salim-barzani

1685 Reputation

9 Badges

1 years, 146 days

MaplePrimes Activity


These are questions asked by salim-barzani

In this example by applying the substitution i can get half of paicewise function but how get another  half ? i am looking for B_rs as Piecewise function ?

restart

eij := ((-3*k[i]*(k[i]-k[j])*l[j]+beta)*l[i]^2-(2*(-3*k[j]*(k[i]-k[j])*l[j]*(1/2)+beta))*l[j]*l[i]+beta*l[j]^2)/((-3*k[i]*(k[i]+k[j])*l[j]+beta)*l[i]^2-(2*(3*k[j]*(k[i]+k[j])*l[j]*(1/2)+beta))*l[j]*l[i]+beta*l[j]^2)

((-3*k[i]*(k[i]-k[j])*l[j]+beta)*l[i]^2-2*(-(3/2)*k[j]*(k[i]-k[j])*l[j]+beta)*l[j]*l[i]+beta*l[j]^2)/((-3*k[i]*(k[i]+k[j])*l[j]+beta)*l[i]^2-2*((3/2)*k[j]*(k[i]+k[j])*l[j]+beta)*l[j]*l[i]+beta*l[j]^2)

(1)

eval(eij, k[j] = b*k[i]); series(%, k[i], 3); convert(%, polynom); eval(%, b = k[j]/k[i]); Bij := (%-1)/(k[i]*k[j])

((-3*k[i]*(-b*k[i]+k[i])*l[j]+beta)*l[i]^2-2*(-(3/2)*b*k[i]*(-b*k[i]+k[i])*l[j]+beta)*l[j]*l[i]+beta*l[j]^2)/((-3*k[i]*(b*k[i]+k[i])*l[j]+beta)*l[i]^2-2*((3/2)*b*k[i]*(b*k[i]+k[i])*l[j]+beta)*l[j]*l[i]+beta*l[j]^2)

 

series(1+((-3*(-b+1)*l[j]*l[i]^2+3*b*(-b+1)*l[j]^2*l[i]+3*(b+1)*l[j]*l[i]^2+3*b*(b+1)*l[j]^2*l[i])/(beta*l[i]^2-2*beta*l[i]*l[j]+beta*l[j]^2))*k[i]^2+O(k[i]^4),k[i],4)

 

1+(-3*(-b+1)*l[j]*l[i]^2+3*b*(-b+1)*l[j]^2*l[i]+3*(b+1)*l[j]*l[i]^2+3*b*(b+1)*l[j]^2*l[i])*k[i]^2/(beta*l[i]^2-2*beta*l[i]*l[j]+beta*l[j]^2)

 

1+(-3*(-k[j]/k[i]+1)*l[j]*l[i]^2+3*k[j]*(-k[j]/k[i]+1)*l[j]^2*l[i]/k[i]+3*(k[j]/k[i]+1)*l[j]*l[i]^2+3*k[j]*(k[j]/k[i]+1)*l[j]^2*l[i]/k[i])*k[i]^2/(beta*l[i]^2-2*beta*l[i]*l[j]+beta*l[j]^2)

 

(-3*(-k[j]/k[i]+1)*l[j]*l[i]^2+3*k[j]*(-k[j]/k[i]+1)*l[j]^2*l[i]/k[i]+3*(k[j]/k[i]+1)*l[j]*l[i]^2+3*k[j]*(k[j]/k[i]+1)*l[j]^2*l[i]/k[i])*k[i]/((beta*l[i]^2-2*beta*l[i]*l[j]+beta*l[j]^2)*k[j])

(2)

simplify((-3*(-k[j]/k[i]+1)*l[j]*l[i]^2+3*k[j]*(-k[j]/k[i]+1)*l[j]^2*l[i]/k[i]+3*(k[j]/k[i]+1)*l[j]*l[i]^2+3*k[j]*(k[j]/k[i]+1)*l[j]^2*l[i]/k[i])*k[i]/((beta*l[i]^2-2*beta*l[i]*l[j]+beta*l[j]^2)*k[j]))

6*l[j]*l[i]*(l[i]+l[j])/((l[i]-l[j])^2*beta)

(3)


Download Lim.mw

i did this question before but i didn't get any answer before, but the shape of question is different, the function is different this time i try 3 term like they mention in that paper so there  must be a way for finding R[2],R[1], and R[0] 

Download Find-U-in-PDE.mw

why i get error in end and how i can fix this error?

restart

with(PDEtools)

undeclare(prime, quiet); declare(u(x, y, t), quiet); declare(f(x, y, t), quiet)

theta := i -> t*w[i]+y*l[i]+x:

eqf := f(x, y, t) = theta(1)*theta(2)+Bij(1, 2):

eqfcomplex := eval(eqf, l[2] = conjugate(l[1])):

eq17 := u(x, y, t) =2*diff(f(x, y, t), x)/f(x, y, t):

equ := eval(eq17, eqfcomplex):

sys := map(normal, {diff(rhs(equ), x), diff(rhs(equ), y)}):

nsys  := map(numer, sys):
nroot := solve(nsys, {x, y}, explicit):

dsys  := map(denom, sys):
droot := solve(dsys, {x, y}, explicit):

{nroot} intersect {droot}

{}

(1)

compact_ans1 := nroot[1]:

__w := seq(w[i] = (-beta*l[i]^2 - b*l[i] - a), i=1..2):

__Bij := (i,j) -> 12*alpha/(beta*(l[i] - l[j])^2):

eval(eval(compact_ans1, {__w, Bij(1, 2) = __Bij(1, 2)}), l[1]=lambda[1]+I*lambda[2])
assuming lambda[1]::real, lambda[2]::real:
 

ans1 := map(simplify, %, size): # it's up to you to use another simplification strategy

eqp1 := eval(eval(ans1, l[2] = conjugate(l[1])), l[1] = lambda[1]+I*lambda[2])

NULL

# Do the same for the other nroot solutions

eqp := {x = xp+((1/2)*beta*lambda[2]^3+I*(-beta*lambda[1]-b)*lambda[2]^2*(1/2)-((1/2)*beta*conjugate(lambda[1]+I*lambda[2])^2-(1/2)*beta*lambda[1]^2+(1/2)*b*conjugate(lambda[1]+I*lambda[2])+a)*lambda[2]+I*lambda[1]*(conjugate(lambda[1]+I*lambda[2])-lambda[1])*(beta*conjugate(lambda[1]+I*lambda[2])+beta*lambda[1]+b)*(1/2))*t/lambda[2], y = yp-(I*beta*lambda[2]^2+(2*beta*lambda[1]+b)*lambda[2]+I*((conjugate(lambda[1]+I*lambda[2])+lambda[1])*beta+b)*(conjugate(lambda[1]+I*lambda[2])-lambda[1]))*t/(2*lambda[2])}

NULL

vx, vy := diff(eval(x, eqp), t), diff(eval(y, eqp), t); dydx := simplify(vy/vx)

eqfp := dchange(eqp, eqfcomplex, [xp, yp], params = [a, b, alpha, beta, `λ__1`, `λ__2`], simplify); eq17p := dchange(eqp, eq17, [xp, yp], params = [a, b, alpha, beta, `λ__1`, `λ__2`], simplify); eqt := simplify(eval(eq17p, eqfp))

eqt1 := eval(subs({xp = x, yp = y}, eqt), l[1] = lambda[1]+I*lambda[2])

with(plots); lambda[1] := .14; lambda[2] := .68; alpha := -.46; beta := 1.83; a := 1.56; b := -.19; eq := y = (-beta*conjugate(lambda[1]+I*lambda[2])^2-b*conjugate(lambda[1]+I*lambda[2])-beta*lambda[2]^2+I*(2*beta*lambda[1]+b)*lambda[2]+lambda[1]*(beta*lambda[1]+b))*(x+(2*I)*sqrt(3)*lambda[1]*sqrt(alpha/(beta*(lambda[1]+I*lambda[2]-conjugate(lambda[1]+I*lambda[2]))^2))/lambda[2])/((lambda[1]+I*lambda[2])*beta*conjugate(lambda[1]+I*lambda[2])^2+(lambda[1]+I*lambda[2])*b*conjugate(lambda[1]+I*lambda[2])-I*beta*lambda[2]^3+(-beta*lambda[1]-b)*lambda[2]^2+I*(-beta*lambda[1]^2+2*a)*lambda[2]-beta*lambda[1]^3-b*lambda[1]^2); U := proc (x, y, a, b, alpha, beta, `λ__1`, `λ__2`) options operator, arrow; rhs(eqt1) end proc; contour1 := contourplot(eval(U(x, y, a, b, alpha, beta, `λ__1`, `λ__2`), t = -50), x = -200 .. 200, y = -100 .. 100, contours = 30, color = red, grid = [100, 100], transparency = .1); contour2 := contourplot(eval(U(x, y, a, b, alpha, beta, `λ__1`, `λ__2`), t = 0), x = -200 .. 200, y = -100 .. 100, contours = 30, color = green, grid = [100, 100], transparency = .1); contour3 := contourplot(eval(U(x, y, a, b, alpha, beta, `λ__1`, `λ__2`), t = 50), x = -200 .. 200, y = -100 .. 100, contours = 30, color = blue, grid = [100, 100], transparency = .1); trajectory_plot := implicitplot(eq, x = -200 .. 200, y = -200 .. 200, color = black, thickness = 1); T := textplot([[100, 45, "t=50", color = blue], [45, -10, "t=0", color = green], [-100, -45, "t=-50", color = red]], font = [Times, Roman, 16]); display(contour1, contour2, contour3, trajectory_plot, T, labels = ["x", "y"], scaling = constrained, size = [1200, 800])

.14

 

.68

 

-.46

 

1.83

 

1.56

 

-.19

 

y = (.4755583090+0.*I)*(x+(-0.+.1517971372*I)*3^(1/2))

 

proc (x, y, a, b, alpha, beta, lambda__1, lambda__2) options operator, arrow; rhs(eqt1) end proc

 

Error, (in plot/iplot2d) invalid input: Plot:-ColorBar expects its 2nd argument, ymin, to be of type numeric, but received infinity

 

Error, (in plot/iplot2d) invalid input: Plot:-ColorBar expects its 2nd argument, ymin, to be of type numeric, but received infinity

 

Error, (in plot/iplot2d) invalid input: Plot:-ColorBar expects its 2nd argument, ymin, to be of type numeric, but received infinity

 

Error, (in plots:-display) expecting plot structure but received: contour1

 
8

Download line-plot.mw

in a lot of my function i have a interval which is make my function singular and i don't know how remove this singularity even when i am change a lot of parameter with explore which explore option for plot is a little bit heavy for more than  7 or 8 parameter for running , and i know the shape of the graph is 2-soliton and 1-breather(zig-zag) but i have to see the shape and make my plot have a best shape  there is any idea for fixing this issue?

singular-interval.mw

in some equation i don't have problem but in a lot of them this problem is come up for me and i don't know how fix this issue?

restart

with(PDEtools)

undeclare(prime, quiet); declare(u(x, y, t), quiet); declare(f(x, y, t), quiet)

``

(1)

thetai := t*w[i]+y*l[i]+x

eqw := w[i] = (-1+sqrt(-4*b*beta*l[i]-4*a*beta+1))/(2*beta)

Bij := proc (i, j) options operator, arrow; -24*alpha*beta/(sqrt(1+(-4*b*l[j]-4*a)*beta)*sqrt(1+(-4*b*l[i]-4*a)*beta)-1+((2*l[i]+2*l[j])*b+4*a)*beta) end proc

NULL

theta1 := normal(eval(eval(thetai, eqw), i = 1)); theta2 := normal(eval(eval(thetai, eqw), i = 2))

eqf := f(x, y, t) = theta1*theta2+Bij(1, 2)

eqfcomplex := eval(eval(eval(eqf, l[2] = conjugate(l[1])), l[1] = lambda[1]+I*lambda[2]))

eq17 := u(x, y, t) = 2*(diff(f(x, y, t), x))/f(x, y, t); equ := simplify(eval(eq17, eqfcomplex))

u(x, y, t) = 8*(-(1/2)*(-4*b*beta*conjugate(lambda[1]+I*lambda[2])-4*a*beta+1)^(1/2)*(1+((-(4*I)*lambda[2]-4*lambda[1])*b-4*a)*beta)^(1/2)-b*beta*conjugate(lambda[1]+I*lambda[2])+1/2-(b*(lambda[1]+I*lambda[2])+2*a)*beta)*((1/2)*t*(1+((-(4*I)*lambda[2]-4*lambda[1])*b-4*a)*beta)^(1/2)+(1/2)*t*(-4*b*beta*conjugate(lambda[1]+I*lambda[2])-4*a*beta+1)^(1/2)+conjugate(lambda[1]+I*lambda[2])*y*beta+((lambda[1]+I*lambda[2])*y+2*x)*beta-t)/((1+((-(4*I)*lambda[2]-4*lambda[1])*b-4*a)*beta)^(1/2)*(-(-4*b*beta*conjugate(lambda[1]+I*lambda[2])-4*a*beta+1)^(1/2)*((2*y*((lambda[1]+I*lambda[2])*y+x)*beta+t*(b*t-y))*conjugate(lambda[1]+I*lambda[2])+2*x*((lambda[1]+I*lambda[2])*y+x)*beta+((b*(lambda[1]+I*lambda[2])+2*a)*t-(lambda[1]+I*lambda[2])*y-2*x)*t)+4*(I*lambda[2]-conjugate(lambda[1]+I*lambda[2])+lambda[1])*((1/2)*conjugate(lambda[1]+I*lambda[2])*b*y*beta+(a*y-(1/2)*b*x)*beta+(1/4)*b*t-(1/4)*y)*t)-4*t*(-4*b*beta*conjugate(lambda[1]+I*lambda[2])-4*a*beta+1)^(1/2)*(conjugate(lambda[1]+I*lambda[2])*(beta*(-y*((1/2)*b*(lambda[1]+I*lambda[2])+a)+(1/2)*b*x)-(1/4)*b*t+(1/4)*y)+(((I*lambda[1]*lambda[2]+(1/2)*lambda[1]^2-(1/2)*lambda[2]^2)*b+a*(lambda[1]+I*lambda[2]))*y-(1/2)*(lambda[1]+I*lambda[2])*b*x)*beta+(1/4)*(b*t-y)*(lambda[1]+I*lambda[2]))+4*y*beta*b*conjugate(lambda[1]+I*lambda[2])^2*(-((lambda[1]+I*lambda[2])*y+x)*beta+(1/2)*t)+conjugate(lambda[1]+I*lambda[2])*(-4*beta^2*(y^2*(b*(lambda[1]^2-lambda[2]^2+(2*I)*lambda[1]*lambda[2])+2*a*(lambda[1]+I*lambda[2]))+2*x*(b*(lambda[1]+I*lambda[2])+a)*y+b*x^2)+2*beta*(-4*b*(b*(lambda[1]+I*lambda[2])+a)*t^2+2*t*(y*(b*(lambda[1]+I*lambda[2])+a)+b*x)+y*((lambda[1]+I*lambda[2])*y+x))+b*t^2-t*y)+4*(-2*((I*lambda[1]*lambda[2]+(1/2)*lambda[1]^2-(1/2)*lambda[2]^2)*b+a*(lambda[1]+I*lambda[2]))*x*y-(lambda[1]+I*lambda[2])*x^2*b-2*a*x^2+12*alpha)*beta^2+2*beta*(-4*a*(b*(lambda[1]+I*lambda[2])+a)*t^2+t*(y*(b*(lambda[1]^2-lambda[2]^2+(2*I)*lambda[1]*lambda[2])+2*a*(lambda[1]+I*lambda[2]))+2*(b*(lambda[1]+I*lambda[2])+2*a)*x)+x*((lambda[1]+I*lambda[2])*y+x))+((b*(lambda[1]+I*lambda[2])+2*a)*t-(lambda[1]+I*lambda[2])*y-2*x)*t)

(2)

ans := solve({diff(rhs(equ), x), diff(rhs(equ), y)}, {x, y}, explicit)

 

``

Download critical-point.mw

First 14 15 16 17 18 19 20 Last Page 16 of 38