tomleslie

13876 Reputation

20 Badges

15 years, 174 days

MaplePrimes Activity


These are answers submitted by tomleslie

restart;
expr:=  (L__b+lambda)^2*(I*sqrt(3)*lambda-2*L__b+lambda)^7*(I*sqrt(3)*lambda+2*L__b-lambda)^7
             /
             (16384*(L__b^2-lambda*L__b+lambda^2)^5*lambda^3);
simplify(expand(expr));

Resultant simplification is pretty impressive!

to the anwer I gave to your previous question. See the attached

#############################
# Initialize and get version
#
  restart;
  kernelopts(version);
#
# OP's code
#
  imp_fun := -4*x + 10*(x^2)*(y^(-2)) + y^2 =11;
  c := 2;
  s:= evalf( solve( subs( x = c, imp_fun)));
  m1 := evalf( subs ( { x = c, y = s[1] }, implicitdiff( imp_fun, y,x)));

`Maple 18.02, X86 64 WINDOWS, Oct 20 2014, Build ID 991181`

 

-4*x+10*x^2/y^2+y^2 = 11

 

2

 

1.552828568, -1.552828568, 4.072925661, -4.072925661

 

.6894093684

(1)

#############################
# How I'd (probably?) do it.
#
# Initialize and get version
#
  restart;
  with(plots):
  kernelopts(version);
#
  imp_fun := x^3+y^3 = 9*x*y;;
  s:= evalf
      ( solve
        ( eval
          ( imp_fun,
            x=2
          )
        )
      );
  m1:= evalf
       ( eval
         ( implicitdiff
           ( imp_fun, y, x
           ),
           [ x=2, y=s[1] ]
         )
       );
#
# Plot the curve and the solution points for x=2
#
  cols:=[ red, green, blue, black]:
  display
  ( [ implicitplot
      ( imp_fun,
        x=-5..5,
        y=-5..5,
        color=blue,
        gridrefine=4
      ),
     pointplot
     ( [ seq
         ( [2,s[j]],
           j =1..numelems([s])
         )
       ],
       color=[ red, green, blue],
       style=point,
       symbol=solidcircle,
       symbolsize=20
     )
   ]
 );

`Maple 18.02, X86 64 WINDOWS, Oct 20 2014, Build ID 991181`

 

x^3+y^3 = 9*x*y

 

4., -4.449489743, .449489743

 

.8000000000

 

 

 

Download impDiff2.mw

Seems to work just fine in Maple 18?????

See the attached

#############################
# Initialize and get version
#
  restart;
  kernelopts(version);
#
# OP's code
#
  imp_fun := -4*x + 10*(x^2)*(y^(-2)) + y^2 =11;
  c := 2;
  s:= evalf( solve( subs( x = c, imp_fun)));
  m1 := evalf( subs ( { x = c, y = s[1] }, implicitdiff( imp_fun, y,x)));

`Maple 18.02, X86 64 WINDOWS, Oct 20 2014, Build ID 991181`

 

-4*x+10*x^2/y^2+y^2 = 11

 

2

 

1.552828568, -1.552828568, 4.072925661, -4.072925661

 

.6894093684

(1)

#############################
# How I'd (probably?) do it.
#
# Initialize and get version
#
  restart;
  with(plots):
  kernelopts(version);
#
  imp_fun := -4*x + 10*(x^2)*(y^(-2)) + y^2 =11;
  s:= evalf
      ( solve
        ( eval
          ( imp_fun,
            x=2
          )
        )
      );
  m1:= evalf
       ( eval
         ( implicitdiff
           ( imp_fun, y, x
           ),
           [ x=2, y=s[1] ]
         )
       );
#
# Plot the curve and the solution points for x=2
#
  display
  ( [ implicitplot
      ( imp_fun,
        x=-5..5,
        y=-5..5,
        color=blue,
        gridrefine=4
      ),
      plot
      ( [ seq
          ( [2,j],
            j in s
          )
        ],
        style=point,
        color=red,
        symbol=solidcircle,
        symbolsize=20
      )
    ]
  );

`Maple 18.02, X86 64 WINDOWS, Oct 20 2014, Build ID 991181`

 

-4*x+10*x^2/y^2+y^2 = 11

 

1.552828568, -1.552828568, 4.072925661, -4.072925661

 

.6894093684

 

 

 

Download impDiff.mw

  1. Code executes "correctly" (ie with no errors) in Maple 18, Maple 2015, Maple 2016, Maple2017 and Maple 2018 - see the attached. Which Maple version are you using
  2. In all of the above versions, the determinant of the system to be solved is very small (in some loop iterations being returned as identically zero), which means that the system has no unique solution, and a parameterized solution is returned. See the attached.

restart; with(LinearAlgebra); with(Student[MultivariateCalculus]); f := unapply(x1*exp(t*x2-y), x1, x2); tt := Matrix(5, 1, [1, 2, 4, 5, 8]); yy := Matrix(5, 1, [3.2939, 4.2699, 7.1749, 9.3008, 20.259]); ff := f(2.50, .25); for ii to 5 do t := tt[ii][1]; y := yy[ii][1]; Jf := Gradient(f(x1, x2), [x1, x2] = [2.50, .25]); JF := Transpose(Jf[1]); JR := Transpose(Transpose(ff).JF); HF := Transpose(JF).JF; det := Determinant(HF); P := LinearSolve(HF, -JR); printf("%a  \n", P) end do

f := proc (x1, x2) options operator, arrow; x1*exp(t*x2-y) end proc

 

t := 1

 

y := 3.2939

 

[Vector(2, {(1) = 0.4764869674e-1, (2) = .1191217418})]

 

Vector[row](2, {(1) = 0.4764869674e-1, (2) = .1191217418})

 

Vector(2, {(1) = 0.5675995750168781e-2, (2) = 0.14189989369465868e-1})

 

Matrix(2, 2, {(1, 1) = 0.2270398301020486e-2, (1, 2) = 0.5675995750168781e-2, (2, 1) = 0.5675995750168781e-2, (2, 2) = 0.14189989369465868e-1})

 

det := 6.77626357803440*10^(-21)

 

Vector(2, {(1) = 0., (2) = -1.0})

 

Vector(2, [0.,-1.], datatype = float[8])  

 

t := 2

 

y := 4.2699

 

[Vector(2, {(1) = 0.2305436861e-1, (2) = .1152718430})]

 

Vector[row](2, {(1) = 0.2305436861e-1, (2) = .1152718430})

 

Vector(2, {(1) = 0.13287597798991115e-2, (2) = 0.6643798896613762e-2})

 

Matrix(2, 2, {(1, 1) = 0.5315039120057534e-3, (1, 2) = 0.26575195588760484e-2, (2, 1) = 0.26575195588760484e-2, (2, 2) = 0.1328759778861665e-1})

 

det := 0.

 

Vector(2, {(1) = -2.499999999783121-4.999999997831213*_t0[1], (2) = _t0[1]})

 

Vector(2, [(-2.49999999978312)-4.99999999783121*_t0[1],_t0[1]])  

 

t := 4

 

y := 7.1749

 

[Vector(2, {(1) = 0.2081014008e-2, (2) = 0.2081014008e-1})]

 

Vector[row](2, {(1) = 0.2081014008e-2, (2) = 0.2081014008e-1})

 

Vector(2, {(1) = 0.10826548253730561e-4, (2) = 0.10826548253730561e-3})

 

Matrix(2, 2, {(1, 1) = 0.4330619301492224e-5, (1, 2) = 0.43306193014922243e-4, (2, 1) = 0.43306193014922243e-4, (2, 2) = 0.43306193014922245e-3})

 

det := 0.

 

Vector(2, {(1) = 0., (2) = -.25})

 

Vector(2, [0.,-.25], datatype = float[8])  

 

t := 5

 

y := 9.3008

 

[Vector(2, {(1) = 0.3188467430e-3, (2) = 0.3985584288e-2})]

 

Vector[row](2, {(1) = 0.3188467430e-3, (2) = 0.3985584288e-2})

 

Vector(2, {(1) = 0.2541581138e-6, (2) = 0.3176976422951935e-5})

 

Matrix(2, 2, {(1, 1) = 0.1016632455e-6, (1, 2) = 0.1270790569180774e-5, (2, 1) = 0.1270790569180774e-5, (2, 2) = 0.1588488211675247e-4})

 

det := 0.

 

Vector(2, {(1) = -2.5000000000000004-12.500000001568154*_t2[1], (2) = _t2[1]})

 

Vector(2, [(-2.5)-12.5000000015682*_t2[1],_t2[1]])  

 

t := 8

 

y := 20.259

 

[Vector(2, {(1) = 0.1175484901e-7, (2) = 0.2350969802e-6})]

 

Vector[row](2, {(1) = 0.1175484901e-7, (2) = 0.2350969802e-6})

 

Vector(2, {(1) = 0.3454411881e-15, (2) = 0.6908823761e-14})

 

Matrix(2, 2, {(1, 1) = 0.1381764752e-15, (1, 2) = 0.2763529505e-14, (2, 1) = 0.2763529505e-14, (2, 2) = 0.5527059010e-13})

 

det := -1.40129846432482*10^(-45)

 

Vector[column](%id = 18446744074600137662)

 

Vector(2, [(-2.49999999957464)-20.*_t3[1],_t3[1]])  

 

``


 

Download GNmethod.mw

post code using the big green up-arrow in the Mapleprimes tool bar, because retyping your code from a picture is lengthy and error-prone.

When I do retype your code, it executes with no problems, so either

  1. there is something else in your worksheet which i causing a problem
  2. I have "inadvertently" fixed something because I typed what I expected to be there, rather than just copying your code character-by-character

If you can't figure out why the attached works and your original doesn't, then post your original using the big green u-arrow in the toolbar

tol:=1e-06;
n:=10;
f:=x->x^2-3;
x[0]:=0.1;
h:=x->2*x;
for k from 1 to n do
    x[k]:=evalf(x[k-1]-f(x[k-1])/h(x[k-1]));
    if abs(x[k]-x[k-1])< tol
    then print("Number of iterations"=k);
         print("approximate solution"=x[k]);
         print( f(x[k]) );
         break;
    end if;
    x[k-1]:=x[k];
end do:
plot( [f(x), f(x[k-1])+(x-x[k-1])*h(x[k-1])], x=-1..3, colour=[red,black]);

0.1e-5

 

10

 

proc (x) options operator, arrow; x^2-3 end proc

 

.1

 

proc (x) options operator, arrow; 2*x end proc

 

"Number of iterations" = 9

 

"approximate solution" = 1.732050808

 

0.1e-8

 

 

 

 

Download newtMeth.mw

 

is that on the first pass through your innermost loop 'tj' is an unassigned variable which you solve for.

On your second pass through the innermost loop 'tj' is no longer unassigned (because you solved for it on the first pass!). Now you can get around this by adding by adding tj:='tj' as the first statement in the loop, ensuring that on each loop iteration 'tj' is unassigned. If you do this, then all nested loops will execute with no problems, but the value of the variable 'som' will remain at zero, becuase the 'if' conditions which allow it to be updated are never satisfied - evidenced by adding a slight amendment to the print statement you had at this point ( which never executes)

I'm guessing that this is probably not the answer you want??? But see the attached anyway. NB this takes about 90secs to run on my machine - which I guess is fair enough to evaluate the innermost loop 36000 times. Something tells me there must be a better way: any more than three nested loops and I get a nosebleed!

restart;
som:=0:
for b1 from 10 to 10 by 1 do
  for b2 from 1 to 2 by 1 do
    for alpha from 0.5 to 0.5 by 0.1 do
      for beta from 0.33 to 0.5 by 0.1 do
        for c from 1 to 1 by 1 do
          for f from 1 to 10 by 1 do
            for g from 1 to 10 by 0.1 do
              for lambdaj from 0.2 to 0.4 by 0.1 do
                for gammaj from 0.2 to 0.4 by 0.1 do
                    p:='p';
                    tj:='tj'; # Added this
                    aiSQ:=(alpha*b1)/(alpha*b2+beta*b2+c);
                    ajSQ:=(beta*b1)/(alpha*b2+beta*b2+c);
                    UiSQ:=(1/2)*alpha*b1^2*(alpha^2*b2+2*alpha*beta*b2+c*alpha+beta^2*b2+2*beta*c)/(alpha*b2+beta*b2+c)^2;
                    UjSQ:=(1/2)*beta*b1^2*(alpha^2*b2+2*alpha*beta*b2+2*c*alpha+beta^2*b2+beta*c)/(alpha*b2+beta*b2+c)^2;
                    USQ:=(1/2)*b1^2*(alpha+beta)*(alpha*b2+beta*b2+2*c)/(alpha*b2+beta*b2+c)^2;
                    UTSQ:=UiSQ+UjSQ+USQ;
                    ai:=(-alpha*b2*f*p+alpha*b1*c-b2*f*p+b1*c)/(c*(alpha*b2+b2*beta+b2+c));
                    aj:=(alpha*b2*f*p+b1*beta*c+b2*f*p+c*f*p)/(c*(alpha*b2+b2*beta+b2+c));
                    aineg:=-(alpha*b2*f*lambdaj*p+b2*f*lambdaj*p+alpha*b1*c+b1*c)/(c*(alpha*b2*lambdaj-2*alpha*b2-b2*beta+b2*lambdaj-2*b2-c));
                    ajneg:=(alpha*b2*f*lambdaj*p+alpha*b1*c*lambdaj+b2*f*lambdaj*p+c*f*lambdaj*p-alpha*b1*c-b1*beta*c+b1*c*lambdaj-b1*c)/(c*(alpha*b2*lambdaj-2*alpha*b2-b2*beta+b2*lambdaj-2*b2-c));
                    uj:=beta*(b1*(aineg+ajneg)-(b2/2)*(aineg+ajneg)^2)-(c/2)*ajneg^2-p*f*(ajneg-aj);
                    uL:=(alpha+1)*(b1*(aineg+ajneg)-(b2/2)*(aineg+ajneg)^2)-(c/2)*aineg^2+p*f*(ajneg-aj);
                    eqtj:=gammaj*(uL-USQ)-((1-gammaj)/(1-lambdaj))*(uj-UjSQ)-tj;
                    tj:=solve(eqtj,tj);
                    dai:=diff(ai,p);
                    daj:=diff(aj,p);
                    daineg:=diff(aineg,p);
                    dajneg:=diff(ajneg,p);
                    dtj:=diff(tj,p);
                    Ujp:=beta*(b1*(ai+aj)-(b2/2)*(ai+aj)^2)-(c/2)*aj^2-p*f*(ajneg-aj)+(1-lambdaj)*tj;
                    ULp:=(alpha+1)*(b1*(ai+aj)-(b2/2)*(ai+aj)^2)-(c/2)*ai^2+p*f*(ajneg-aj)-tj-g*((p^2)/2);
                    eqp:=diff(ULp,p);
                    eqpp:=diff(eqp,p);
                    p:=solve(eqp,p);
                    CSQ:=b1-b2*(aiSQ+ajSQ);
                    Cabat:=b1-b2*(ai+aj);
                    Cneg:=b1-b2*(aineg+ajneg);
                    if   (ai>aineg)
                    then f*(aineg-ai)=0
                    else if   (aj>ajneg)
                         then f*(ajneg-aj)=0
                         else if (CSQ>0 and Cabat>0  and Cneg>0 and eqpp<0 and p>0 and p<1 and beta<alpha and aiSQ>0 and ajSQ>0 and ai>0 and aj>0 and aineg>0 and ajneg>0 and tj>0)
                              then #
                                   # Modifies the following print statement - which
                                   # never executes
                                   #
                                    printf("Made it to here %a %a %a %a %a %a %a %a %a %a\n",
                                            b1,b2,alpha,beta,c,f,g,lambdaj,gammaj,p
                                          );
                                   som:=som+1;
                              fi;
                         fi;
                    fi;
                od;
              od;
            od;
          od;
        od;
      od;
    od;
  od;
od;
som;

0

(1)

 

Download multiloop.mw

 

int(cos(2*x)/(1+2*sin(3*x)^2), x):
eval(%, x=Pi)-eval(%, x=0)

which returns 0, more or less instantaneously

 

sin(x)*cos(x)

is a 2D plot? Did you possibly mean sin(x)*cos(y) ?

Any plot can be exported as EPS. The easiest way to do this, is

  1. Generate the plot
  2. Select and display the appropriate context menu by right clicking on the plot
  3. Select "Encapsulated Postscript" from the "Export" sub-menu: follow the dialog

you examine the attached

restart

with(LinearAlgebra)

NULL

A1 := `<|>`(`<,>`(-1, 0, 0), `<,>`(0, -1, 0), `<,>`(0, 0, 1))

Matrix(%id = 18446744074370527830)

(1)

A2 := `<|>`(`<,>`(cos(`&theta;__2`), 0, sin(`&theta;__2`)), `<,>`(0, 1, 0), `<,>`(-sin(`&theta;__2`), 0, cos(`&theta;__2`)))

Matrix(%id = 18446744074370524574)

(2)

A3 := `<|>`(`<,>`(1, 0, 0), `<,>`(0, cos(`&theta;__3`), sin(`&theta;__3`)), `<,>`(0, -sin(`&theta;__3`), cos(`&theta;__3`)))

Matrix(%id = 18446744074370521198)

(3)

NULL

A := A1.A2.A3

Matrix(%id = 18446744074370507710)

(4)

expr := A.`<,>`(1, 2, 0) = `<,>`(0, -1, 2); eqns := [`&theta;__2` >= 0, `&theta;__2` <= Pi, `&theta;__3` >= 0, `&theta;__3` <= Pi, seq(lhs(expr)[j] = rhs(expr)[j], j = 1 .. 3)]; ans := solve(eqns); (eval(A, ans)).`<,>`(0, -1, 2)

(Vector(3, {(1) = -cos(`#msub(mi("&theta;",fontstyle = "normal"),mi("2"))`)+2*sin(`#msub(mi("&theta;",fontstyle = "normal"),mi("2"))`)*sin(`#msub(mi("&theta;",fontstyle = "normal"),mi("3"))`), (2) = -2*cos(`#msub(mi("&theta;",fontstyle = "normal"),mi("3"))`), (3) = sin(`#msub(mi("&theta;",fontstyle = "normal"),mi("2"))`)+2*cos(`#msub(mi("&theta;",fontstyle = "normal"),mi("2"))`)*sin(`#msub(mi("&theta;",fontstyle = "normal"),mi("3"))`)})) = (Vector(3, {(1) = 0, (2) = -1, (3) = 2}))

 

eqns := [0 <= `&theta;__2`, `&theta;__2` <= Pi, 0 <= `&theta;__3`, `&theta;__3` <= Pi, -cos(`&theta;__2`)+2*sin(`&theta;__2`)*sin(`&theta;__3`) = 0, -2*cos(`&theta;__3`) = -1, sin(`&theta;__2`)+2*cos(`&theta;__2`)*sin(`&theta;__3`) = 2]

 

ans := {`&theta;__2` = (1/6)*Pi, `&theta;__3` = (1/3)*Pi}

 

Vector[column](%id = 18446744074370493366)

(5)

``

Download transVec.mw

it is possible to do pretty much what you want (although I have no idea what information is conveyed)

  restart;
  with(GraphTheory):
#
# Enter "physical" position for graph vertices
#
  vp := [ [2.5, 21], [6, 13.5], [8, 10], [11, 24.5], [14.3, 19.4],
          [16.8, 26], [22, 21.5], [22, 17], [22.2, 12.5], [26.8, 23],
          [28, 20.5], [30, 25.5], [32, 21], [29.5, 16]
        ]:
#
# Initialise the Graph with the correct number
# of vertices
#
  G1:= Graph
       ( [ seq( j,
                j=1..numelems(vp)
              )
         ]
       ):
#
# Draw Graph with given "physical" positions
#
  SetVertexPositions(G1, vp);
  DrawGraph(G1);
#
# Define start node, then span the graph. As a
# by-product, return the total physical distance
# traversed
#
  startNode:=5:
  doSpan:= proc( sp::integer, phyD::list, dist:=0.0 )
                 uses Student:-Calculus1:
                 global G1:
                 local currPos,
                       dd,
                       pD:= phyD,
                       d:= (p, q)-> evalf( Distance(p, q) );
                 if   numelems(phyD)=2
                 then AddEdge( G1,
                               { pD[1][1], pD[2][1] }
                             );
                      return dist+d( pD[1][2], pD[2][2] ):
                 else currPos, pD:= selectremove(i->i[1]=sp, pD);
                      dd:= sort
                           ( [ seq
                               ( [ currPos[][1],
                                   j[1],
                                   d(currPos[][2], j[2])
                                 ],
                                 j in pD
                               )
                             ],
                             (x,y)-> evalb(x[3]<y[3])
                           )[1];
                      AddEdge( G1,
                               { dd[1], dd[2] }
                             );
                      doSpan( dd[2], pD, dist+dd[3] );
                 fi;
           end proc:


  doSpan( startNode,
          [ seq
            ( [j, vp[j]],
              j in Vertices(G1)
            )
          ]
        );
#
# Draw the connected graph
#
  SetVertexPositions(G1, vp);
  DrawGraph(G1);

 

 

91.25233347

 

 

 

Download physGraph.mw

You can't numerically evaluate int(f(x,y)) with respect to y with x unknown.

For your specific case it is actually possible to get a (rather complicated) expression for int(f(x,y), x=0..infinity) - ie a symbolic representation containing the variable 'x', and then evaluate this for any(?) value of x, as in the attached

restart:

f1 := (-(1.671130827*10^(-21)*I)*((0.6132469529e-1-.5253537767*I)*x^3+(.2894208344-2.479398027*I)*y*x^2+(0.1107017247e-1+(-.2377238011-0.2774956673e-1*I)*y^2)*x+(-.1167302837+.9999999999*I)*y^3+(0.2912028092e-1-.2494663781*I)*y)*exp(-1.732070784*10^(-15)*x*y)*((-0.6132469529e-1-.5253537767*I)*x^3+(.3115611798+2.669068985*I)*y*x^2+(-0.1107017247e-1+(-.3699321954+0.4318229002e-1*I)*y^2)*x+(.1455017102+1.246477826*I)*y^3+(0.2512356422e-1+.2152274756*I)*y)*exp(1.732070784*10^(-15)*x*y)*exp(-2.178669712*10^(-15)*y^2-3.534838336*10^(-16)*x^2+(1.000000000*10^(-9)*I)*x/y)/x)*y;

-(0.1671130827e-20*I)*((0.6132469529e-1-.5253537767*I)*x^3+(.2894208344-2.479398027*I)*y*x^2+(0.1107017247e-1+(-.2377238011-0.2774956673e-1*I)*y^2)*x+(-.1167302837+.9999999999*I)*y^3+(0.2912028092e-1-.2494663781*I)*y)*exp(-0.1732070784e-14*x*y)*((-0.6132469529e-1-.5253537767*I)*x^3+(.3115611798+2.669068985*I)*y*x^2+(-0.1107017247e-1+(-.3699321954+0.4318229002e-1*I)*y^2)*x+(.1455017102+1.246477826*I)*y^3+(0.2512356422e-1+.2152274756*I)*y)*exp(0.1732070784e-14*x*y)*exp(-0.2178669712e-14*y^2-0.3534838336e-15*x^2+(0.1000000000e-8*I)*x/y)*y/x

(1)

ans:=unapply(int(f1,y=0..infinity),x):
ans(1);
ans(10);

-0.4304155607e31+0.2811437274e39*I

 

-0.3926999882e31+0.2811437333e38*I

(2)

``

 

Download doInt.mw

then the attached ought to do it

NULL

restart

II := 11; JJ := 11; h := 0.1e-2

Wij := Matrix(12, 12, {(1, 1) = -.745909803077121, (1, 2) = -0.674461080069867e-2, (1, 3) = .834708547865408, (1, 4) = 0.877385723822038e-2, (1, 5) = -0.908081081472752e-1, (1, 6) = -0.239340836231797e-2, (1, 7) = 0.191800718112554e-2, (1, 8) = 0.418141771959862e-3, (1, 9) = 0.146623811902983e-3, (1, 10) = -0.588304624666211e-4, (1, 11) = -0.556596641532947e-4, (1, 12) = 0.483545553955535e-5, (2, 1) = -0.150780560642874e-2, (2, 2) = 0.867791918452209e-3, (2, 3) = 0.153733767594070e-2, (2, 4) = -0.204845456630398e-1, (2, 5) = -0.637707566405370e-4, (2, 6) = 0.212481474445345e-1, (2, 7) = 0.230866935460358e-4, (2, 8) = -0.263384023057254e-2, (2, 9) = 0.173129262456175e-4, (2, 10) = 0.145986418012667e-2, (2, 11) = -0.615768525233225e-5, (2, 12) = -0.455559328816086e-3, (3, 1) = 1.07234104621714, (3, 2) = 0.971025800610391e-2, (3, 3) = -1.19283486996676, (3, 4) = -0.126396150015806e-1, (3, 5) = .118988853710128, (3, 6) = 0.340933797889320e-2, (3, 7) = 0.190278053641238e-2, (3, 8) = -0.565664886428382e-3, (3, 9) = -0.503156502649439e-3, (3, 10) = 0.979522657647879e-4, (3, 11) = 0.113002768409814e-3, (3, 12) = -0.121533604250274e-4, (4, 1) = 0.245302677746526e-2, (4, 2) = 0.611598278493220e-3, (4, 3) = -0.251651574609684e-2, (4, 4) = 0.278857618849383e-1, (4, 5) = 0.108022265014592e-3, (4, 6) = -0.320168363280661e-1, (4, 7) = -0.325097140040140e-4, (4, 8) = 0.480517189034762e-2, (4, 9) = -0.193985210422571e-4, (4, 10) = -0.190626072415250e-2, (4, 11) = 0.739266431705442e-5, (4, 12) = 0.619688407885468e-3, (5, 1) = -.332680012459335, (5, 2) = -0.308899427286697e-2, (5, 3) = .359841697913305, (5, 4) = 0.403401520601850e-2, (5, 5) = -0.200704409346196e-1, (5, 6) = -0.104338164548124e-2, (5, 7) = -0.748747318317741e-2, (5, 8) = 0.123603846422314e-3, (5, 9) = 0.587068975361258e-3, (5, 10) = -0.290076105262677e-4, (5, 11) = -0.191603816451559e-3, (5, 12) = 0.373388286597686e-5, (6, 1) = -0.103361884660837e-2, (6, 2) = -0.295276339713243e-2, (6, 3) = 0.108951918505810e-2, (6, 4) = -0.479183265920926e-2, (6, 5) = -0.592008998858512e-4, (6, 6) = 0.102437161326541e-1, (6, 7) = 0.859907872385912e-5, (6, 8) = -0.266521683446180e-2, (6, 9) = -0.383709478639487e-5, (6, 10) = 0.266632726737390e-3, (6, 11) = -0.148469080898987e-5, (6, 12) = -0.101665157432172e-3, (7, 1) = 0.703379342372258e-2, (7, 2) = 0.176251183163216e-3, (7, 3) = -0.145630485079540e-2, (7, 4) = -0.233067786529769e-3, (7, 5) = -0.922702754264408e-2, (7, 6) = 0.364384299428906e-4, (7, 7) = 0.417281143846606e-2, (7, 8) = 0.324111696921334e-4, (7, 9) = -0.484660014401307e-3, (7, 10) = -0.128619131156994e-4, (7, 11) = -0.412616528382663e-4, (7, 12) = 0.7982985444e-6, (8, 1) = 0.974187082179976e-4, (8, 2) = 0.155548383221531e-2, (8, 3) = -0.123838922170996e-3, (8, 4) = -0.249773787243565e-2, (8, 5) = 0.221867864063737e-4, (8, 6) = 0.480516696280202e-3, (8, 7) = -0.359606407557896e-5, (8, 8) = 0.433976774887701e-3, (8, 9) = 0.811301081325245e-5, (8, 10) = 0.727673884033783e-4, (8, 11) = -0.3022512840e-6, (8, 12) = -0.468064718553966e-4, (9, 1) = -0.682570264341669e-3, (9, 2) = -0.587007804372093e-4, (9, 3) = -0.666643577308233e-3, (9, 4) = 0.662778988863377e-4, (9, 5) = 0.125271290023062e-2, (9, 6) = -0.232225466973706e-5, (9, 7) = -0.410694230883052e-3, (9, 8) = -0.106713819648935e-4, (9, 9) = 0.366616746138017e-3, (9, 10) = 0.217010277855600e-5, (9, 11) = 0.135713097667273e-3, (9, 12) = 0.320410261333838e-5, (10, 1) = -0.101818162719231e-4, (10, 2) = -0.157599695320146e-3, (10, 3) = 0.929732652373664e-5, (10, 4) = -0.189234110745728e-3, (10, 5) = -0.859354584213451e-5, (10, 6) = 0.214578509593470e-4, (10, 7) = 0.613328774334630e-5, (10, 8) = 0.117712820070324e-3, (10, 9) = -0.213534503887478e-5, (10, 10) = 0.179089799811260e-3, (10, 11) = 0.546912773241878e-5, (10, 12) = 0.273197376236470e-4, (11, 1) = -0.108150650095191e-3, (11, 2) = 0.568807678432329e-5, (11, 3) = 0.416808900313591e-3, (11, 4) = -0.132889420052041e-5, (11, 5) = -0.136041936047118e-3, (11, 6) = -0.673784027004257e-5, (11, 7) = -0.942090825967484e-4, (11, 8) = 0.222185688977502e-5, (11, 9) = -0.113443667198581e-3, (11, 10) = 0.6962003263e-6, (11, 11) = 0.361765818744130e-4, (11, 12) = -0.5344899574e-6, (12, 1) = 0.112445517997156e-5, (12, 2) = 0.741957037817598e-4, (12, 3) = 0.420901487126838e-5, (12, 4) = 0.763065573748303e-4, (12, 5) = 0.136237864072227e-5, (12, 6) = 0.239279022456648e-4, (12, 7) = -0.171222080223248e-5, (12, 8) = -0.577109791933568e-4, (12, 9) = -0.3869218336e-7, (12, 10) = -0.715889637469861e-4, (12, 11) = -0.491358853466192e-5, (12, 12) = -0.419960052327950e-4})

Wij := Matrix(12, 12, {(1, 1) = -.745909803077121, (1, 2) = -0.674461080069867e-2, (1, 3) = .834708547865408, (1, 4) = 0.877385723822038e-2, (1, 5) = -0.908081081472752e-1, (1, 6) = -0.239340836231797e-2, (1, 7) = 0.191800718112554e-2, (1, 8) = 0.418141771959862e-3, (1, 9) = 0.146623811902983e-3, (1, 10) = -0.588304624666211e-4, (1, 11) = -0.556596641532947e-4, (1, 12) = 0.483545553955535e-5, (2, 1) = -0.150780560642874e-2, (2, 2) = 0.867791918452209e-3, (2, 3) = 0.153733767594070e-2, (2, 4) = -0.204845456630398e-1, (2, 5) = -0.637707566405370e-4, (2, 6) = 0.212481474445345e-1, (2, 7) = 0.230866935460358e-4, (2, 8) = -0.263384023057254e-2, (2, 9) = 0.173129262456175e-4, (2, 10) = 0.145986418012667e-2, (2, 11) = -0.615768525233225e-5, (2, 12) = -0.455559328816086e-3, (3, 1) = 1.07234104621714, (3, 2) = 0.971025800610391e-2, (3, 3) = -1.19283486996676, (3, 4) = -0.126396150015806e-1, (3, 5) = .118988853710128, (3, 6) = 0.340933797889320e-2, (3, 7) = 0.190278053641238e-2, (3, 8) = -0.565664886428382e-3, (3, 9) = -0.503156502649439e-3, (3, 10) = 0.979522657647879e-4, (3, 11) = 0.113002768409814e-3, (3, 12) = -0.121533604250274e-4, (4, 1) = 0.245302677746526e-2, (4, 2) = 0.611598278493220e-3, (4, 3) = -0.251651574609684e-2, (4, 4) = 0.278857618849383e-1, (4, 5) = 0.108022265014592e-3, (4, 6) = -0.320168363280661e-1, (4, 7) = -0.325097140040140e-4, (4, 8) = 0.480517189034762e-2, (4, 9) = -0.193985210422571e-4, (4, 10) = -0.190626072415250e-2, (4, 11) = 0.739266431705442e-5, (4, 12) = 0.619688407885468e-3, (5, 1) = -.332680012459335, (5, 2) = -0.308899427286697e-2, (5, 3) = .359841697913305, (5, 4) = 0.403401520601850e-2, (5, 5) = -0.200704409346196e-1, (5, 6) = -0.104338164548124e-2, (5, 7) = -0.748747318317741e-2, (5, 8) = 0.123603846422314e-3, (5, 9) = 0.587068975361258e-3, (5, 10) = -0.290076105262677e-4, (5, 11) = -0.191603816451559e-3, (5, 12) = 0.373388286597686e-5, (6, 1) = -0.103361884660837e-2, (6, 2) = -0.295276339713243e-2, (6, 3) = 0.108951918505810e-2, (6, 4) = -0.479183265920926e-2, (6, 5) = -0.592008998858512e-4, (6, 6) = 0.102437161326541e-1, (6, 7) = 0.859907872385912e-5, (6, 8) = -0.266521683446180e-2, (6, 9) = -0.383709478639487e-5, (6, 10) = 0.266632726737390e-3, (6, 11) = -0.148469080898987e-5, (6, 12) = -0.101665157432172e-3, (7, 1) = 0.703379342372258e-2, (7, 2) = 0.176251183163216e-3, (7, 3) = -0.145630485079540e-2, (7, 4) = -0.233067786529769e-3, (7, 5) = -0.922702754264408e-2, (7, 6) = 0.364384299428906e-4, (7, 7) = 0.417281143846606e-2, (7, 8) = 0.324111696921334e-4, (7, 9) = -0.484660014401307e-3, (7, 10) = -0.128619131156994e-4, (7, 11) = -0.412616528382663e-4, (7, 12) = 0.7982985444e-6, (8, 1) = 0.974187082179976e-4, (8, 2) = 0.155548383221531e-2, (8, 3) = -0.123838922170996e-3, (8, 4) = -0.249773787243565e-2, (8, 5) = 0.221867864063737e-4, (8, 6) = 0.480516696280202e-3, (8, 7) = -0.359606407557896e-5, (8, 8) = 0.433976774887701e-3, (8, 9) = 0.811301081325245e-5, (8, 10) = 0.727673884033783e-4, (8, 11) = -0.3022512840e-6, (8, 12) = -0.468064718553966e-4, (9, 1) = -0.682570264341669e-3, (9, 2) = -0.587007804372093e-4, (9, 3) = -0.666643577308233e-3, (9, 4) = 0.662778988863377e-4, (9, 5) = 0.125271290023062e-2, (9, 6) = -0.232225466973706e-5, (9, 7) = -0.410694230883052e-3, (9, 8) = -0.106713819648935e-4, (9, 9) = 0.366616746138017e-3, (9, 10) = 0.217010277855600e-5, (9, 11) = 0.135713097667273e-3, (9, 12) = 0.320410261333838e-5, (10, 1) = -0.101818162719231e-4, (10, 2) = -0.157599695320146e-3, (10, 3) = 0.929732652373664e-5, (10, 4) = -0.189234110745728e-3, (10, 5) = -0.859354584213451e-5, (10, 6) = 0.214578509593470e-4, (10, 7) = 0.613328774334630e-5, (10, 8) = 0.117712820070324e-3, (10, 9) = -0.213534503887478e-5, (10, 10) = 0.179089799811260e-3, (10, 11) = 0.546912773241878e-5, (10, 12) = 0.273197376236470e-4, (11, 1) = -0.108150650095191e-3, (11, 2) = 0.568807678432329e-5, (11, 3) = 0.416808900313591e-3, (11, 4) = -0.132889420052041e-5, (11, 5) = -0.136041936047118e-3, (11, 6) = -0.673784027004257e-5, (11, 7) = -0.942090825967484e-4, (11, 8) = 0.222185688977502e-5, (11, 9) = -0.113443667198581e-3, (11, 10) = 0.6962003263e-6, (11, 11) = 0.361765818744130e-4, (11, 12) = -0.5344899574e-6, (12, 1) = 0.112445517997156e-5, (12, 2) = 0.741957037817598e-4, (12, 3) = 0.420901487126838e-5, (12, 4) = 0.763065573748303e-4, (12, 5) = 0.136237864072227e-5, (12, 6) = 0.239279022456648e-4, (12, 7) = -0.171222080223248e-5, (12, 8) = -0.577109791933568e-4, (12, 9) = -0.3869218336e-7, (12, 10) = -0.715889637469861e-4, (12, 11) = -0.491358853466192e-5, (12, 12) = -0.419960052327950e-4})

(1)

Wxy1 := add(add(h*Wij[i+1, j+1]*LegendreP(i, Zeta)*LegendreP(j, eta), i = 0 .. II), j = 0 .. JJ)

Wxy[1] := simplify(Wxy1)

Plt := plot3d(Wxy[1], Zeta = -1 .. 1, eta = -1 .. 1)

 

minVal := Optimization:-Minimize(Wxy[1], Zeta = -1 .. 1, eta = -1 .. 1); maxVal := Optimization:-Maximize(Wxy[1], Zeta = -1 .. 1, eta = -1 .. 1)-minVal; normW := (Wxy[1]-minVal[1])/maxVal[1]; Plt := plot3d(normW, Zeta = -1 .. 1, eta = -1 .. 1)

 

NULL

NULL

``

Download mormalize.mw

Code you supplied contains the line

phin:=simplify(unapply(Transpose(psi).(hatA+A0),t)):

but 'psi' is undefined, hence so is Transpose(psi), and thus phin etc. This means that your final plot() command produces an error, because the function your are trying to plot contains the undefined variable 'psi'

On my machine it takes about 15seconds, before Maple "Errors". Is this excessive?

is with the first remove() statement in the procedure. A remove() statement expects its first argument to be a logical test which returns the value 'true' or 'false' for each entry in the second argument.. If the logical test returns 'true' then the corresponding entry in the second argument is removed: So for example

remove( i-> i>3, [1,2,3,4,5,6]);

will return [1,2,3]

I have added a print statement and a couple of comments in the attached to illustrate this issue. There are other simple(?) syntax issues eg (non-exhaustive list)

  1. There is a second remove() statement in your procedure wihich will fail for simlar reasons to the first
  2. The Disatnce command takes three arguments - (graph, vertex, vertex)
  3. Probably others, which I didn't spot during a quick read

Primmetje := proc (aantal, posities, begin)
                  local knopenover, knopeninmst, huidig, V, kaart, e, a;
                #
                # Inserted the following, just in case any
                # any of the commands from the GraphTheory
                # package, *want* to execute
                #
                  uses GraphTheory;
                  knopenover := [seq(i, i = 1 .. aantal)];
                  knopeninmst := {};
                  huidig := [0, 0];
                  if   begin <> {}
                  then V := [begin];
                       knopeninmst := knopeninmst union {V}
                  end if;
                #
                # Inserted print statement to illustrate
                # issue - first argument, ie 'V' is *not*
                # a logical test which returns 'true' or
                # 'false'
                #
                  printf("%a, %a\n", V, knopenover):
                  remove(V, knopenover); # <- This fails
                  kaart := Graph(aantal);
                  SetVertexPositions(kaart, posities);
                  while nops(knopeninmst) < aantal do
                        for e in knopeninmst do
                            for a in knopenover do
                                if   huidig = [0, 0]
                                              or
                                              Distance(posities[e], posities[a]) < Distance(posities[huidig[1]], posities[huidig[2]])# <-Number of Arguments!
                                then huidig:= [e, a];
                                              knopeninmst := knopeninmst union {a};
                                              remove(a, knopenover); # <- I'm betting this will fail
                                              AddEdge(kaart, huidig)
                                end if
                            end do
                        end do
                  end do
              end proc:
vp := [2.5, 21], [6, 13.5], [8, 10], [11, 24.5], [14.3, 19.4], [16.8, 26], [22, 21.5], [22, 17], [22.2, 12.5], [26.8, 23], [28, 20.5], [30, 25.5], [32, 21], [29.5, 16];
Primmetje(14, vp, 1);

[2.5, 21], [6, 13.5], [8, 10], [11, 24.5], [14.3, 19.4], [16.8, 26], [22, 21.5], [22, 17], [22.2, 12.5], [26.8, 23], [28, 20.5], [30, 25.5], [32, 21], [29.5, 16]

 

[[6, 13.5]], [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]

Error, (in Primmetje) invalid boolean expression: [[6, 13.5]]

 

remove( i-> i>3, [1,2,3,4,5,6]);

[1, 2, 3]

(1)

 


 

Download graphProb.mw

###################################################################################################

However I think(?) you have a couple of bigger "conceptual" problems waiting for you - particularly with your understanding of the GraphTheory:-SetVertexPositions() and the GraphTheory:-Distance() function.

The former is just so that you can control how a "Graph" is drawn. The latter measures "distance" between two vertices as the least number of 'edges' which have to be traversed in the 'arc' between the two vertices.It has nothing to do with the physical distance between these vertices in some drawn representation of the Graph.

So for example if you have a graph with vertex 'a' connected to vertex 'b', and vertex 'b' connected to vertex 'c', (and no other edges)  then the "Distance" between 'a' and 'c' will be always be two, since you have to traverse two edges. It does not matter how you decide to "draw" this graph, position the vertices, whatever

the easy way is just to stick everything in a loop and send the complete results from LSSolve() and SolveEquations() to separate Maple tables. Data can then be extracted from these tables to construct matricse of results, which can then be exported to Excel, using ExcelTools:-Export().

Two things to note

  1. Worksheet for all 20 n-values takes about 5 minutes to run - so wait
  2. Almost anything can be extracted from the table and reformatted/prettified/whatever whilst creting the final matrices. I just extracted the parameter name=value equations. But one could creatt the parameter names as column headers in the final Matrix with values as column entries - depends very much on what kind of format you want


 

restart; with(DirectSearch)

[BoundedObjective, CompromiseProgramming, DataFit, ExponentialWeightedSum, GlobalOptima, GlobalSearch, Minimax, ModifiedTchebycheff, Search, SolveEquations, WeightedProduct, WeightedSum]

(1)

NULL

Loading LinearAlgebra

 

lambda[0] := 0.1e-5

0.1e-5

(2)

lambda[1] := 0.1e-5

0.1e-5

(3)

lambda[2] := 0.1e-5

0.1e-5

(4)

lambda[3] := 0.1e-5

0.1e-5

(5)

for n to 20 do e1 := p[s] = (n*t[0]/(1-t[0])+n*t[1]/(1-t[1])+n*t[2]/(1-t[2])+n*t[3]/(1-t[3]))*((1-t[0])*(1-t[1])*(1-t[2])*(1-t[3]))^n; e2 := p[b] = 1-((1-t[0])*(1-t[1])*(1-t[2])*(1-t[3]))^n; e3 := r[0] = lambda[0]*(20*p[0, p]*(1-r[0])*((7/2)*p[0, b]-(7/2)*p[0, b]*p[0, c]^5+(15/2)*p[0, c]+(15/2)*p[0, c]^2+(15/2)*p[0, c]^3+(15/2)*p[0, c]^4-30*p[0, c]^5)+20*r[0]*(7/2+(15/2)*p[0, c]+(15/2)*p[0, c]^2+(15/2)*p[0, c]^3+(15/2)*p[0, c]^4-(67/2)*p[0, c]^5)+p[0, b]*(11258.065*p[s]/p[b]+469.725)*(p[0, p]*(1-r[0])*((7/2)*p[0, b]-(7/2)*p[0, b]*p[0, c]^5+(15/2)*p[0, c]+(15/2)*p[0, c]^2+(15/2)*p[0, c]^3+(15/2)*p[0, c]^4-30*p[0, c]^5)+r[0]*(7/2+(15/2)*p[0, c]+(15/2)*p[0, c]^2+(15/2)*p[0, c]^3+(15/2)*p[0, c]^4-(67/2)*p[0, c]^5))+(469.725*(-p[0, p]*r[0]+p[0, p]+r[0]))*(-4*p[0, c]^5+p[0, c]^4+p[0, c]^3+p[0, c]^2+p[0, c])+11727.79-11727.79*p[0, c]^5*(-p[0, p]*r[0]+p[0, p]+r[0])+p[0, c]^5*(20*p[0, p]*(1-r[0])*(7*p[0, b]*(1/2)+30)+3018.625*r[0]+(20*p[0, p]*(1-r[0])*(7*p[0, b]*(1/2)+30)+670*r[0])*p[0, b]*(11258.065*p[s]+469.725*p[b])/(20*p[b])+2348.625*p[0, p]*(1-r[0]))); e4 := r[1] = lambda[1]*(20*p[1, p]*(1-r[1])*((15/2)*p[1, b]-(15/2)*p[1, b]*p[1, c]^5+(31/2)*p[1, c]+(31/2)*p[1, c]^2+(31/2)*p[1, c]^3+(31/2)*p[1, c]^4-62*p[1, c]^5)+20*r[1]*(15/2+(31/2)*p[1, c]+(31/2)*p[1, c]^2+(31/2)*p[1, c]^3+(31/2)*p[1, c]^4-(139/2)*p[1, c]^5)+p[1, b]*(11258.065*p[s]/p[b]+469.725)*(p[1, p]*(1-r[1])*((15/2)*p[1, b]-(15/2)*p[1, b]*p[1, c]^5+(31/2)*p[1, c]+(31/2)*p[1, c]^2+(31/2)*p[1, c]^3+(31/2)*p[1, c]^4-62*p[1, c]^5)+r[1]*(15/2+(31/2)*p[1, c]+(31/2)*p[1, c]^2+(31/2)*p[1, c]^3+(31/2)*p[1, c]^4-(139/2)*p[1, c]^5))+(469.725*(-p[1, p]*r[1]+p[1, p]+r[1]))*(-4*p[1, c]^5+p[1, c]^4+p[1, c]^3+p[1, c]^2+p[1, c])+11727.79-11727.79*p[1, c]^5*(-p[1, p]*r[1]+p[1, p]+r[1])+p[1, c]^5*(20*p[1, p]*(1-r[1])*(15*p[1, b]*(1/2)+62)+3738.625*r[1]+(20*p[1, p]*(1-r[1])*(15*p[1, b]*(1/2)+62)+1390*r[1])*p[1, b]*(11258.065*p[s]+469.725*p[b])/(20*p[b])+2348.625*p[1, p]*(1-r[1]))); e5 := r[2] = lambda[2]*(20*p[2, p]*(1-r[2])*((31/2)*p[2, b]-(31/2)*p[2, b]*p[2, c]^5+(63/2)*p[2, c]+(127/2)*p[2, c]^2+(255/2)*p[2, c]^3+(511/2)*p[2, c]^4-478*p[2, c]^5)+20*r[2]*(31/2+(63/2)*p[2, c]+(127/2)*p[2, c]^2+(255/2)*p[2, c]^3+(511/2)*p[2, c]^4-(987/2)*p[2, c]^5)+p[2, b]*(11258.065*p[s]/p[b]+469.725)*(p[2, p]*(1-r[2])*((31/2)*p[2, b]-(31/2)*p[2, b]*p[2, c]^5+(63/2)*p[2, c]+(127/2)*p[2, c]^2+(255/2)*p[2, c]^3+(511/2)*p[2, c]^4-478*p[2, c]^5)+r[2]*(31/2+(63/2)*p[2, c]+(127/2)*p[2, c]^2+(255/2)*p[2, c]^3+(511/2)*p[2, c]^4-(987/2)*p[2, c]^5))+(469.725*(-p[2, p]*r[2]+p[2, p]+r[2]))*(-4*p[2, c]^5+p[2, c]^4+p[2, c]^3+p[2, c]^2+p[2, c])+11727.79-11727.79*p[2, c]^5*(-p[2, p]*r[2]+p[2, p]+r[2])+p[2, c]^5*(20*p[2, p]*(1-r[2])*(31*p[2, b]*(1/2)+478)+12218.625*r[2]+(20*p[2, p]*(1-r[2])*(31*p[2, b]*(1/2)+478)+9870*r[2])*p[2, b]*(11258.065*p[s]+469.725*p[b])/(20*p[b])+2348.625*p[2, p]*(1-r[2]))); e6 := r[3] = lambda[3]*(20*p[3, p]*(1-r[3])*((31/2)*p[3, b]-(31/2)*p[3, b]*p[3, c]^5+(63/2)*p[3, c]+(127/2)*p[3, c]^2+(255/2)*p[3, c]^3+(511/2)*p[3, c]^4-478*p[3, c]^5)+20*r[3]*(31/2+(63/2)*p[3, c]+(127/2)*p[3, c]^2+(255/2)*p[3, c]^3+(511/2)*p[3, c]^4-(987/2)*p[3, c]^5)+p[3, b]*(11258.065*p[s]/p[b]+469.725)*(p[3, p]*(1-r[3])*((31/2)*p[3, b]-(31/2)*p[3, b]*p[3, c]^5+(63/2)*p[3, c]+(127/2)*p[3, c]^2+(255/2)*p[3, c]^3+(511/2)*p[3, c]^4-478*p[3, c]^5)+r[3]*(31/2+(63/2)*p[3, c]+(127/2)*p[3, c]^2+(255/2)*p[3, c]^3+(511/2)*p[3, c]^4-(987/2)*p[3, c]^5))+(469.725*(-p[3, p]*r[3]+p[3, p]+r[3]))*(-4*p[3, c]^5+p[3, c]^4+p[3, c]^3+p[3, c]^2+p[3, c])+11727.79-11727.79*p[3, c]^5*(-p[3, p]*r[3]+p[3, p]+r[3])+p[3, c]^5*(20*p[3, p]*(1-r[3])*(31*p[3, b]*(1/2)+478)+12218.625*r[3]+(20*p[3, p]*(1-r[3])*(31*p[3, b]*(1/2)+478)+9870*r[3])*p[3, b]*(11258.065*p[s]+469.725*p[b])/(20*p[b])+2348.625*p[3, p]*(1-r[3]))); e7 := t[0] = (-p[0, c]^5+1)/((1-p[0, c])*(r[0]+(1-r[0])/p[0, p]+(-p[0, c]^5+1)/(1-p[0, c])+(7*(p[0, b]*(1-r[0])+r[0]))/(2-2*p[0, b])+(15*p[0, c]^4+15*p[0, c]^3+15*p[0, c]^2+15*p[0, c])/(2-2*p[0, b]))); e8 := t[1] = (-p[1, c]^5+1)/((1-p[1, c])*(r[1]+(1-r[1])/p[1, p]+(-p[1, c]^5+1)/(1-p[1, c])+(15*(p[1, b]*(1-r[1])+r[1]))/(2-2*p[1, b])+(31*p[1, c]^4+31*p[1, c]^3+31*p[1, c]^2+31*p[1, c])/(2-2*p[1, b]))); e9 := t[2] = (-p[2, c]^5+1)/((1-p[2, c])*(r[2]+(1-r[2])/p[2, p]+(-p[2, c]^5+1)/(1-p[2, c])+(31*(p[2, b]*(1-r[2])+r[2]))/(2-2*p[2, b])+(511*p[2, c]^4+255*p[2, c]^3+127*p[2, c]^2+63*p[2, c])/(2-2*p[2, b]))); e10 := t[3] = (-p[3, c]^5+1)/((1-p[3, c])*(r[3]+(1-r[3])/p[3, p]+(-p[3, c]^5+1)/(1-p[3, c])+(31*(p[3, b]*(1-r[3])+r[3]))/(2-2*p[3, b])+(511*p[3, c]^4+255*p[3, c]^3+127*p[3, c]^2+63*p[3, c])/(2-2*p[3, b]))); e11 := p[0, p] = 1-exp(-lambda[0]*(-449.725*((1-t[0])*(1-t[1])*(1-t[2])*(1-t[3]))^n+(11258.065*(n*t[0]/(1-t[0])+n*t[1]/(1-t[1])+n*t[2]/(1-t[2])+n*t[3]/(1-t[3])))*((1-t[0])*(1-t[1])*(1-t[2])*(1-t[3]))^n+469.725)); e12 := p[1, p] = 1-exp(-lambda[1]*(-449.725*((1-t[0])*(1-t[1])*(1-t[2])*(1-t[3]))^n+(11258.065*(n*t[0]/(1-t[0])+n*t[1]/(1-t[1])+n*t[2]/(1-t[2])+n*t[3]/(1-t[3])))*((1-t[0])*(1-t[1])*(1-t[2])*(1-t[3]))^n+469.725)); e13 := p[2, p] = 1-exp(-lambda[2]*(-449.725*((1-t[0])*(1-t[1])*(1-t[2])*(1-t[3]))^n+(11258.065*(n*t[0]/(1-t[0])+n*t[1]/(1-t[1])+n*t[2]/(1-t[2])+n*t[3]/(1-t[3])))*((1-t[0])*(1-t[1])*(1-t[2])*(1-t[3]))^n+469.725)); e14 := p[3, p] = 1-exp(-lambda[3]*(-449.725*((1-t[0])*(1-t[1])*(1-t[2])*(1-t[3]))^n+(11258.065*(n*t[0]/(1-t[0])+n*t[1]/(1-t[1])+n*t[2]/(1-t[2])+n*t[3]/(1-t[3])))*((1-t[0])*(1-t[1])*(1-t[2])*(1-t[3]))^n+469.725)); e15 := p[0, c] = 1-((1-t[0])*(1-t[1])*(1-t[2])*(1-t[3]))^n/(1-t[0]); e16 := p[1, c] = 1-((1-t[0])*(1-t[1])*(1-t[2])*(1-t[3]))^n/(1-t[1]); e17 := p[2, c] = 1-((1-t[0])*(1-t[1])*(1-t[2])*(1-t[3]))^n/(1-t[2]); e18 := p[3, c] = 1-((1-t[0])*(1-t[1])*(1-t[2])*(1-t[3]))^n/(1-t[3]); e19 := p[0, b] = 1-(((1-t[0])*(1-t[1])*(1-t[2])*(1-t[3]))^n/(1-t[0]))^1; e20 := p[1, b] = 1-(((1-t[0])*(1-t[1])*(1-t[2])*(1-t[3]))^n/(1-t[1]))^1; e21 := p[2, b] = 1-(((1-t[0])*(1-t[1])*(1-t[2])*(1-t[3]))^n/(1-t[2]))^2; e22 := p[3, b] = 1-(((1-t[0])*(1-t[1])*(1-t[2])*(1-t[3]))^n/(1-t[3]))^6; e23 := p[0, s] = n*t[0]*((1-t[0])*(1-t[1])*(1-t[2])*(1-t[3]))^n/(1-t[0]); e24 := p[1, s] = n*t[1]*((1-t[0])*(1-t[1])*(1-t[2])*(1-t[3]))^n/(1-t[1]); e25 := p[2, s] = n*t[2]*((1-t[0])*(1-t[1])*(1-t[2])*(1-t[3]))^n/(1-t[2]); e26 := p[3, s] = n*t[3]*((1-t[0])*(1-t[1])*(1-t[2])*(1-t[3]))^n/(1-t[3]); CSTR := `~`[`=`]({p[b], p[s], p[0, b], p[0, c], p[0, p], p[0, s], p[1, b], p[1, c], p[1, p], p[1, s], p[2, b], p[2, c], p[2, p], p[2, s], p[3, b], p[3, c], p[3, p], p[3, s], r[0], r[1], r[2], r[3], t[0], t[1], t[2], t[3]}, 0 .. 1); residuals := `~`[lhs-rhs]([e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12, e13, e14, e15, e16, e17, e18, e19, e20, e21, e22, e23, e24, e25, e26]); ansLS[n] := Optimization:-LSSolve(residuals, op(CSTR), iterationlimit = 10000); ansDS[n] := DirectSearch:-SolveEquations(residuals, CSTR, initialpoint = ansLS[n][2]) end do

DSMat := Matrix(20, 26, [seq(ansDS[j][3], j = 1 .. 20)]); LSMat := Matrix(20, 26, [seq(ansLS[j][2], j = 1 .. 20)])

DSMat := Matrix(20, 26, {(1, 1) = p[b] = HFloat(8.497598034777977e-5), (1, 2) = p[s] = HFloat(8.497327240786172e-5), (1, 3) = p[0, b] = HFloat(6.373266492239104e-5), (1, 4) = p[0, c] = HFloat(6.37326649224121e-5), (1, 5) = p[0, p] = HFloat(2.0994630056395117e-5), (1, 6) = p[0, s] = HFloat(2.124331542539195e-5), (1, 7) = p[1, b] = HFloat(6.373266551461155e-5), (1, 8) = p[1, c] = HFloat(6.373266551462767e-5), (1, 9) = p[1, p] = HFloat(2.099463005641082e-5), (1, 10) = p[1, s] = HFloat(2.124331483314139e-5), (1, 11) = p[2, b] = HFloat(1.2746126659483325e-4), (1, 12) = p[2, c] = HFloat(6.373266422358078e-5), (1, 13) = p[2, p] = HFloat(2.0994630056473973e-5), (1, 14) = p[2, s] = HFloat(2.124331612412852e-5), (1, 15) = p[3, b] = HFloat(3.8233500334404854e-4), (1, 16) = p[3, c] = HFloat(6.373265432260766e-5), (1, 17) = p[3, p] = HFloat(2.0994630056466414e-5), (1, 18) = p[3, s] = HFloat(2.1243326025199692e-5), (1, 19) = r[0] = HFloat(0.011728642155131117), (1, 20) = r[1] = HFloat(0.01172961578737003), (1, 21) = r[2] = HFloat(0.011731699502001827), (1, 22) = r[3] = HFloat(0.011732243307437716), (1, 23) = t[0] = HFloat(2.12446694047887e-5), (1, 24) = t[1] = HFloat(2.124466881251298e-5), (1, 25) = t[2] = HFloat(2.124467010355496e-5), (1, 26) = t[3] = HFloat(2.124468000504667e-5), (2, 1) = p[b] = HFloat(1.7885637495185556e-4), (2, 2) = p[s] = HFloat(1.7884237851145164e-4), (2, 3) = p[0, b] = HFloat(1.5650108487460173e-4), (2, 4) = p[0, c] = HFloat(1.56501084793791e-4), (2, 5) = p[0, p] = HFloat(2.209361207660489e-5), (2, 6) = p[0, s] = HFloat(4.471058005142388e-5), (2, 7) = p[1, b] = HFloat(1.5650108596471313e-4), (2, 8) = p[1, c] = HFloat(1.5650108599466522e-4), (2, 9) = p[1, p] = HFloat(2.2093612020443985e-5), (2, 10) = p[1, s] = HFloat(4.471057786213006e-5), (2, 11) = p[2, b] = HFloat(3.1297767162285665e-4), (2, 12) = p[2, c] = HFloat(1.5650108216439042e-4), (2, 13) = p[2, p] = HFloat(2.209361203150838e-5), (2, 14) = p[2, s] = HFloat(4.471058558982915e-5), (2, 15) = p[3, b] = HFloat(9.386390319877741e-4), (2, 16) = p[3, c] = HFloat(1.565010574513784e-4), (2, 17) = p[3, p] = HFloat(2.2093611650296638e-5), (2, 18) = p[3, s] = HFloat(4.47106348219847e-5), (2, 19) = r[0] = HFloat(0.011728687512210359), (2, 20) = r[1] = HFloat(0.011729712398213651), (2, 21) = r[2] = HFloat(0.011732096616329896), (2, 22) = r[3] = HFloat(0.01173343191960743), (2, 23) = t[0] = HFloat(2.2358789256946106e-5), (2, 24) = t[1] = HFloat(2.235878812821716e-5), (2, 25) = t[2] = HFloat(2.2358791973849235e-5), (2, 26) = t[3] = HFloat(2.2358816620561545e-5), (3, 1) = p[b] = HFloat(2.8311814184295324e-4), (3, 2) = p[s] = HFloat(2.8308139997393816e-4), (3, 3) = p[0, b] = HFloat(2.5952803808748236e-4), (3, 4) = p[0, c] = HFloat(2.5952803808753126e-4), (3, 5) = p[0, p] = HFloat(2.331400233213316e-5), (3, 6) = p[0, s] = HFloat(7.077031126637264e-5), (3, 7) = p[1, b] = HFloat(2.5952804011157614e-4), (3, 8) = p[1, c] = HFloat(2.595280401115804e-4), (3, 9) = p[1, p] = HFloat(2.3314002332123275e-5), (3, 10) = p[1, s] = HFloat(7.077030519374998e-5), (3, 11) = p[2, b] = HFloat(5.1898871157763e-4), (3, 12) = p[2, c] = HFloat(2.5952803318883425e-4), (3, 13) = p[2, p] = HFloat(2.331400233212433e-5), (3, 14) = p[2, s] = HFloat(7.07703259624012e-5), (3, 15) = p[3, b] = HFloat(0.001556157963837128), (3, 16) = p[3, c] = HFloat(2.595279893258756e-4), (3, 17) = p[3, p] = HFloat(2.3314002332081316e-5), (3, 18) = p[3, s] = HFloat(7.077045755141439e-5), (3, 19) = r[0] = HFloat(0.011728737902063217), (3, 20) = r[1] = HFloat(0.01172981972803001), (3, 21) = r[2] = HFloat(0.011732537768250386), (3, 22) = r[3] = HFloat(0.01173475201436599), (3, 23) = t[0] = HFloat(2.359622763812359e-5), (3, 24) = t[1] = HFloat(2.359622561343834e-5), (3, 25) = t[2] = HFloat(2.3596232537955823e-5), (3, 26) = t[3] = HFloat(2.359627641131139e-5), (4, 1) = p[b] = HFloat(3.9958421782929174e-4), (4, 2) = p[s] = HFloat(3.9950936297153053e-4), (4, 3) = p[0, b] = HFloat(3.746149016678819e-4), (4, 4) = p[0, c] = HFloat(3.7461490166798984e-4), (4, 5) = p[0, p] = HFloat(2.4677104322503382e-5), (4, 6) = p[0, s] = HFloat(9.987726464498918e-5), (4, 7) = p[1, b] = HFloat(3.74614904788914e-4), (4, 8) = p[1, c] = HFloat(3.746149047888888e-4), (4, 9) = p[1, p] = HFloat(2.4677104322458456e-5), (4, 10) = p[1, s] = HFloat(9.987725216187513e-5), (4, 11) = p[2, b] = HFloat(7.490894524599116e-4), (4, 12) = p[2, c] = HFloat(3.746148944832087e-4), (4, 13) = p[2, p] = HFloat(2.4677104315137634e-5), (4, 14) = p[2, s] = HFloat(9.987729338433743e-5), (4, 15) = p[3, b] = HFloat(0.002245584982032944), (4, 16) = p[3, c] = HFloat(3.746148296342823e-4), (4, 17) = p[3, p] = HFloat(2.467710364018654e-5), (4, 18) = p[3, s] = HFloat(9.987755278030126e-5), (4, 19) = r[0] = HFloat(0.011728794211366293), (4, 20) = r[1] = HFloat(0.011729939665529834), (4, 21) = r[2] = HFloat(0.011733030713797861), (4, 22) = r[3] = HFloat(0.01173622668897168), (4, 23) = t[0] = HFloat(2.4978673557665054e-5), (4, 24) = t[1] = HFloat(2.4978670435794582e-5), (4, 25) = t[2] = HFloat(2.4978680744992227e-5), (4, 26) = t[3] = HFloat(2.4978745614681044e-5), (5, 1) = p[b] = HFloat(5.305437928378071e-4), (5, 2) = p[s] = HFloat(5.304100665233276e-4), (5, 3) = p[0, b] = HFloat(5.040232964984658e-4), (5, 4) = p[0, c] = HFloat(5.040232971678377e-4), (5, 5) = p[0, p] = HFloat(2.6209915523672616e-5), (5, 6) = p[0, s] = HFloat(1.3260248264017436e-4), (5, 7) = p[1, b] = HFloat(5.040232998608355e-4), (5, 8) = p[1, c] = HFloat(5.04023298472499e-4), (5, 9) = p[1, p] = HFloat(2.620991419661427e-5), (5, 10) = p[1, s] = HFloat(1.32602461414248e-4), (5, 11) = p[2, b] = HFloat(0.001007792533911777), (5, 12) = p[2, c] = HFloat(5.040232852752916e-4), (5, 13) = p[2, p] = HFloat(2.6209911195248102e-5), (5, 14) = p[2, s] = HFloat(1.3260252667432162e-4), (5, 15) = p[3, b] = HFloat(0.003020331629554588), (5, 16) = p[3, c] = HFloat(5.04023271539955e-4), (5, 17) = p[3, p] = HFloat(2.6209873888843182e-5), (5, 18) = p[3, s] = HFloat(1.3260259367876026e-4), (5, 19) = r[0] = HFloat(0.011728857556882506), (5, 20) = r[1] = HFloat(0.01173007458472926), (5, 21) = r[2] = HFloat(0.01173358519611232), (5, 22) = r[3] = HFloat(0.01173788494418686), (5, 23) = t[0] = HFloat(2.653386991496689e-5), (5, 24) = t[1] = HFloat(2.653386624015735e-5), (5, 25) = t[2] = HFloat(2.653387906649442e-5), (5, 26) = t[3] = HFloat(2.6533892469172825e-5), (6, 1) = p[b] = HFloat(6.788401364627758e-4), (6, 2) = p[s] = HFloat(6.786192629783941e-4), (6, 3) = p[0, b] = HFloat(6.505643670307236e-4), (6, 4) = p[0, c] = HFloat(6.505643653551273e-4), (6, 5) = p[0, p] = HFloat(2.7944901522139356e-5), (6, 6) = p[0, s] = HFloat(1.6965462861452806e-4), (6, 7) = p[1, b] = HFloat(6.505643687020749e-4), (6, 8) = p[1, c] = HFloat(6.505643708540596e-4), (6, 9) = p[1, p] = HFloat(2.7944899759582804e-5), (6, 10) = p[1, s] = HFloat(1.6965460124341114e-4), (6, 11) = p[2, b] = HFloat(0.0013007054631822134), (6, 12) = p[2, c] = HFloat(6.505643534082953e-4), (6, 13) = p[2, p] = HFloat(2.7944908039836745e-5), (6, 14) = p[2, s] = HFloat(1.6965469286081867e-4), (6, 15) = p[3, b] = HFloat(0.0038970424123088623), (6, 16) = p[3, c] = HFloat(6.505642537790243e-4), (6, 17) = p[3, p] = HFloat(2.7944895622570294e-5), (6, 18) = p[3, s] = HFloat(1.696553576959387e-4), (6, 19) = r[0] = HFloat(0.01172892932229481), (6, 20) = r[1] = HFloat(0.011730227441818685), (6, 21) = r[2] = HFloat(0.011734213344500524), (6, 22) = r[3] = HFloat(0.011739762833048275), (6, 23) = t[0] = HFloat(2.829417842436504e-5), (6, 24) = t[1] = HFloat(2.829417385211111e-5), (6, 25) = t[2] = HFloat(2.8294187547442068e-5), (6, 26) = t[3] = HFloat(2.8294300139085545e-5), (7, 1) = p[b] = HFloat(8.481993757441635e-4), (7, 2) = p[s] = HFloat(8.478524002485119e-4), (7, 3) = p[0, b] = HFloat(8.179189788731564e-4), (7, 4) = p[0, c] = HFloat(8.179189788867525e-4), (7, 5) = p[0, p] = HFloat(2.9926193551823946e-5), (7, 6) = p[0, s] = HFloat(2.1196277960864674e-4), (7, 7) = p[1, b] = HFloat(8.179189881935368e-4), (7, 8) = p[1, c] = HFloat(8.179189880201838e-4), (7, 9) = p[1, p] = HFloat(2.9926193656168658e-5), (7, 10) = p[1, s] = HFloat(2.1196271366521902e-4), (7, 11) = p[2, b] = HFloat(0.0016351689389887919), (7, 12) = p[2, c] = HFloat(8.179189654252943e-4), (7, 13) = p[2, p] = HFloat(2.992619354141306e-5), (7, 14) = p[2, s] = HFloat(2.1196287419382332e-4), (7, 15) = p[3, b] = HFloat(0.004897488863631809), (7, 16) = p[3, c] = HFloat(8.179187997658846e-4), (7, 17) = p[3, p] = HFloat(2.9926192838165366e-5), (7, 18) = p[3, s] = HFloat(2.1196403279612414e-4), (7, 19) = r[0] = HFloat(0.011729011317973779), (7, 20) = r[1] = HFloat(0.011730402089547828), (7, 21) = r[2] = HFloat(0.011734931020952959), (7, 22) = r[3] = HFloat(0.011741907562184455), (7, 23) = t[0] = HFloat(3.030518428804405e-5), (7, 24) = t[1] = HFloat(3.0305174873033292e-5), (7, 25) = t[2] = HFloat(3.0305197796136016e-5), (7, 26) = t[3] = HFloat(3.0305363447894426e-5), (8, 1) = p[b] = HFloat(0.0010434456148489227), (8, 2) = p[s] = HFloat(0.0010429180483784435), (8, 3) = p[0, b] = HFloat(0.0010108544839371872), (8, 4) = p[0, c] = HFloat(0.0010108544839371849), (8, 5) = p[0, p] = HFloat(3.220998400612221e-5), (8, 6) = p[0, s] = HFloat(2.607290472932511e-4), (8, 7) = p[1, b] = HFloat(0.001010854497303152), (8, 8) = p[1, c] = HFloat(0.0010108544973032214), (8, 9) = p[1, p] = HFloat(3.2209984006072936e-5), (8, 10) = p[1, s] = HFloat(2.6072894036649583e-4), (8, 11) = p[2, b] = HFloat(0.002020687112496043), (8, 12) = p[2, c] = HFloat(0.00101085446962739), (8, 13) = p[2, p] = HFloat(3.2209984006076616e-5), (8, 14) = p[2, s] = HFloat(2.6072916177221245e-4), (8, 15) = p[3, b] = HFloat(0.0060498187627798196), (8, 16) = p[3, c] = HFloat(0.0010108542524806033), (8, 17) = p[3, p] = HFloat(3.220998400594794e-5), (8, 18) = p[3, s] = HFloat(2.60730898946484e-4), (8, 19) = r[0] = HFloat(0.011729105911103644), (8, 20) = r[1] = HFloat(0.011730603563542554), (8, 21) = r[2] = HFloat(0.011735758835183649), (8, 22) = r[3] = HFloat(0.011744380290500298), (8, 23) = t[0] = HFloat(3.262410913866689e-5), (8, 24) = t[1] = HFloat(3.2624095759734375e-5), (8, 25) = t[2] = HFloat(3.262412346254957e-5), (8, 26) = t[3] = HFloat(3.2624340821967834e-5), (9, 1) = p[b] = HFloat(0.0012710015423509954), (9, 2) = p[s] = HFloat(0.0012702159144586975), (9, 3) = p[0, b] = HFloat(0.0012357178387238914), (9, 4) = p[0, c] = HFloat(0.0012357178387242544), (9, 5) = p[0, p] = HFloat(3.4871166770203806e-5), (9, 6) = p[0, s] = HFloat(3.1755333264125047e-4), (9, 7) = p[1, b] = HFloat(0.001235717857733453), (9, 8) = p[1, c] = HFloat(0.0012357178577251042), (9, 9) = p[1, p] = HFloat(3.4871166770819273e-5), (9, 10) = p[1, s] = HFloat(3.1755316158740994e-4), (9, 11) = p[2, b] = HFloat(0.002469908652590621), (9, 12) = p[2, c] = HFloat(0.0012357178255861536), (9, 13) = p[2, p] = HFloat(3.487116677215687e-5), (9, 14) = p[2, s] = HFloat(3.175534509064621e-4), (9, 15) = p[3, b] = HFloat(0.007391438010270446), (9, 16) = p[3, c] = HFloat(0.0012357175457617829), (9, 17) = p[3, p] = HFloat(3.4871166748300896e-5), (9, 18) = p[3, s] = HFloat(3.175559693193784e-4), (9, 19) = r[0] = HFloat(0.011729216237249518), (9, 20) = r[1] = HFloat(0.011730838544176314), (9, 21) = r[2] = HFloat(0.01173672422367962), (9, 22) = r[3] = HFloat(0.01174726244866904), (9, 23) = t[0] = HFloat(3.5327358273851934e-5), (9, 24) = t[1] = HFloat(3.532733924491313e-5), (9, 25) = t[2] = HFloat(3.5327371431145114e-5), (9, 26) = t[3] = HFloat(3.53276515904764e-5), (10, 1) = p[b] = HFloat(0.0015396327550209652), (10, 2) = p[s] = HFloat(0.0015384765422817945), (10, 3) = p[0, b] = HFloat(0.0015011709240353222), (10, 4) = p[0, c] = HFloat(0.0015011709250877159), (10, 5) = p[0, p] = HFloat(3.801211299138809e-5), (10, 6) = p[0, s] = HFloat(3.846183061805121e-4), (10, 7) = p[1, b] = HFloat(0.0015011709514977517), (10, 8) = p[1, c] = HFloat(0.0015011709513063256), (10, 9) = p[1, p] = HFloat(3.801211298350014e-5), (10, 10) = p[1, s] = HFloat(3.8461803364615876e-4), (10, 11) = p[2, b] = HFloat(0.00300008831757464), (10, 12) = p[2, c] = HFloat(0.0015011709178122778), (10, 13) = p[2, p] = HFloat(3.8012112877323693e-5), (10, 14) = p[2, s] = HFloat(3.8461838623580146e-4), (10, 15) = p[3, b] = HFloat(0.008973288306244772), (10, 16) = p[3, c] = HFloat(0.001501170573693797), (10, 17) = p[3, p] = HFloat(3.8012104782550896e-5), (10, 18) = p[3, s] = HFloat(3.846218166226691e-4), (10, 19) = r[0] = HFloat(0.011729346588368083), (10, 20) = r[1] = HFloat(0.011731116172497419), (10, 21) = r[2] = HFloat(0.011737864684837687), (10, 22) = r[3] = HFloat(0.011750665192263065), (10, 23) = t[0] = HFloat(3.851965528009081e-5), (10, 24) = t[1] = HFloat(3.851962792574456e-5), (10, 25) = t[2] = HFloat(3.851966318686959e-5), (10, 26) = t[3] = HFloat(3.8520006828832324e-5), (11, 1) = p[b] = HFloat(0.0018614800055968285), (11, 2) = p[s] = HFloat(0.001859785752293476), (11, 3) = p[0, b] = HFloat(0.0018192122502829853), (11, 4) = p[0, c] = HFloat(0.0018192122503139436), (11, 5) = p[0, p] = HFloat(4.1773871721364e-5), (11, 6) = p[0, s] = HFloat(4.649453073323343e-4), (11, 7) = p[1, b] = HFloat(0.001819212290090826), (11, 8) = p[1, c] = HFloat(0.0018192122900815898), (11, 9) = p[1, p] = HFloat(4.1773871697401e-5), (11, 10) = p[1, s] = HFloat(4.6494487010351085e-4), (11, 11) = p[2, b] = HFloat(0.003635114975206703), (11, 12) = p[2, c] = HFloat(0.0018192122542544295), (11, 13) = p[2, p] = HFloat(4.177387169398788e-5), (11, 14) = p[2, s] = HFloat(4.6494526373446285e-4), (11, 15) = p[3, b] = HFloat(0.010865748048700238), (11, 16) = p[3, c] = HFloat(0.0018192117953726636), (11, 17) = p[3, p] = HFloat(4.1773871672873253e-5), (11, 18) = p[3, s] = HFloat(4.649503111222032e-4), (11, 19) = r[0] = HFloat(0.011729502920481966), (11, 20) = r[1] = HFloat(0.011731449128058201), (11, 21) = r[2] = HFloat(0.01173923224051695), (11, 22) = r[3] = HFloat(0.01175474253482541), (11, 23) = t[0] = HFloat(4.234478937402447e-5), (11, 24) = t[1] = HFloat(4.234474955431629e-5), (11, 25) = t[2] = HFloat(4.23447854059372e-5), (11, 26) = t[3] = HFloat(4.234524507205983e-5), (12, 1) = p[b] = HFloat(0.0022542471031168584), (12, 2) = p[s] = HFloat(0.002251757325428321), (12, 3) = p[0, b] = HFloat(0.0022073356119722055), (12, 4) = p[0, c] = HFloat(0.0022073356034535093), (12, 5) = p[0, p] = HFloat(4.6363368710376294e-5), (12, 6) = p[0, s] = HFloat(5.629379555908074e-4), (12, 7) = p[1, b] = HFloat(0.002207335666753141), (12, 8) = p[1, c] = HFloat(0.002207335675317275), (12, 9) = p[1, p] = HFloat(4.6363389984077336e-5), (12, 10) = p[1, s] = HFloat(5.629372650341725e-4), (12, 11) = p[2, b] = HFloat(0.004409798972182273), (12, 12) = p[2, c] = HFloat(0.002207335637191164), (12, 13) = p[2, p] = HFloat(4.6363381211338995e-5), (12, 14) = p[2, s] = HFloat(5.629376228470578e-4), (12, 15) = p[3, b] = HFloat(0.013171140395942764), (12, 16) = p[3, c] = HFloat(0.0022073350620390553), (12, 17) = p[3, p] = HFloat(4.6363348928221335e-5), (12, 18) = p[3, s] = HFloat(5.629444779908799e-4), (12, 19) = r[0] = HFloat(0.01172969392187869), (12, 20) = r[1] = HFloat(0.011731855937353456), (12, 21) = r[2] = HFloat(0.011740902869181457), (12, 22) = r[3] = HFloat(0.01175971909173815), (12, 23) = t[0] = HFloat(4.701527573828892e-5), (12, 24) = t[1] = HFloat(4.701521702856806e-5), (12, 25) = t[2] = HFloat(4.7015244376305206e-5), (12, 26) = t[3] = HFloat(4.7015820676447016e-5), (13, 1) = p[b] = HFloat(0.0027441276373021367), (13, 2) = p[s] = HFloat(0.0027404314816251467), (13, 3) = p[0, b] = HFloat(0.0026914271388989593), (13, 4) = p[0, c] = HFloat(0.0026914271313028455), (13, 5) = p[0, p] = HFloat(5.208500920044245e-5), (13, 6) = p[0, s] = HFloat(6.851063326730239e-4), (13, 7) = p[1, b] = HFloat(0.0026914272372922463), (13, 8) = p[1, c] = HFloat(0.002691427243943957), (13, 9) = p[1, p] = HFloat(5.208499437519478e-5), (13, 10) = p[1, s] = HFloat(6.851051514918775e-4), (13, 11) = p[2, b] = HFloat(0.005375610716099423), (13, 12) = p[2, c] = HFloat(0.002691427228487597), (13, 13) = p[2, p] = HFloat(5.208500383849087e-5), (13, 14) = p[2, s] = HFloat(6.851052464024117e-4), (13, 15) = p[3, b] = HFloat(0.01604029172157928), (13, 16) = p[3, c] = HFloat(0.002691426499144771), (13, 17) = p[3, p] = HFloat(5.2085005240083e-5), (13, 18) = p[3, s] = HFloat(6.851147758746402e-4), (13, 19) = r[0] = HFloat(0.011729932521159038), (13, 20) = r[1] = HFloat(0.011732364099504622), (13, 21) = r[2] = HFloat(0.011742989243943089), (13, 22) = r[3] = HFloat(0.01176592740244338), (13, 23) = t[0] = HFloat(5.2842710147190476e-5), (13, 24) = t[1] = HFloat(5.284261726217459e-5), (13, 25) = t[2] = HFloat(5.2842624122865e-5), (13, 26) = t[3] = HFloat(5.284335963140471e-5), (14, 1) = p[b] = HFloat(0.00337214624231458), (14, 2) = p[s] = HFloat(0.0033665556874176083), (14, 3) = p[0, b] = HFloat(0.0033120292824265706), (14, 4) = p[0, c] = HFloat(0.0033120292824485656), (14, 5) = p[0, p] = HFloat(5.941567640204649e-5), (14, 6) = p[0, s] = HFloat(8.416374385562085e-4), (14, 7) = p[1, b] = HFloat(0.003312029427558483), (14, 8) = p[1, c] = HFloat(0.003312029427546177), (14, 9) = p[1, p] = HFloat(5.9415676401014564e-5), (14, 10) = p[1, s] = HFloat(8.416354066781787e-4), (14, 11) = p[2, b] = HFloat(0.006613089413070326), (14, 12) = p[2, c] = HFloat(0.003312029476190979), (14, 13) = p[2, p] = HFloat(5.94156764041809e-5), (14, 14) = p[2, s] = HFloat(8.416347259827112e-4), (14, 15) = p[3, b] = HFloat(0.019708352949949434), (14, 16) = p[3, c] = HFloat(0.003312028519732735), (14, 17) = p[3, p] = HFloat(5.941567640701982e-5), (14, 18) = p[3, s] = HFloat(8.416481161970148e-4), (14, 19) = r[0] = HFloat(0.01173023901394287), (14, 20) = r[1] = HFloat(0.011733016778350036), (14, 21) = r[2] = HFloat(0.011745668345236987), (14, 22) = r[3] = HFloat(0.011773888514499974), (14, 23) = t[0] = HFloat(6.031673067520449e-5), (14, 24) = t[1] = HFloat(6.031658506891664e-5), (14, 25) = t[2] = HFloat(6.0316536288235774e-5), (14, 26) = t[3] = HFloat(6.0317495851565366e-5), (15, 1) = p[b] = HFloat(0.004206656388616893), (15, 2) = p[s] = HFloat(0.004197943446850175), (15, 3) = p[0, b] = HFloat(0.004136690686954879), (15, 4) = p[0, c] = HFloat(0.004136690687409022), (15, 5) = p[0, p] = HFloat(6.915023127883814e-5), (15, 6) = p[0, s] = HFloat(0.0010494855145224793), (15, 7) = p[1, b] = HFloat(0.004136690932896456), (15, 8) = p[1, c] = HFloat(0.0041366909320689), (15, 9) = p[1, p] = HFloat(6.915023121595121e-5), (15, 10) = p[1, s] = HFloat(0.0010494818361331097), (15, 11) = p[2, b] = HFloat(0.008256270024915892), (15, 12) = p[2, c] = HFloat(0.004136691118233342), (15, 13) = p[2, p] = HFloat(6.915023122135923e-5), (15, 14) = p[2, s] = HFloat(0.0010494790547655951), (15, 15) = p[3, b] = HFloat(0.024564867879315232), (15, 16) = p[3, c] = HFloat(0.004136689918695683), (15, 17) = p[3, p] = HFloat(6.915022994915386e-5), (15, 18) = p[3, s] = HFloat(0.0010494970421874655), (15, 19) = r[0] = HFloat(0.01173064728552973), (15, 20) = r[1] = HFloat(0.01173388621154803), (15, 21) = r[2] = HFloat(0.011749236014758505), (15, 22) = r[3] = HFloat(0.011784471252695041), (15, 23) = t[0] = HFloat(7.02563296162507e-5), (15, 24) = t[1] = HFloat(7.025608338471535e-5), (15, 25) = t[2] = HFloat(7.02558971946507e-5), (15, 26) = t[3] = HFloat(7.02571012707822e-5), (16, 1) = p[b] = HFloat(0.9054626273454023), (16, 2) = p[s] = HFloat(0.20357295818205623), (16, 3) = p[0, b] = HFloat(0.8909942453597374), (16, 4) = p[0, c] = HFloat(0.8935412996011249), (16, 5) = p[0, p] = HFloat(0.011431701480444133), (16, 6) = p[0, s] = HFloat(0.07119721872927535), (16, 7) = p[1, b] = HFloat(0.8926626803372255), (16, 8) = p[1, c] = HFloat(0.8941103412076071), (16, 9) = p[1, p] = HFloat(0.007863283423986882), (16, 10) = p[1, s] = HFloat(0.060884036441837944), (16, 11) = p[2, b] = HFloat(0.9848146726925255), (16, 12) = p[2, c] = HFloat(0.8821534773182773), (16, 13) = p[2, p] = HFloat(0.0030900891277396733), (16, 14) = p[2, s] = HFloat(0.05251155901410738), (16, 15) = p[3, b] = HFloat(0.9951336026432317), (16, 16) = p[3, c] = HFloat(0.8793379959199688), (16, 17) = p[3, p] = HFloat(0.0030901038498657033), (16, 18) = p[3, s] = HFloat(0.0526646881564301), (16, 19) = r[0] = HFloat(0.013443944532400751), (16, 20) = r[1] = HFloat(0.014998131324665168), (16, 21) = r[2] = HFloat(1.0), (16, 22) = r[3] = HFloat(1.0), (16, 23) = t[0] = HFloat(0.04175877778334884), (16, 24) = t[1] = HFloat(0.035927132850126484), (16, 25) = t[2] = HFloat(0.03114048785470631), (16, 26) = t[3] = HFloat(0.031228426266805116), (17, 1) = p[b] = HFloat(0.9140327825313035), (17, 2) = p[s] = HFloat(0.19461996537496573), (17, 3) = p[0, b] = HFloat(0.9013944737610889), (17, 4) = p[0, c] = HFloat(0.9040078500015714), (17, 5) = p[0, p] = HFloat(0.010740551485106567), (17, 6) = p[0, s] = HFloat(0.06670960284060372), (17, 7) = p[1, b] = HFloat(0.9030117405613309), (17, 8) = p[1, c] = HFloat(0.9044840009795779), (17, 9) = p[1, p] = HFloat(0.0073672345554508765), (17, 10) = p[1, s] = HFloat(0.05750073739523847), (17, 11) = p[2, b] = HFloat(0.9875222751341088), (17, 12) = p[2, c] = HFloat(0.8946348183621529), (17, 13) = p[2, p] = HFloat(0.0029421645922217475), (17, 14) = p[2, s] = HFloat(0.04968323513020426), (17, 15) = p[3, b] = HFloat(0.995906756429433), (17, 16) = p[3, c] = HFloat(0.8923359374545076), (17, 17) = p[3, p] = HFloat(0.0029421629936005086), (17, 18) = p[3, s] = HFloat(0.04978781276346261), (17, 19) = r[0] = HFloat(0.013358742291256121), (17, 20) = r[1] = HFloat(0.014866458410767072), (17, 21) = r[2] = HFloat(0.9999999999999999), (17, 22) = r[3] = HFloat(0.9999999999999999), (17, 23) = t[0] = HFloat(0.04084229147076399), (17, 24) = t[1] = HFloat(0.03540385266273325), (17, 25) = t[2] = HFloat(0.030738497200015712), (17, 26) = t[3] = HFloat(0.030801203486333296), (18, 1) = p[b] = HFloat(0.9188037697483887), (18, 2) = p[s] = HFloat(0.1895622132635204), (18, 3) = p[0, b] = HFloat(0.9073914792292185), (18, 4) = p[0, c] = HFloat(0.9099710589090722), (18, 5) = p[0, p] = HFloat(0.010242122949848996), (18, 6) = p[0, s] = HFloat(0.06416054032590485), (18, 7) = p[1, b] = HFloat(0.9089469573621507), (18, 8) = p[1, c] = HFloat(0.9103949059889146), (18, 9) = p[1, p] = HFloat(0.007023354528103904), (18, 10) = p[1, s] = HFloat(0.055468149046925125), (18, 11) = p[2, b] = HFloat(0.9890191608104809), (18, 12) = p[2, c] = HFloat(0.9018747073352771), (18, 13) = p[2, p] = HFloat(0.0028525179502554513), (18, 14) = p[2, s] = HFloat(0.04788087159423541), (18, 15) = p[3, b] = HFloat(0.9963922615091573), (18, 16) = p[3, c] = HFloat(0.8998473612701222), (18, 17) = p[3, p] = HFloat(0.0028525044677978058), (18, 18) = p[3, s] = HFloat(0.047965719973228425), (18, 19) = r[0] = HFloat(0.013301728372071697), (18, 20) = r[1] = HFloat(0.014781009601802552), (18, 21) = r[2] = HFloat(1.0), (18, 22) = r[3] = HFloat(0.9999999999999999), (18, 23) = t[0] = HFloat(0.03955827064187777), (18, 24) = t[1] = HFloat(0.03438325482736664), (18, 25) = t[2] = HFloat(0.029820359890606586), (18, 26) = t[3] = HFloat(0.029871634081195184), (19, 1) = p[b] = HFloat(0.922183333630967), (19, 2) = p[s] = HFloat(0.18595234251843437), (19, 3) = p[0, b] = HFloat(0.9117378437146946), (19, 4) = p[0, c] = HFloat(0.9142540337348416), (19, 5) = p[0, p] = HFloat(0.009833673712797366), (19, 6) = p[0, s] = HFloat(0.06234035812068076), (19, 7) = p[1, b] = HFloat(0.9132312688659844), (19, 8) = p[1, c] = HFloat(0.9146409491613171), (19, 9) = p[1, p] = HFloat(0.006747184257792032), (19, 10) = p[1, s] = HFloat(0.05396134057134326), (19, 11) = p[2, b] = HFloat(0.9900744089146667), (19, 12) = p[2, c] = HFloat(0.9071318732130249), (19, 13) = p[2, p] = HFloat(0.0027857281730041196), (19, 14) = p[2, s] = HFloat(0.04649070026108038), (19, 15) = p[3, b] = HFloat(0.9967616791879731), (19, 16) = p[3, c] = HFloat(0.905289258962267), (19, 17) = p[3, p] = HFloat(0.0027857126921289393), (19, 18) = p[3, s] = HFloat(0.04656424356216145), (19, 19) = r[0] = HFloat(0.01325682626635853), (19, 20) = r[1] = HFloat(0.014714941565049551), (19, 21) = r[2] = HFloat(0.999999999999989), (19, 22) = r[3] = HFloat(1.0), (19, 23) = t[0] = HFloat(0.038233238676681346), (19, 24) = t[1] = HFloat(0.033265373422624214), (19, 25) = t[2] = HFloat(0.02879262785397723), (19, 26) = t[3] = HFloat(0.028836767428617134), (20, 1) = p[b] = HFloat(0.9247775482140037), (20, 2) = p[s] = HFloat(0.18316690983393824), (20, 3) = p[0, b] = HFloat(0.9151348073793447), (20, 4) = p[0, c] = HFloat(0.9175756770467065), (20, 5) = p[0, p] = HFloat(0.009484399550984252), (20, 6) = p[0, s] = HFloat(0.06094258953378548), (20, 7) = p[1, b] = HFloat(0.9165683848947583), (20, 8) = p[1, c] = HFloat(0.9179345075698654), (20, 9) = p[1, p] = HFloat(0.006513964384462952), (20, 10) = p[1, s] = HFloat(0.052766553304546854), (20, 11) = p[2, b] = HFloat(0.9908818285341926), (20, 12) = p[2, c] = HFloat(0.9112417062064703), (20, 13) = p[2, p] = HFloat(0.0027322382100904547), (20, 14) = p[2, s] = HFloat(0.04535015564712497), (20, 15) = p[3, b] = HFloat(0.9970604417776849), (20, 16) = p[3, c] = HFloat(0.909536516545598), (20, 17) = p[3, p] = HFloat(0.002732321879257104), (20, 18) = p[3, s] = HFloat(0.045416141876407336), (20, 19) = r[0] = HFloat(0.013219839194695056), (20, 20) = r[1] = HFloat(0.014660559101751718), (20, 21) = r[2] = HFloat(1.0), (20, 22) = r[3] = HFloat(1.0), (20, 23) = t[0] = HFloat(0.03693935014743468), (20, 24) = t[1] = HFloat(0.0321429386309201), (20, 25) = t[2] = HFloat(0.0277504884313279), (20, 26) = t[3] = HFloat(0.027789820676039113)})

 

LSMat := Matrix(20, 26, {(1, 1) = p[b] = HFloat(8.497598034777977e-5), (1, 2) = p[s] = HFloat(8.497327240786172e-5), (1, 3) = p[0, b] = HFloat(6.373266492239104e-5), (1, 4) = p[0, c] = HFloat(6.37326649224121e-5), (1, 5) = p[0, p] = HFloat(2.0994630056395117e-5), (1, 6) = p[0, s] = HFloat(2.124331542539195e-5), (1, 7) = p[1, b] = HFloat(6.373266551461155e-5), (1, 8) = p[1, c] = HFloat(6.373266551462767e-5), (1, 9) = p[1, p] = HFloat(2.099463005641082e-5), (1, 10) = p[1, s] = HFloat(2.124331483314139e-5), (1, 11) = p[2, b] = HFloat(1.2746126659483325e-4), (1, 12) = p[2, c] = HFloat(6.373266422358078e-5), (1, 13) = p[2, p] = HFloat(2.0994630056473973e-5), (1, 14) = p[2, s] = HFloat(2.124331612412852e-5), (1, 15) = p[3, b] = HFloat(3.8233500334404854e-4), (1, 16) = p[3, c] = HFloat(6.373265432260766e-5), (1, 17) = p[3, p] = HFloat(2.0994630056466414e-5), (1, 18) = p[3, s] = HFloat(2.1243326025199692e-5), (1, 19) = r[0] = HFloat(0.011728642155131117), (1, 20) = r[1] = HFloat(0.01172961578737003), (1, 21) = r[2] = HFloat(0.011731699502001827), (1, 22) = r[3] = HFloat(0.011732243307437716), (1, 23) = t[0] = HFloat(2.12446694047887e-5), (1, 24) = t[1] = HFloat(2.124466881251298e-5), (1, 25) = t[2] = HFloat(2.124467010355496e-5), (1, 26) = t[3] = HFloat(2.124468000504667e-5), (2, 1) = p[b] = HFloat(1.7885637498657572e-4), (2, 2) = p[s] = HFloat(1.78842378567727e-4), (2, 3) = p[0, b] = HFloat(1.5650108488089916e-4), (2, 4) = p[0, c] = HFloat(1.5650108488099202e-4), (2, 5) = p[0, p] = HFloat(2.2093612030384384e-5), (2, 6) = p[0, s] = HFloat(4.4710580211528823e-5), (2, 7) = p[1, b] = HFloat(1.5650108608721163e-4), (2, 8) = p[1, c] = HFloat(1.5650108608731495e-4), (2, 9) = p[1, p] = HFloat(2.2093612030264742e-5), (2, 10) = p[1, s] = HFloat(4.4710577798758746e-5), (2, 11) = p[2, b] = HFloat(3.1297767170007326e-4), (2, 12) = p[2, c] = HFloat(1.5650108216941558e-4), (2, 13) = p[2, p] = HFloat(2.209361202723536e-5), (2, 14) = p[2, s] = HFloat(4.4710585635064664e-5), (2, 15) = p[3, b] = HFloat(9.386390322525901e-4), (2, 16) = p[3, c] = HFloat(1.5650105752564275e-4), (2, 17) = p[3, p] = HFloat(2.2093611678251256e-5), (2, 18) = p[3, s] = HFloat(4.47106349222356e-5), (2, 19) = r[0] = HFloat(0.011728687512280025), (2, 20) = r[1] = HFloat(0.011729712398256006), (2, 21) = r[2] = HFloat(0.011732096616364375), (2, 22) = r[3] = HFloat(0.011733431919567142), (2, 23) = t[0] = HFloat(2.2358789288516352e-5), (2, 24) = t[1] = HFloat(2.2358788081973393e-5), (2, 25) = t[2] = HFloat(2.2358792000642446e-5), (2, 26) = t[3] = HFloat(2.2358816644631372e-5), (3, 1) = p[b] = HFloat(2.8311814184295324e-4), (3, 2) = p[s] = HFloat(2.8308139997393816e-4), (3, 3) = p[0, b] = HFloat(2.5952803808748236e-4), (3, 4) = p[0, c] = HFloat(2.5952803808753126e-4), (3, 5) = p[0, p] = HFloat(2.331400233213316e-5), (3, 6) = p[0, s] = HFloat(7.077031126637264e-5), (3, 7) = p[1, b] = HFloat(2.5952804011157614e-4), (3, 8) = p[1, c] = HFloat(2.595280401115804e-4), (3, 9) = p[1, p] = HFloat(2.3314002332123275e-5), (3, 10) = p[1, s] = HFloat(7.077030519374998e-5), (3, 11) = p[2, b] = HFloat(5.1898871157763e-4), (3, 12) = p[2, c] = HFloat(2.5952803318883425e-4), (3, 13) = p[2, p] = HFloat(2.331400233212433e-5), (3, 14) = p[2, s] = HFloat(7.07703259624012e-5), (3, 15) = p[3, b] = HFloat(0.001556157963837128), (3, 16) = p[3, c] = HFloat(2.595279893258756e-4), (3, 17) = p[3, p] = HFloat(2.3314002332081316e-5), (3, 18) = p[3, s] = HFloat(7.077045755141439e-5), (3, 19) = r[0] = HFloat(0.011728737902063217), (3, 20) = r[1] = HFloat(0.01172981972803001), (3, 21) = r[2] = HFloat(0.011732537768250386), (3, 22) = r[3] = HFloat(0.01173475201436599), (3, 23) = t[0] = HFloat(2.359622763812359e-5), (3, 24) = t[1] = HFloat(2.359622561343834e-5), (3, 25) = t[2] = HFloat(2.3596232537955823e-5), (3, 26) = t[3] = HFloat(2.359627641131139e-5), (4, 1) = p[b] = HFloat(3.9958421782929174e-4), (4, 2) = p[s] = HFloat(3.9950936297153053e-4), (4, 3) = p[0, b] = HFloat(3.746149016678819e-4), (4, 4) = p[0, c] = HFloat(3.7461490166798984e-4), (4, 5) = p[0, p] = HFloat(2.4677104322503382e-5), (4, 6) = p[0, s] = HFloat(9.987726464498918e-5), (4, 7) = p[1, b] = HFloat(3.74614904788914e-4), (4, 8) = p[1, c] = HFloat(3.746149047888888e-4), (4, 9) = p[1, p] = HFloat(2.4677104322458456e-5), (4, 10) = p[1, s] = HFloat(9.987725216187513e-5), (4, 11) = p[2, b] = HFloat(7.490894524599116e-4), (4, 12) = p[2, c] = HFloat(3.746148944832087e-4), (4, 13) = p[2, p] = HFloat(2.4677104315137634e-5), (4, 14) = p[2, s] = HFloat(9.987729338433743e-5), (4, 15) = p[3, b] = HFloat(0.002245584982032944), (4, 16) = p[3, c] = HFloat(3.746148296342823e-4), (4, 17) = p[3, p] = HFloat(2.467710364018654e-5), (4, 18) = p[3, s] = HFloat(9.987755278030126e-5), (4, 19) = r[0] = HFloat(0.011728794211366293), (4, 20) = r[1] = HFloat(0.011729939665529834), (4, 21) = r[2] = HFloat(0.011733030713797861), (4, 22) = r[3] = HFloat(0.01173622668897168), (4, 23) = t[0] = HFloat(2.4978673557665054e-5), (4, 24) = t[1] = HFloat(2.4978670435794582e-5), (4, 25) = t[2] = HFloat(2.4978680744992227e-5), (4, 26) = t[3] = HFloat(2.4978745614681044e-5), (5, 1) = p[b] = HFloat(5.305437913113593e-4), (5, 2) = p[s] = HFloat(5.304100659224972e-4), (5, 3) = p[0, b] = HFloat(5.040232944928406e-4), (5, 4) = p[0, c] = HFloat(5.040232944917339e-4), (5, 5) = p[0, p] = HFloat(2.620991513270811e-5), (5, 6) = p[0, s] = HFloat(1.326024840948291e-4), (5, 7) = p[1, b] = HFloat(5.040232990969472e-4), (5, 8) = p[1, c] = HFloat(5.040232990957746e-4), (5, 9) = p[1, p] = HFloat(2.6209915133112704e-5), (5, 10) = p[1, s] = HFloat(1.3260246107515056e-4), (5, 11) = p[2, b] = HFloat(0.0010077925339347666), (5, 12) = p[2, c] = HFloat(5.04023285854417e-4), (5, 13) = p[2, p] = HFloat(2.6209914687183613e-5), (5, 14) = p[2, s] = HFloat(1.326025272815974e-4), (5, 15) = p[3, b] = HFloat(0.0030203316308932064), (5, 16) = p[3, c] = HFloat(5.040232726174904e-4), (5, 17) = p[3, p] = HFloat(2.620987466879954e-5), (5, 18) = p[3, s] = HFloat(1.3260259347044374e-4), (5, 19) = r[0] = HFloat(0.011728857554471958), (5, 20) = r[1] = HFloat(0.011730074583862993), (5, 21) = r[2] = HFloat(0.011733585196740991), (5, 22) = r[3] = HFloat(0.011737884945195084), (5, 23) = t[0] = HFloat(2.653387041757235e-5), (5, 24) = t[1] = HFloat(2.653386581138907e-5), (5, 25) = t[2] = HFloat(2.653387905897421e-5), (5, 26) = t[3] = HFloat(2.6533892313040407e-5), (6, 1) = p[b] = HFloat(6.788401358530264e-4), (6, 2) = p[s] = HFloat(6.786192707815452e-4), (6, 3) = p[0, b] = HFloat(6.505643649734589e-4), (6, 4) = p[0, c] = HFloat(6.505643649750675e-4), (6, 5) = p[0, p] = HFloat(2.7944903380513104e-5), (6, 6) = p[0, s] = HFloat(1.696546252779723e-4), (6, 7) = p[1, b] = HFloat(6.505643716012462e-4), (6, 8) = p[1, c] = HFloat(6.50564371602842e-4), (6, 9) = p[1, p] = HFloat(2.794490338030645e-5), (6, 10) = p[1, s] = HFloat(1.6965458551133783e-4), (6, 11) = p[2, b] = HFloat(0.0013007054698782063), (6, 12) = p[2, c] = HFloat(6.50564353400917e-4), (6, 13) = p[2, p] = HFloat(2.7944903297845803e-5), (6, 14) = p[2, s] = HFloat(1.6965469472284773e-4), (6, 15) = p[3, b] = HFloat(0.003897042402234046), (6, 16) = p[3, c] = HFloat(6.505642416430108e-4), (6, 17) = p[3, p] = HFloat(2.794489601237396e-5), (6, 18) = p[3, s] = HFloat(1.6965536526929146e-4), (6, 19) = r[0] = HFloat(0.011728929317778448), (6, 20) = r[1] = HFloat(0.011730227435608169), (6, 21) = r[2] = HFloat(0.011734213338377895), (6, 22) = r[3] = HFloat(0.011739762831917976), (6, 23) = t[0] = HFloat(2.8294178194764053e-5), (6, 24) = t[1] = HFloat(2.8294171562863302e-5), (6, 25) = t[2] = HFloat(2.8294189775994155e-5), (6, 26) = t[3] = HFloat(2.829430159279077e-5), (7, 1) = p[b] = HFloat(8.481993759802877e-4), (7, 2) = p[s] = HFloat(8.478524002755005e-4), (7, 3) = p[0, b] = HFloat(8.179189788819125e-4), (7, 4) = p[0, c] = HFloat(8.1791897888207e-4), (7, 5) = p[0, p] = HFloat(2.9926193589591444e-5), (7, 6) = p[0, s] = HFloat(2.119627796901306e-4), (7, 7) = p[1, b] = HFloat(8.179189883103709e-4), (7, 8) = p[1, c] = HFloat(8.179189883105544e-4), (7, 9) = p[1, p] = HFloat(2.9926193589532427e-5), (7, 10) = p[1, s] = HFloat(2.119627136907558e-4), (7, 11) = p[2, b] = HFloat(0.0016351689389926777), (7, 12) = p[2, c] = HFloat(8.179189653849175e-4), (7, 13) = p[2, p] = HFloat(2.9926193581614545e-5), (7, 14) = p[2, s] = HFloat(2.1196287417064104e-4), (7, 15) = p[3, b] = HFloat(0.004897488863572675), (7, 16) = p[3, c] = HFloat(8.179187998771647e-4), (7, 17) = p[3, p] = HFloat(2.9926192883727055e-5), (7, 18) = p[3, s] = HFloat(2.119640327239644e-4), (7, 19) = r[0] = HFloat(0.011729011318052948), (7, 20) = r[1] = HFloat(0.011730402089854309), (7, 21) = r[2] = HFloat(0.011734931020948879), (7, 22) = r[3] = HFloat(0.01174190756220202), (7, 23) = t[0] = HFloat(3.0305184296920358e-5), (7, 24) = t[1] = HFloat(3.0305174861005977e-5), (7, 25) = t[2] = HFloat(3.030519780476597e-5), (7, 26) = t[3] = HFloat(3.0305363442064525e-5), (8, 1) = p[b] = HFloat(0.0010434456148489227), (8, 2) = p[s] = HFloat(0.0010429180483784435), (8, 3) = p[0, b] = HFloat(0.0010108544839371872), (8, 4) = p[0, c] = HFloat(0.0010108544839371849), (8, 5) = p[0, p] = HFloat(3.220998400612221e-5), (8, 6) = p[0, s] = HFloat(2.607290472932511e-4), (8, 7) = p[1, b] = HFloat(0.001010854497303152), (8, 8) = p[1, c] = HFloat(0.0010108544973032214), (8, 9) = p[1, p] = HFloat(3.2209984006072936e-5), (8, 10) = p[1, s] = HFloat(2.6072894036649583e-4), (8, 11) = p[2, b] = HFloat(0.002020687112496043), (8, 12) = p[2, c] = HFloat(0.00101085446962739), (8, 13) = p[2, p] = HFloat(3.2209984006076616e-5), (8, 14) = p[2, s] = HFloat(2.6072916177221245e-4), (8, 15) = p[3, b] = HFloat(0.0060498187627798196), (8, 16) = p[3, c] = HFloat(0.0010108542524806033), (8, 17) = p[3, p] = HFloat(3.220998400594794e-5), (8, 18) = p[3, s] = HFloat(2.60730898946484e-4), (8, 19) = r[0] = HFloat(0.011729105911103644), (8, 20) = r[1] = HFloat(0.011730603563542554), (8, 21) = r[2] = HFloat(0.011735758835183649), (8, 22) = r[3] = HFloat(0.011744380290500298), (8, 23) = t[0] = HFloat(3.262410913866689e-5), (8, 24) = t[1] = HFloat(3.2624095759734375e-5), (8, 25) = t[2] = HFloat(3.262412346254957e-5), (8, 26) = t[3] = HFloat(3.2624340821967834e-5), (9, 1) = p[b] = HFloat(0.0012710015423508024), (9, 2) = p[s] = HFloat(0.0012702159144528792), (9, 3) = p[0, b] = HFloat(0.0012357178387238713), (9, 4) = p[0, c] = HFloat(0.0012357178387239016), (9, 5) = p[0, p] = HFloat(3.487116676806691e-5), (9, 6) = p[0, s] = HFloat(3.175533326419665e-4), (9, 7) = p[1, b] = HFloat(0.0012357178577303504), (9, 8) = p[1, c] = HFloat(0.0012357178577303317), (9, 9) = p[1, p] = HFloat(3.487116676806451e-5), (9, 10) = p[1, s] = HFloat(3.1755316158372306e-4), (9, 11) = p[2, b] = HFloat(0.0024699086526017737), (9, 12) = p[2, c] = HFloat(0.0012357178255831705), (9, 13) = p[2, p] = HFloat(3.487116676776969e-5), (9, 14) = p[2, s] = HFloat(3.1755345090989003e-4), (9, 15) = p[3, b] = HFloat(0.007391438010273523), (9, 16) = p[3, c] = HFloat(0.0012357175457599374), (9, 17) = p[3, p] = HFloat(3.487116675016271e-5), (9, 18) = p[3, s] = HFloat(3.175559693172995e-4), (9, 19) = r[0] = HFloat(0.01172921623724993), (9, 20) = r[1] = HFloat(0.011730838544179379), (9, 21) = r[2] = HFloat(0.011736724223679496), (9, 22) = r[3] = HFloat(0.011747262448664277), (9, 23) = t[0] = HFloat(3.5327358274269426e-5), (9, 24) = t[1] = HFloat(3.532733924495452e-5), (9, 25) = t[2] = HFloat(3.5327371430943296e-5), (9, 26) = t[3] = HFloat(3.532765159028133e-5), (10, 1) = p[b] = HFloat(0.0015396327551233941), (10, 2) = p[s] = HFloat(0.0015384765423922379), (10, 3) = p[0, b] = HFloat(0.0015011709244681436), (10, 4) = p[0, c] = HFloat(0.0015011709244735815), (10, 5) = p[0, p] = HFloat(3.8012112962189415e-5), (10, 6) = p[0, s] = HFloat(3.8461830655501074e-4), (10, 7) = p[1, b] = HFloat(0.001501170951744753), (10, 8) = p[1, c] = HFloat(0.0015011709517501744), (10, 9) = p[1, p] = HFloat(3.801211296180871e-5), (10, 10) = p[1, s] = HFloat(3.8461803378968566e-4), (10, 11) = p[2, b] = HFloat(0.0030000883174188327), (10, 12) = p[2, c] = HFloat(0.0015011709164698922), (10, 13) = p[2, p] = HFloat(3.801211286849334e-5), (10, 14) = p[2, s] = HFloat(3.8461838659295403e-4), (10, 15) = p[3, b] = HFloat(0.008973288306491849), (10, 16) = p[3, c] = HFloat(0.001501170573583388), (10, 17) = p[3, p] = HFloat(3.801210489997656e-5), (10, 18) = p[3, s] = HFloat(3.846218154544715e-4), (10, 19) = r[0] = HFloat(0.011729346588392276), (10, 20) = r[1] = HFloat(0.01173111617140332), (10, 21) = r[2] = HFloat(0.011737864684432662), (10, 22) = r[3] = HFloat(0.011750665192271083), (10, 23) = t[0] = HFloat(3.8519655278033144e-5), (10, 24) = t[1] = HFloat(3.8519627961543525e-5), (10, 25) = t[2] = HFloat(3.851966329353775e-5), (10, 26) = t[3] = HFloat(3.852000668101572e-5), (11, 1) = p[b] = HFloat(0.0018614800055356494), (11, 2) = p[s] = HFloat(0.00185978575231999), (11, 3) = p[0, b] = HFloat(0.001819212250329676), (11, 4) = p[0, c] = HFloat(0.0018192122503297616), (11, 5) = p[0, p] = HFloat(4.1773871728819725e-5), (11, 6) = p[0, s] = HFloat(4.649453072662205e-4), (11, 7) = p[1, b] = HFloat(0.0018192122900667733), (11, 8) = p[1, c] = HFloat(0.0018192122900668357), (11, 9) = p[1, p] = HFloat(4.177387172886939e-5), (11, 10) = p[1, s] = HFloat(4.6494487015620464e-4), (11, 11) = p[2, b] = HFloat(0.0036351149752650524), (11, 12) = p[2, c] = HFloat(0.0018192122542851543), (11, 13) = p[2, p] = HFloat(4.1773871728172416e-5), (11, 14) = p[2, s] = HFloat(4.649452637574486e-4), (11, 15) = p[3, b] = HFloat(0.010865748048667535), (11, 16) = p[3, c] = HFloat(0.0018192117954319484), (11, 17) = p[3, p] = HFloat(4.177387167299004e-5), (11, 18) = p[3, s] = HFloat(4.649503111401152e-4), (11, 19) = r[0] = HFloat(0.011729502920470262), (11, 20) = r[1] = HFloat(0.011731449128078393), (11, 21) = r[2] = HFloat(0.01173923224053736), (11, 22) = r[3] = HFloat(0.011754742534860106), (11, 23) = t[0] = HFloat(4.234478936742556e-5), (11, 24) = t[1] = HFloat(4.2344749559414814e-5), (11, 25) = t[2] = HFloat(4.2344785405041276e-5), (11, 26) = t[3] = HFloat(4.234524507478069e-5), (12, 1) = p[b] = HFloat(0.0022542471121594996), (12, 2) = p[s] = HFloat(0.0022517573259245296), (12, 3) = p[0, b] = HFloat(0.002207335614146127), (12, 4) = p[0, c] = HFloat(0.002207335614155632), (12, 5) = p[0, p] = HFloat(4.636337048169496e-5), (12, 6) = p[0, s] = HFloat(5.629379761629343e-4), (12, 7) = p[1, b] = HFloat(0.002207335673324993), (12, 8) = p[1, c] = HFloat(0.0022073356733344988), (12, 9) = p[1, p] = HFloat(4.636337048079611e-5), (12, 10) = p[1, s] = HFloat(5.629372660151207e-4), (12, 11) = p[2, b] = HFloat(0.004409798969064581), (12, 12) = p[2, c] = HFloat(0.0022073356442997433), (12, 13) = p[2, p] = HFloat(4.6363370387049525e-5), (12, 14) = p[2, s] = HFloat(5.629376144347693e-4), (12, 15) = p[3, b] = HFloat(0.013171140423589444), (12, 16) = p[3, c] = HFloat(0.0022073350730596243), (12, 17) = p[3, p] = HFloat(4.636336254545084e-5), (12, 18) = p[3, s] = HFloat(5.629444693115263e-4), (12, 19) = r[0] = HFloat(0.011729693934167272), (12, 20) = r[1] = HFloat(0.011731855941199847), (12, 21) = r[2] = HFloat(0.011740902868321206), (12, 22) = r[3] = HFloat(0.011759719097646141), (12, 23) = t[0] = HFloat(4.7015276269079265e-5), (12, 24) = t[1] = HFloat(4.701521696196671e-5), (12, 25) = t[2] = HFloat(4.701524605984207e-5), (12, 26) = t[3] = HFloat(4.701581853990235e-5), (13, 1) = p[b] = HFloat(0.002744127635553251), (13, 2) = p[s] = HFloat(0.002740431484314765), (13, 3) = p[0, b] = HFloat(0.002691427148879769), (13, 4) = p[0, c] = HFloat(0.0026914271488946277), (13, 5) = p[0, p] = HFloat(5.2085001436523094e-5), (13, 6) = p[0, s] = HFloat(6.851063267589746e-4), (13, 7) = p[1, b] = HFloat(0.0026914272396946813), (13, 8) = p[1, c] = HFloat(0.002691427239709519), (13, 9) = p[1, p] = HFloat(5.2085001434933905e-5), (13, 10) = p[1, s] = HFloat(6.851051461658277e-4), (13, 11) = p[2, b] = HFloat(0.005375610700803196), (13, 12) = p[2, c] = HFloat(0.002691427232500609), (13, 13) = p[2, p] = HFloat(5.20850013301879e-5), (13, 14) = p[2, s] = HFloat(6.851052398800453e-4), (13, 15) = p[3, b] = HFloat(0.01604029172553783), (13, 16) = p[3, c] = HFloat(0.0026914264992979942), (13, 17) = p[3, p] = HFloat(5.2084992712371756e-5), (13, 18) = p[3, s] = HFloat(6.851147715096464e-4), (13, 19) = r[0] = HFloat(0.011729932538330691), (13, 20) = r[1] = HFloat(0.011732364097369512), (13, 21) = r[2] = HFloat(0.011742989249827963), (13, 22) = r[3] = HFloat(0.011765927400509801), (13, 23) = t[0] = HFloat(5.284270865154893e-5), (13, 24) = t[1] = HFloat(5.284261759642341e-5), (13, 25) = t[2] = HFloat(5.2842624824324096e-5), (13, 26) = t[3] = HFloat(5.284335996994722e-5), (14, 1) = p[b] = HFloat(0.003372146242320572), (14, 2) = p[s] = HFloat(0.0033665556874227748), (14, 3) = p[0, b] = HFloat(0.003312029282424593), (14, 4) = p[0, c] = HFloat(0.0033120292824245536), (14, 5) = p[0, p] = HFloat(5.9415676403599736e-5), (14, 6) = p[0, s] = HFloat(8.416374385454252e-4), (14, 7) = p[1, b] = HFloat(0.0033120294275569696), (14, 8) = p[1, c] = HFloat(0.003312029427557025), (14, 9) = p[1, p] = HFloat(5.9415676403515656e-5), (14, 10) = p[1, s] = HFloat(8.416354066894342e-4), (14, 11) = p[2, b] = HFloat(0.00661308941308754), (14, 12) = p[2, c] = HFloat(0.0033120294761781422), (14, 13) = p[2, p] = HFloat(5.94156764034448e-5), (14, 14) = p[2, s] = HFloat(8.416347259944876e-4), (14, 15) = p[3, b] = HFloat(0.019708352949964855), (14, 16) = p[3, c] = HFloat(0.0033120285197353666), (14, 17) = p[3, p] = HFloat(5.941567639500281e-5), (14, 18) = p[3, s] = HFloat(8.416481161934275e-4), (14, 19) = r[0] = HFloat(0.011730239013959677), (14, 20) = r[1] = HFloat(0.01173301677836892), (14, 21) = r[2] = HFloat(0.011745668345240039), (14, 22) = r[3] = HFloat(0.01177388851449465), (14, 23) = t[0] = HFloat(6.031673067463938e-5), (14, 24) = t[1] = HFloat(6.0316585068570926e-5), (14, 25) = t[2] = HFloat(6.031653628887615e-5), (14, 26) = t[3] = HFloat(6.03174958520664e-5), (15, 1) = p[b] = HFloat(0.004206656387892457), (15, 2) = p[s] = HFloat(0.0041979434471398226), (15, 3) = p[0, b] = HFloat(0.004136690686918782), (15, 4) = p[0, c] = HFloat(0.004136690686923067), (15, 5) = p[0, p] = HFloat(6.915023153599475e-5), (15, 6) = p[0, s] = HFloat(0.0010494855146077912), (15, 7) = p[1, b] = HFloat(0.004136690932146092), (15, 8) = p[1, c] = HFloat(0.004136690932150448), (15, 9) = p[1, p] = HFloat(6.915023153536721e-5), (15, 10) = p[1, s] = HFloat(0.001049481836194406), (15, 11) = p[2, b] = HFloat(0.008256270024954191), (15, 12) = p[2, c] = HFloat(0.004136691117574735), (15, 13) = p[2, p] = HFloat(6.915023151970974e-5), (15, 14) = p[2, s] = HFloat(0.0010494790548308997), (15, 15) = p[3, b] = HFloat(0.024564867878438618), (15, 16) = p[3, c] = HFloat(0.004136689918463021), (15, 17) = p[3, p] = HFloat(6.915023032278636e-5), (15, 18) = p[3, s] = HFloat(0.0010494970415066483), (15, 19) = r[0] = HFloat(0.011730647286030335), (15, 20) = r[1] = HFloat(0.011733886211697913), (15, 21) = r[2] = HFloat(0.011749236014343082), (15, 22) = r[3] = HFloat(0.011784471252907538), (15, 23) = t[0] = HFloat(7.025632962351277e-5), (15, 24) = t[1] = HFloat(7.025608339461015e-5), (15, 25) = t[2] = HFloat(7.025589721323296e-5), (15, 26) = t[3] = HFloat(7.025710122160525e-5), (16, 1) = p[b] = HFloat(0.9054626882650763), (16, 2) = p[s] = HFloat(0.20357294871701384), (16, 3) = p[0, b] = HFloat(0.8909942333524633), (16, 4) = p[0, c] = HFloat(0.8935413223957116), (16, 5) = p[0, p] = HFloat(0.01143179037949425), (16, 6) = p[0, s] = HFloat(0.0711971525702115), (16, 7) = p[1, b] = HFloat(0.892662682087851), (16, 8) = p[1, c] = HFloat(0.8941103426988235), (16, 9) = p[1, p] = HFloat(0.007863308064809034), (16, 10) = p[1, s] = HFloat(0.06088399389060264), (16, 11) = p[2, b] = HFloat(0.9848146679671084), (16, 12) = p[2, c] = HFloat(0.8821535317127881), (16, 13) = p[2, p] = HFloat(0.0030900791261831897), (16, 14) = p[2, s] = HFloat(0.05251160314950753), (16, 15) = p[3, b] = HFloat(0.9951336154331387), (16, 16) = p[3, c] = HFloat(0.8793379964576659), (16, 17) = p[3, p] = HFloat(0.003090079126183267), (16, 18) = p[3, s] = HFloat(0.05266471151277451), (16, 19) = r[0] = HFloat(0.013443857448535221), (16, 20) = r[1] = HFloat(0.014998160442165388), (16, 21) = r[2] = HFloat(1.0), (16, 22) = r[3] = HFloat(1.0), (16, 23) = t[0] = HFloat(0.04175871805339413), (16, 24) = t[1] = HFloat(0.035927140036212224), (16, 25) = t[2] = HFloat(0.03114051069010812), (16, 26) = t[3] = HFloat(0.031228471806695707), (17, 1) = p[b] = HFloat(0.9140327821753734), (17, 2) = p[s] = HFloat(0.194619962145082), (17, 3) = p[0, b] = HFloat(0.901394423100138), (17, 4) = p[0, c] = HFloat(0.9040078449011512), (17, 5) = p[0, p] = HFloat(0.010740548099871591), (17, 6) = p[0, s] = HFloat(0.06670960392648295), (17, 7) = p[1, b] = HFloat(0.9030117394925488), (17, 8) = p[1, c] = HFloat(0.9044840006235567), (17, 9) = p[1, p] = HFloat(0.007367235101744982), (17, 10) = p[1, s] = HFloat(0.05750073295452413), (17, 11) = p[2, b] = HFloat(0.9875222802825354), (17, 12) = p[2, c] = HFloat(0.894634822806096), (17, 13) = p[2, p] = HFloat(0.0029421635146216056), (17, 14) = p[2, s] = HFloat(0.049683237256046335), (17, 15) = p[3, b] = HFloat(0.9959067541551762), (17, 16) = p[3, c] = HFloat(0.8923359445551047), (17, 17) = p[3, p] = HFloat(0.0029421635146215657), (17, 18) = p[3, s] = HFloat(0.04978781673812667), (17, 19) = r[0] = HFloat(0.013358743620712122), (17, 20) = r[1] = HFloat(0.01486645774781853), (17, 21) = r[2] = HFloat(1.0), (17, 22) = r[3] = HFloat(1.0), (17, 23) = t[0] = HFloat(0.04084229078413953), (17, 24) = t[1] = HFloat(0.035403859584369084), (17, 25) = t[2] = HFloat(0.030738492231930415), (17, 26) = t[3] = HFloat(0.030801201542890434), (18, 1) = p[b] = HFloat(0.9188037716548636), (18, 2) = p[s] = HFloat(0.18956222578308446), (18, 3) = p[0, b] = HFloat(0.9073915088483105), (18, 4) = p[0, c] = HFloat(0.9099710368629857), (18, 5) = p[0, p] = HFloat(0.0102422234250594), (18, 6) = p[0, s] = HFloat(0.06416053317733329), (18, 7) = p[1, b] = HFloat(0.9089469615392454), (18, 8) = p[1, c] = HFloat(0.9103949302265372), (18, 9) = p[1, p] = HFloat(0.0070233655549835515), (18, 10) = p[1, s] = HFloat(0.05546812995325803), (18, 11) = p[2, b] = HFloat(0.9890191571454906), (18, 12) = p[2, c] = HFloat(0.9018747152885657), (18, 13) = p[2, p] = HFloat(0.0028524742045387013), (18, 14) = p[2, s] = HFloat(0.047880914837253825), (18, 15) = p[3, b] = HFloat(0.9963922840231443), (18, 16) = p[3, c] = HFloat(0.899847377352186), (18, 17) = p[3, p] = HFloat(0.0028524609706526514), (18, 18) = p[3, s] = HFloat(0.04796575891759446), (18, 19) = r[0] = HFloat(0.013301711597502828), (18, 20) = r[1] = HFloat(0.014780976384740475), (18, 21) = r[2] = HFloat(1.0), (18, 22) = r[3] = HFloat(1.0), (18, 23) = t[0] = HFloat(0.039558277750793555), (18, 24) = t[1] = HFloat(0.034383238851934866), (18, 25) = t[2] = HFloat(0.02982037762616651), (18, 26) = t[3] = HFloat(0.029871640582408654), (19, 1) = p[b] = HFloat(0.9221832394213145), (19, 2) = p[s] = HFloat(0.1859523727038042), (19, 3) = p[0, b] = HFloat(0.9117378945304848), (19, 4) = p[0, c] = HFloat(0.9142540109758315), (19, 5) = p[0, p] = HFloat(0.009833695965512862), (19, 6) = p[0, s] = HFloat(0.0623402499653706), (19, 7) = p[1, b] = HFloat(0.9132312689320764), (19, 8) = p[1, c] = HFloat(0.9146409858707591), (19, 9) = p[1, p] = HFloat(0.006747327572864066), (19, 10) = p[1, s] = HFloat(0.05396126424995285), (19, 11) = p[2, b] = HFloat(0.9900744089307717), (19, 12) = p[2, c] = HFloat(0.9071317807552485), (19, 13) = p[2, p] = HFloat(0.0027857377762639805), (19, 14) = p[2, s] = HFloat(0.04649073872841174), (19, 15) = p[3, b] = HFloat(0.9967616425476623), (19, 16) = p[3, c] = HFloat(0.9052892220331411), (19, 17) = p[3, p] = HFloat(0.002785753951343027), (19, 18) = p[3, s] = HFloat(0.04656420075338653), (19, 19) = r[0] = HFloat(0.013256909601134832), (19, 20) = r[1] = HFloat(0.014714913135783225), (19, 21) = r[2] = HFloat(1.0), (19, 22) = r[3] = HFloat(1.0), (19, 23) = t[0] = HFloat(0.03823323039071167), (19, 24) = t[1] = HFloat(0.03326534698960788), (19, 25) = t[2] = HFloat(0.02879261229781454), (19, 26) = t[3] = HFloat(0.028836796849922207), (20, 1) = p[b] = HFloat(0.9247775914391086), (20, 2) = p[s] = HFloat(0.18316690901822988), (20, 3) = p[0, b] = HFloat(0.9151348895926181), (20, 4) = p[0, c] = HFloat(0.9175756878589221), (20, 5) = p[0, p] = HFloat(0.009484173107875254), (20, 6) = p[0, s] = HFloat(0.060942590051903486), (20, 7) = p[1, b] = HFloat(0.9165682969689222), (20, 8) = p[1, c] = HFloat(0.9179344916629908), (20, 9) = p[1, p] = HFloat(0.006513860871087075), (20, 10) = p[1, s] = HFloat(0.05276665017633593), (20, 11) = p[2, b] = HFloat(0.9908817963647463), (20, 12) = p[2, c] = HFloat(0.9112417205359418), (20, 13) = p[2, p] = HFloat(0.002732256418898831), (20, 14) = p[2, s] = HFloat(0.04535010096358058), (20, 15) = p[3, b] = HFloat(0.9970603760626982), (20, 16) = p[3, c] = HFloat(0.9095365567593442), (20, 17) = p[3, p] = HFloat(0.0027322564188988867), (20, 18) = p[3, s] = HFloat(0.04541614419609739), (20, 19) = r[0] = HFloat(0.013219780898942945), (20, 20) = r[1] = HFloat(0.014660630768795813), (20, 21) = r[2] = HFloat(1.0), (20, 22) = r[3] = HFloat(1.0), (20, 23) = t[0] = HFloat(0.03693936456282487), (20, 24) = t[1] = HFloat(0.032142942156395043), (20, 25) = t[2] = HFloat(0.027750503427757867), (20, 26) = t[3] = HFloat(0.02778979334426152)})

(6)

``

 


 

Download resAsMat.mw

 

First 116 117 118 119 120 121 122 Last Page 118 of 207