sursumCorda

1264 Reputation

15 Badges

2 years, 329 days

MaplePrimes Activity


These are questions asked by sursumCorda

Let us begin with few simulations: 
 

restart;

CodeTools:-Usage(plots['pointplot3d'](Matrix((proc (_) options operator, arrow; [_[() .. (), 1]-_[() .. (), 3], _[() .. (), 2]-_[() .. (), 4], _[() .. (), 5]] end proc)(convert(ssystem("wolframscript -code \"RandomPoint[Simplex[IdentityMatrix[5]], 2*^4]\"")[-1], FromMma)), scan = [rectangular, columns], datatype = float[4]), scaling = constrained))

memory used=0.57TiB, alloc change=91.51MiB, cpu time=18.77m, real time=15.86m, gc time=4.91m

 

CodeTools:-Usage(plots['pointplot3d'](Matrix((proc (_) options operator, arrow; [_[() .. (), 1]-_[() .. (), 3], _[() .. (), 2]-_[() .. (), 4], _[() .. (), 5]] end proc)(convert(ssystem("wolframscript -code \"RandomPoint[Sphere[5], 2*^4, ConstantArray[List[0, 1], 5]]\"")[-1], FromMma)), scan = columns, datatype = float[4]), scaling = constrained))

memory used=0.56TiB, alloc change=-12.08MiB, cpu time=18.70m, real time=15.11m, gc time=5.69m

 

NULL


 

Download iDistributionVector.mws

Well, I'd like to prove (through the use of Maple): 

transform((x1, x2, x3, x4, x5) -> [x1 - x3, x2 - x4, x5])(inequal(And((x || (1 .. 5)) >=~ 0, norm([x || (1 .. 5)], 1) = 1))) # not Maple syntax

is equivalent to a filled pyramid

ImplicitRegion((X, Y, Z), 0 <= Z <= 1 - abs(X) - abs(Y)) # not SymPy syntax

transform((x1, x2, x3, x4, x5) -> [x1 - x3, x2 - x4, x5])(inequal(And((x || (1 .. 5)) >=~ 0, norm([x || (1 .. 5)], 2) = 1))) # not Maple syntax

is equivalent to a hemi-ball

ImplicitRegion((X, Y, Z), 0 <= Z <= sqrt(1 - X**2 - Y**2)) # not SymPy syntax

, and 

transform((x1, x2, x3, x4, x5) -> [x1 - x3, x2 - x4, x5])(inequal(And((x || (1 .. 5)) >=~ 0, norm([x || (1 .. 5)], 'infinity') = 1))) # not Maple syntax

is equivalent to a solid cuboid

ImplicitRegion((X, Y, Z), -1 <= X <= 1 & -1 <= Y <= 1 & 0 <= Z <= 1) # not SymPy syntax

. (Here, for the convenience of the descriptions, I utilize some non-standard notation from .) 
Note that ”two regions are equal" is a two-way property, which means the following proof 

is(Z >= 0) and is(Z <= 1 - abs(X) - abs(Y)) assuming (X, Y, Z) =~ (x1 - x3, x2 - x4, x5), x || (1 .. 5) >=~ 0, add(x || (1 .. 5)) = 1;
                              true
(*Accordingly, the latter region is a subset of the former one.*) 

is incomplete (because it's hard to determine whether the is routine always performs equivalent transformations in internal evaluation). 

So, can I execute such eliminations in Maple?

After studying the plottools:-transform command, I intend to visualize the following regions with constrained parameters in 
 

(plottools[transform](proc (u, v) options operator, arrow; [u^3-v^2, u^2-v^3] end proc))(plots[inequal](`or`(u^2+4*v^2 <= 4, `and`(u^2+v^2 < 4, 4*v >= (u+2)^2+2*v^2)), nolines))

 

(plottools[transform](proc (s, t) options operator, arrow; [s^2*sqrt(t)*cos(t), s^2*sin(t)] end proc))(plots[inequal](`and`(`and`(s >= 1, 5*s <= 5+t), t < 5), s = 1 .. 2, t = 0 .. 5))

 

 

But Mma gives 

The first instance (with default settings) is the same, but as for the second instance, which graph is correct? 

restart;
with(plottools):
with(plots):
transform((u, v) -> [u^3 - v^2, u^2 - v^3])(inequal(Or(u^2 + 4*v^2 <= 4, And(u^2 + v^2 < 4, (u + 2)^2 + 2*(v - 1)^2 <= 2)), nolines));
transform((s, t) -> [s^2*sqrt(t)*cos(t), s^2*sin(t)])(inequal(`and`(1 <= s, 5*s <= 5 + t, t < 5), s = 1 .. 2, t = 0 .. 5));


Download TransformedRegion.mws

The range is wrong. For details, see below, please.
 

restart;

assume(x, RealRange(0, 1))

plot([sqrt(x*(2 - x)/3), 1 - sqrt((1 - x^2)/3)], legend = InertForm:-Display~([sqrt(x*(2 - x) %/ 3), 1 - sqrt((1 %- x^2) %/ 3)], 'inert' = false));

 

smartplot([sqrt(x*(2 - x)/3), 1 - sqrt((1 - x^2)/3)]);

 

smartplot([''piecewise'(And(0 <= x, x <= 1), sqrt(x*(2 - x)/3))', ''piecewise'(And(0 <= x, x <= 1), 1 - sqrt((1 - x^2)/3))']);

 

smartplot(['piecewise(And(0 <= x, x <= 1), sqrt(x*(2 - x)/3))', 'piecewise(And(0 <= x, x <= 1), 1 - sqrt((1 - x^2)/3))']);

 

smartplot([''piecewise''(And(0 <= x, x <= 1), sqrt(x*(2 - x)/3)), ''piecewise''(And(0 <= x, x <= 1), 1 - sqrt((1 - x^2)/3))]);

 

x := 'x'NULL


 

Download SmartPlots.mw

The help page claims that smartplot(..) will call 2-D plot procedures ultimately, but why is the smartplots command incompatible with the use of assume?

Mathematica's Dimensions returns a list of the allowed levels, which has been implemented in Maple as . But 

MmaTranslator:-Mma:-Dimensions(<<1 | 2>, <1 | 0>>);

returns [6], and 

MmaTranslator:-Mma:-Dimensions([[1, 2], [1, 0]]);

returns [2, 2, 4]. What happened here?

It should be [2, 2].

restart;

MmaTranslator:-Mma:-Dimensions(linalg[matrix]([[1, 2], [1, 0]]));

[0]

(1)

MmaTranslator:-Mma:-Dimensions(< 1 , 2 ; 1 , 0 >);

[6]

(2)

MmaTranslator:-Mma:-Dimensions(convert(`{{1, 2}, {1, 0}}`, FromMma));

[2, 2, 4]

(3)

MmaTranslator:-FromMma(`Dimensions[{{1, 2}, {1, 0}}]`, evaluate);

[2, 2]

(4)

NULL

Download Mma[Dimensions].mws

Execute the following codes in Maple input (1-D math) in the Standard interface. 

(cat("A".."C"),cat("d".."f"))||'$"G".."I",$"j".."l"'; 

Then an error occurred. But if one copy them into 2-D math (instead of Convert To>2-D Math Input) and execute them directly, everything goes without any error messages.

It says that mixed 1-D and 2-D math inside one command is not supported and not recommended stylistically. However, I just want to understand the reason why an error is raised here. 

restart;

kernelopts(version);

`Maple 2022.2, X86 64 WINDOWS, Oct 23 2022, Build ID 1657361`

(1)

interface(version);

`Standard Worksheet Interface, Maple 2022.2, Windows 10, October 23 2022 Build ID 1657361`

(2)

(cat("A".."C"),cat("d".."f"))||'$"G".."I",$"j".."l"';

Error, `||` unexpected

 

cat("A" .. "C"), cat("d" .. "f") || '`$`("G" .. "I"), `$`("j" .. "l")'

"AG", "AH", "AI", "Aj", "Ak", "Al", "BG", "BH", "BI", "Bj", "Bk", "Bl", "CG", "CH", "CI", "Cj", "Ck", "Cl", "dG", "dH", "dI", "dj", "dk", "dl", "eG", "eH", "eI", "ej", "ek", "el", "fG", "fH", "fI", "fj", "fk", "fl"

(3)

NULL

Download unexpectedConcatenation.mws

First 20 21 22 23 Page 22 of 23