G(x)*conjugate(G(x))

I*G(x)^3*conjugate(G(x))^2+(2*I)*G(x)^2*(diff(G(x), x))+(2*I)*(diff(G(x), x))*G(x)*conjugate(G(x))

(3)

"G(x):=beta*exp(I*x) "

proc (x) options operator, arrow, function_assign; Physics:-`*`(beta, exp(Physics:-`*`(I, x))) end proc

(4)

R__0 := diff(G(x), `$`(x, 2))

-beta*exp(I*x)

(5)

B__0

I*beta^3*(exp(I*x))^3*conjugate(beta*exp(I*x))^2-2*beta^3*(exp(I*x))^3-2*beta^2*(exp(I*x))^2*conjugate(beta*exp(I*x))

(6)

"#`B__0 `must equal to (I*beta^(5)*exp(I*x)) after simplify betwen expresion  what code need i don't know"?""

B1 := laplace(B__0, t, s)

(-2*beta^2*exp((2*I)*x)*conjugate(beta*exp(I*x))+(I*conjugate(beta*exp(I*x))+1+I)*(conjugate(beta*exp(I*x))+(-1+I))*exp((3*I)*x)*beta^3)/s

(7)

R1 := laplace(R__0, t, s)

-beta*exp(I*x)/s

(8)

B2 := invlaplace(B1/s, s, t)

(-2*beta^2*exp((2*I)*x)*conjugate(beta*exp(I*x))+(I*conjugate(beta*exp(I*x))+1+I)*(conjugate(beta*exp(I*x))+(-1+I))*exp((3*I)*x)*beta^3)*t

(9)

R2 := invlaplace(R1/s, s, t)

-beta*exp(I*x)*t

(10)

Sol := B2+R2

(-2*beta^2*exp((2*I)*x)*conjugate(beta*exp(I*x))+(I*conjugate(beta*exp(I*x))+1+I)*(conjugate(beta*exp(I*x))+(-1+I))*exp((3*I)*x)*beta^3)*t-beta*exp(I*x)*t

(11)

simplify((-2*beta^2*exp((2*I)*x)*conjugate(beta*exp(I*x))+(I*conjugate(beta*exp(I*x))+1+I)*(conjugate(beta*exp(I*x))+(-1+I))*exp((3*I)*x)*beta^3)*t-beta*exp(I*x)*t)

(I*exp((3*I)*x)*conjugate(beta*exp(I*x))^2*beta^2-2*exp((2*I)*x)*conjugate(beta*exp(I*x))*beta-2*exp((3*I)*x)*beta^2-exp(I*x))*beta*t

(12)

expand((I*exp((3*I)*x)*conjugate(beta*exp(I*x))^2*beta^2-2*exp((2*I)*x)*conjugate(beta*exp(I*x))*beta-2*exp((3*I)*x)*beta^2-exp(I*x))*beta*t)

I*beta^3*t*(exp(I*x))^3*conjugate(beta)^2*(exp(-I*conjugate(x)))^2-2*t*beta^2*(exp(I*x))^2*conjugate(beta)*exp(-I*conjugate(x))-2*t*(exp(I*x))^3*beta^3-beta*exp(I*x)*t

(13)
 

NULL

Download simplify.mw

Hi
i write my code for calculate this type of function but the result is so different from mine i  will post here i hope someone tell me where is problem

i have this

i want this

Download EX1.mw

Hi
i did calculation part by part of adomian laplace method but if we can make a loop for it is gonna be so great and take back a lot of time

restart

with(inttrans)

pde := diff(u(x, t), t)+u(x, t)*(diff(u(x, t), x)) = t^2*x+x

diff(u(x, t), t)+u(x, t)*(diff(u(x, t), x)) = t^2*x+x

(1)

eq := laplace(pde, t, s)

s*laplace(u(x, t), t, s)-u(x, 0)+laplace(u(x, t)*(diff(u(x, t), x)), t, s) = x*(s^2+2)/s^3

(2)

eq2 := subs({u(x, 0) = 0}, eq)

s*laplace(u(x, t), t, s)+laplace(u(x, t)*(diff(u(x, t), x)), t, s) = x*(s^2+2)/s^3

(3)

NULL

lap := s^alpha*laplace(u(x, t), t, s) = x*(s^2+2)/s^3-laplace(u(x, t)*(diff(u(x, t), x)), t, s)

s^alpha*laplace(u(x, t), t, s) = x*(s^2+2)/s^3-laplace(u(x, t)*(diff(u(x, t), x)), t, s)

(4)

lap1 := lap/s^alpha

laplace(u(x, t), t, s) = (x*(s^2+2)/s^3-laplace(u(x, t)*(diff(u(x, t), x)), t, s))/s^alpha

(5)

NULL

lap2 := invlaplace(lap1, s, t)

u(x, t) = -invlaplace(s^(-alpha)*laplace(u(x, t)*(diff(u(x, t), x)), t, s), s, t)+x*(invlaplace(s^(-1-alpha), s, t)+2*invlaplace(s^(-3-alpha), s, t))

(6)

NULL

lap3 := u(x, t) = t^alpha*x/GAMMA(alpha+1)+2*x*t^(alpha+2)/GAMMA(alpha+3)-invlaplace(laplace(u(x, t)*(diff(u(x, t), x)), t, s)/s^alpha, s, t)

u(x, t) = t^alpha*x/GAMMA(1+alpha)+2*x*t^(alpha+2)/GAMMA(3+alpha)-invlaplace(laplace(u(x, t)*(diff(u(x, t), x)), t, s)/s^alpha, s, t)

(7)

NULL

NULL

NULL

NULL

``

(8)

u[1](x, t) = -invlaplace(laplace(u[0](x, t)*(diff(u[0](x, t), x)), t, s)/s^alpha, s, t)

u[1](x, t) = -invlaplace(laplace(u[0](x, t)*(diff(u[0](x, t), x)), t, s)/s^alpha, s, t)

(9)

"u[0](x,t):=(t^alpha x)/(GAMMA(1+alpha))+(2 x t^(alpha+2))/(GAMMA(3+alpha))"

proc (x, t) options operator, arrow, function_assign; t^alpha*x/GAMMA(1+alpha)+2*x*t^(alpha+2)/GAMMA(3+alpha) end proc

(10)

n := N

N

(11)

k := K

K

(12)

f := proc (u) options operator, arrow; u*(diff(u, x)) end proc

proc (u) options operator, arrow; u*(diff(u, x)) end proc

(13)

for j from 0 to 3 do A[j] := subs(lambda = 0, (diff(f(seq(sum(lambda^i*u[i](x, t), i = 0 .. 20), m = 1 .. 2)), [`$`(lambda, j)]))/factorial(j)) end do

(t^alpha*x/GAMMA(1+alpha)+2*x*t^(alpha+2)/GAMMA(3+alpha))*(t^alpha/GAMMA(1+alpha)+2*t^(alpha+2)/GAMMA(3+alpha))

 

u[1](x, t)*(t^alpha/GAMMA(1+alpha)+2*t^(alpha+2)/GAMMA(3+alpha))+(t^alpha*x/GAMMA(1+alpha)+2*x*t^(alpha+2)/GAMMA(3+alpha))*(diff(u[1](x, t), x))

 

u[2](x, t)*(t^alpha/GAMMA(1+alpha)+2*t^(alpha+2)/GAMMA(3+alpha))+u[1](x, t)*(diff(u[1](x, t), x))+(t^alpha*x/GAMMA(1+alpha)+2*x*t^(alpha+2)/GAMMA(3+alpha))*(diff(u[2](x, t), x))

 

u[3](x, t)*(t^alpha/GAMMA(1+alpha)+2*t^(alpha+2)/GAMMA(3+alpha))+u[2](x, t)*(diff(u[1](x, t), x))+u[1](x, t)*(diff(u[2](x, t), x))+(t^alpha*x/GAMMA(1+alpha)+2*x*t^(alpha+2)/GAMMA(3+alpha))*(diff(u[3](x, t), x))

(14)

S1 := u[1](x, t) = -invlaplace((t^alpha*x/GAMMA(1+alpha)+2*x*t^(alpha+2)/GAMMA(3+alpha))*(t^alpha/GAMMA(1+alpha)+2*t^(alpha+2)/GAMMA(3+alpha))/s^alpha, s, t)

u[1](x, t) = -x*(t^alpha)^2*invlaplace(s^(-alpha), s, t)*(1/GAMMA(1+alpha)^2+4*t^2/(GAMMA(3+alpha)*GAMMA(1+alpha))+4*t^4/GAMMA(3+alpha)^2)

(15)

NULL

NULL

u[1](x, t) = x*GAMMA(2*alpha+1)*t^(3*alpha)/(GAMMA(1+alpha)^2*GAMMA(3*alpha+1))-4*x*GAMMA(2*alpha+3)*t^(3*alpha+2)/(GAMMA(1+alpha)*GAMMA(3+alpha)*GAMMA(3*alpha+3))-4*`xΓ`(2*alpha+5)/(GAMMA(3+alpha)^2*GAMMA(3*alpha+3))

u[1](x, t) = x*GAMMA(2*alpha+1)*t^(3*alpha)/(GAMMA(1+alpha)^2*GAMMA(3*alpha+1))-4*x*GAMMA(2*alpha+3)*t^(3*alpha+2)/(GAMMA(1+alpha)*GAMMA(3+alpha)*GAMMA(3*alpha+3))-4*`xΓ`(2*alpha+5)/(GAMMA(3+alpha)^2*GAMMA(3*alpha+3))

(16)

NULL

u[2](x, t) = -invlaplace(laplace(u[1](x, t)*(diff(u(x, t), x)), t, s)/s^alpha, s, t)

NULL

NULL


for get definition use this pdf for fractional derivation

[Copyrighted material removed by moderator - see https://doi.org/10.4236/am.2018.94032]

Download solving_example_1.mw

First 34 35 36 37 38 Page 36 of 38