tomleslie

13876 Reputation

20 Badges

15 years, 169 days

MaplePrimes Activity


These are answers submitted by tomleslie

it usually helps if you put the parentheses in the correct places, as in the attached - which is what I assume you want

(I have changed the plot range from x=0..2 to x=0..0.2, just so the different curves can be displayed)

L := proc(N) N; end:
plot( [seq( L(min(5, max(-5, 5^(x*10) + 5^(x*k)))), k=0..10)], x=0..0.2);

 

 

Download seqPlot.mw

 

 

is shown in the attached

  restart;
  A:= Matrix(4, 8, [ [-1, 1-t, 0, 0, 0, 0, 0, 0],
                     [0, 0, 1, 1+t, 0, 0, 0, 0],
                     [0, 0, 0, 0, -1, 1-t, 0, 0],
                     [0, 0, 0, 0, 0, 0, 1, 1+t]
                   ]
             );
  B:= Matrix(4, 8, [ [-1, 1-t1, 0, 0, 0, 0, 0, 0],
                     [0, 0, 1, 1+t1, 0, 0, 0, 0],
                     [0, 0, 0, 0, -1, 1-t2, 0, 0],
                     [0, 0, 0, 0, 0, 0, 1, 1+t2]
                   ]
            );
#
# Define function which generates target matrix from
# supplied matrix
#
  genMat:= M-> Matrix( op(1, A),
                       (i,j)-> subs( t=cat(t, iquo(i-1, 2)+1),
                                     A[i,j]
                                   )
                     );
  C:=genMat(A);
#
# Check B=C
#
  LinearAlgebra:-Equal(B, C);

Matrix(4, 8, {(1, 1) = -1, (1, 2) = 1-t, (1, 3) = 0, (1, 4) = 0, (1, 5) = 0, (1, 6) = 0, (1, 7) = 0, (1, 8) = 0, (2, 1) = 0, (2, 2) = 0, (2, 3) = 1, (2, 4) = 1+t, (2, 5) = 0, (2, 6) = 0, (2, 7) = 0, (2, 8) = 0, (3, 1) = 0, (3, 2) = 0, (3, 3) = 0, (3, 4) = 0, (3, 5) = -1, (3, 6) = 1-t, (3, 7) = 0, (3, 8) = 0, (4, 1) = 0, (4, 2) = 0, (4, 3) = 0, (4, 4) = 0, (4, 5) = 0, (4, 6) = 0, (4, 7) = 1, (4, 8) = 1+t})

 

Matrix(4, 8, {(1, 1) = -1, (1, 2) = 1-t1, (1, 3) = 0, (1, 4) = 0, (1, 5) = 0, (1, 6) = 0, (1, 7) = 0, (1, 8) = 0, (2, 1) = 0, (2, 2) = 0, (2, 3) = 1, (2, 4) = 1+t1, (2, 5) = 0, (2, 6) = 0, (2, 7) = 0, (2, 8) = 0, (3, 1) = 0, (3, 2) = 0, (3, 3) = 0, (3, 4) = 0, (3, 5) = -1, (3, 6) = 1-t2, (3, 7) = 0, (3, 8) = 0, (4, 1) = 0, (4, 2) = 0, (4, 3) = 0, (4, 4) = 0, (4, 5) = 0, (4, 6) = 0, (4, 7) = 1, (4, 8) = 1+t2})

 

genMat := proc (M) options operator, arrow; Matrix(op(1, A), proc (i, j) options operator, arrow; subs(t = cat(t, iquo(i-1, 2)+1), A[i, j]) end proc) end proc

 

Matrix(%id = 18446744074221117918)

 

true

(1)

 

Download getMat.mw

In general, the Optimization:-Minimize() command will return a single local minimum.

Even if a global minimum exists, it is not guaranteed that Minimize() will find it, unless the function is convex. The command may return a (less-optimal) local minimum instead.

Where there are multiple equivalent local  minima, then the Minimze() command will return one of these, determined mainly by the value of the option 'initialpoint'. In general one will obtain the local minimum, "closest" to the initial point

One can find multiple local minima, simply by varying the initial point.

Try experimenting with the function sin(x+y), as in the code below. This has  minima whenever x+y=-Pi/2+2*n*Pi, for integer n

restart;
for i from -5 by 2 to 5 do
    for j from -5 by 2 to 5 do
        try
            res[i,j]:=Optimization:-Minimize( sin(x+y), initialpoint=[x=i, y=j])[2];
        catch "no improved point could be found":
        end try
    od;
od;
eval(res);


 

I can't see why these two expressions should *necessarily* give similar answers!

There is an interesting (possible typo?) in your first expression,where you have

h__2(h__1+h__2)

Should there be an arithmetic operator in here?

Maybe

h__2*(h__1+h__2)

to calculate "quartiles", each of which has a slightly different definition. Depending on data, they may (or may not!) give the same answers.

All methods are illustrated in the attached (which for some reason won't display inline on this site....use of dataframe???)

By default Maple uses method=7. I'm guessing that you would prefer to use method=4

Download quartiles.mw

is shown in the attached

  restart;
#
# Define function whihc builds required matrix
#
  doMat:= (n::integer)-> Matrix(n+1, n+1, (i,j)->`if`(j=i+1, i,0)):
#
# Examples of use
#
  M:=doMat(4);
  M:=doMat(8);

Matrix(5, 5, {(1, 1) = 0, (1, 2) = 1, (1, 3) = 0, (1, 4) = 0, (1, 5) = 0, (2, 1) = 0, (2, 2) = 0, (2, 3) = 2, (2, 4) = 0, (2, 5) = 0, (3, 1) = 0, (3, 2) = 0, (3, 3) = 0, (3, 4) = 3, (3, 5) = 0, (4, 1) = 0, (4, 2) = 0, (4, 3) = 0, (4, 4) = 0, (4, 5) = 4, (5, 1) = 0, (5, 2) = 0, (5, 3) = 0, (5, 4) = 0, (5, 5) = 0})

 

Matrix(%id = 18446744074382795230)

(1)

 

Download makeMat.mw

is shown in the attached

  restart:
  x:= 12: y:= 46: s:= 0:
  L:= NULL:
  while 0 < y do
        if   type(y, odd)
        then s:= s + x:
             y:= y - 1:
        else x:= 2*x:
             y:= y/2:
        end if;
        L:= L,x,y,s;
  end do:
  L:= [L];

[24, 23, 0, 24, 22, 24, 48, 11, 24, 48, 10, 72, 96, 5, 72, 96, 4, 168, 192, 2, 168, 384, 1, 168, 384, 0, 552]

(1)

 

Download makeList.mw

You may want to read the help page for the 'table' constructor which states (my emphasis)

Tables have special evaluation rules (like procedures) so that if the name T has been assigned a table then T evaluates to T. The call op(T) yields the actual table structure;

You may want to consider the attached

restart;
#Define a table;
T := table(symmetric, [(1,1) = 1,(2,2)=1,(3,3)=1,(4,4)=1,(1,2)=1,(1,3)=1,(1,4)=1,(2,3)=1,(2,4)=1,(3,4)=1]);

table( [( 1, 2 ) = 1, ( 1, 3 ) = 1, ( 2, 2 ) = 1, ( 1, 1 ) = 1, ( 1, 4 ) = 1, ( 3, 4 ) = 1, ( 3, 3 ) = 1, ( 2, 4 ) = 1, ( 4, 4 ) = 1, ( 2, 3 ) = 1 ] )

(1)

type(T,'table');
type(T,'name');
type(T,'symbol');
type(eval(T),'table');

true

 

true

 

true

 

true

(2)

type(op(1,T), 'table');
type(op(1,T), 'name');
type(op(1,T), 'symbol');

true

 

false

 

false

(3)

 

Download aTable.mw

 

Firstly the method suggested by MacDude - the 'size' option will only work for 2D plots

Secondly you can achieve a 'similar' effect by setting defaults for the parameters in the procedure provided by Acer here

https://www.mapleprimes.com/questions/228539-Set-Size-Of-3D-Plot

As example to set the default size to [1000,500]

setPlotSize:=proc(P, sz::[posint,posint]:=[1000,500])
  op(0,P)(remove(type,[op(P)],'specfunc(ROOT)')[],
          ROOT(BOUNDS_X(0),BOUNDS_Y(0),
               BOUNDS_WIDTH(sz[1]),BOUNDS_HEIGHT(sz[2])));
end proc:

  1. In general, if the problem is convex (doesn't happen very often!!), then the local and global solution are identical
  2. In general, for non-convex problems, then there is no optimization technique which is absolutely guaranteed to find a global optimum
  3. In Maple, the only optimization command in which a "global" search can specified is NLPSolve(), when the method option is set to 'branch-and-bound' (Although you should bear in mind comment (2) above)
  4. So setting method=sqp in any Maple optimization coimmand will result in a "local" optimization
  5. You can do a "poor man's" version of a "global" search with NLPSolve(...method=sqp,....) if you run many searches starting from different initial points. Note that this will still not guarantee a global optimum.

Your worksheet produces a (very long) matrix output using MAple 2019.2. In Maple 18,, it still produces an output, although I do get the message [Length of output exceeds limit of 1000000].

I haven't tried the intervening versions (maple 2015, 2016, 2017 and 2018), but I'd like to know which Maple version you are running.

BTW I agree with Kitonum, using a name and then the same name with a subscript as two completely different entities is high-risk activity in Maple! Since 'I' is Maple's built-in for squareroot(-1), I'd consider using I[c] and I[m] as "undesirable"

 

becuase I have no real problem writing 'seq' statements. However the attached contains a few "shortcuts" you might find useful, using a combination of the 'range' operator ie '$') and the elementwise operator ('~')

  restart;
  f:= x->x^2;
#
# Unit-spaced values
#
  f~([$1..10])[];
#
# For non-unit-spaced values, use
# elementwise operators
#
  f~([$1..10]/~3)[];
  f~([$1..10]*~1.75)[];
#
# Or for some random list of values
#
  L:=[1, y, 2.5, x^2, 3.7]:
  f~(L)[];

proc (x) options operator, arrow; x^2 end proc

 

1, 4, 9, 16, 25, 36, 49, 64, 81, 100

 

1/9, 4/9, 1, 16/9, 25/9, 4, 49/9, 64/9, 9, 100/9

 

3.0625, 12.2500, 27.5625, 49.0000, 76.5625, 110.2500, 150.0625, 196.0000, 248.0625, 306.2500

 

1, y^2, 6.25, x^4, 13.69

(1)

 


 

Download seqVals.mw

is shown in the attached. This produces the Excel file testDat.xlsx on my desktop

There are many other ways to do the same thing.

  restart;
#
# Define assorted parameters
#
  Hlist:= [0, 5, 6, 10]:
  params:= {a = 7, alpha = 2}:
#
# Defne the ODE system
#
  odeSys:= { diff(f(x), x$3) + 2*GB*a*alpha*f(x) = 0,
             f(0) = 1,
             D(f)(0) = 0,
             f(1) = 0
           }:

#
# Initialize sequence for output plots and output
# data
#
  plts:= NULL:
  dat:= NULL:
#
# Loop through values in Hlist, generating  solutions,
# plots and data
#
  colors:=[red, blue, green, black]:
  for k to numelems(Hlist) do;
      Sol_f[H]:= dsolve
                  ( eval
                    ( odeSys,
                      params union {GB = Hlist[k]}
                    ),
                    numeric
                  );
    #
    # Generate plot of solution, and add to 'plts' sequence
    #
      plts:= plts,
             plots:-odeplot( Sol_f[H],
                             [x, f(x)],
                             x = 0 .. 1,
                             color=colors[k]
                           );
    #
    # Extract plot data as a matrix and add matrix to 'dat' sequence
    #
      dat:= dat,
            plottools:-getdata([plts][-1])[3];
    #
    # Export this data to labelled sheets of an Excel file
    #
    # NB - OP will need to change filename (highlighted)to something
    # appropriate for his/her machine
    #
      ExcelTools:-Export( [dat][-1],
                          "C:/Users/TomLeslie/Desktop/testDat.xlsx",
                          cat("GB=",Hlist[k]),
                          "B$2"
                          );
  end do:
#
# Plot the solutions (just for fun)
#
  plots:-display([plts] );

 

 

``


 

Download toXL.mw

or am I missing something? (It happens at my age!)

The construct (f@@n) will apply the function 'f', 'n' times - Isn't this what you want?

See the attached

  restart;
#
# Define a function which iterates a given
# function 'f', 'n' times
#
  gF:= (f,n)-> unapply( (f@@n)(x), x);
#
# Compare 'gF' with builtin function for
# numeric arguemnts
#
  sin(sin(sin(0.25)));
  gF(sin, 3)(0.25);
#
# Compare 'gF' with builtin function for
# symbolic arguemnts
#
  sin(sin(sin(z)));
  gF(sin, 3)(z);
#
# Compare 'gF' with user-defined function
# for numeric arguemnts
#
  f1:= x-> sin(x)+cos(x)+x^2;
  f1(f1(f1(0.25)));
  gF(f1, 3)(0.25);
#
# Compare 'gF' with user-defined function
# for symbolic arguemnts
#
  f1(f1(f1(z)));
  gF(f1, 3)(z);

proc (f, n) options operator, arrow; unapply((f@@n)(x), x) end proc

 

.2424474664

 

.2424474664

 

sin(sin(sin(z)))

 

(sin@@3)(z)

 

proc (x) options operator, arrow; sin(x)+cos(x)+x^2 end proc

 

7.591105288

 

7.591105288

 

sin(sin(sin(z)+cos(z)+z^2)+cos(sin(z)+cos(z)+z^2)+(sin(z)+cos(z)+z^2)^2)+cos(sin(sin(z)+cos(z)+z^2)+cos(sin(z)+cos(z)+z^2)+(sin(z)+cos(z)+z^2)^2)+(sin(sin(z)+cos(z)+z^2)+cos(sin(z)+cos(z)+z^2)+(sin(z)+cos(z)+z^2)^2)^2

 

sin(sin(sin(z)+cos(z)+z^2)+cos(sin(z)+cos(z)+z^2)+(sin(z)+cos(z)+z^2)^2)+cos(sin(sin(z)+cos(z)+z^2)+cos(sin(z)+cos(z)+z^2)+(sin(z)+cos(z)+z^2)^2)+(sin(sin(z)+cos(z)+z^2)+cos(sin(z)+cos(z)+z^2)+(sin(z)+cos(z)+z^2)^2)^2

(1)

 

Download iterF.mw

but maybe as shown in the attached?


 

restart

with(student)

with(ODETools)

with(plots)

with(plottools)

last := 2

"chi(k):={[[0,k<=1],[1,k>1]]:"

L[f] := proc (V) options operator, arrow; diff(V, `$`(eta, 3))-(diff(V, eta)) end proc; L[g] := proc (V) options operator, arrow; diff(V, `$`(eta, 2))-V end proc; L[theta] := proc (V) options operator, arrow; diff(V, `$`(eta, 2))-V end proc

proc (V) options operator, arrow; diff(V, `$`(eta, 3))-(diff(V, eta)) end proc

 

proc (V) options operator, arrow; diff(V, `$`(eta, 2))-V end proc

 

proc (V) options operator, arrow; diff(V, `$`(eta, 2))-V end proc

(1)

unprotect('gamma', 'Zeta')

`&theta;__R` := `&theta;r`-1

b := .2; K := .1; We := 1; ZETA := .3; Lambda := .1; N := 1; Pr := .72; R := .5; `&theta;r` := .6; `&varpi;` := .2; Ec := .1; Bi := .3; Fw := .1; m := .2

st := time()

258.134

(2)

"F[0](eta):=1+Fw-(e)^(-eta):H[0](eta):=m*(e)^(-eta):T[0](eta):=  Bi/(1+Bi)* (e)^(-eta):"

for k to last do ode1 := L[f](F[k](eta)-chi(k)*F[k-1](eta))-h*(b*(1+K)*(diff(F[k-1](eta), `$`(eta, 3)))+add(F[n](eta)*(diff(F[k-1-n](eta), eta)), n = 0 .. k-1)+b*K*(diff(H[k-1](eta), eta))+We*add((diff(F[n](eta), `$`(eta, 2)))*(diff(F[k-1-n](eta), `$`(eta, 3))), n = 0 .. k-1)+ZETA*(1-chi(k))*exp(-Lambda*eta)); ode2 := L[g](H[k](eta)-chi(k)*H[k-1](eta))-h*((1+(1/2)*K)*(diff(H[k-1](eta), `$`(eta, 2)))+add((diff(H[n](eta), eta))*F[k-1-n](eta), n = 0 .. k-1)+add(H[n](eta)*(diff(F[k-1-n](eta), eta)), n = 0 .. k-1)-2*K*N*H[k-1](eta)-2*K*N*(diff(F[k-1](eta), `$`(eta, 2)))); ode3 := L[theta](T[k](eta)-chi(k)*T[k-1](eta))-h*((1+R)*(diff(T[k-1](eta), `$`(eta, 2)))+3*R*`&theta;__R`*add(T[n](eta)*(diff(T[k-1-n](eta), `$`(eta, 2))), n = 0 .. k-1)+3*R*`&theta;__R`^2*add(add(T[n](eta)*T[l-n](eta)*(diff(T[k-1-l+n](eta), `$`(eta, 2))), n = 0 .. l), l = 0 .. k-1)+R*`&theta;__R`^3*add(add(add(T[n](eta)*T[l-n](eta)*T[r-l](eta)*(diff(T[k-1-r+l](eta), `$`(eta, 2))), n = 0 .. l), l = 0 .. r), r = 0 .. k-1)+3*R*`&theta;__R`*add((diff(T[n](eta), eta))*(diff(T[k-1-n](eta), eta)), n = 0 .. k-1)+6*R*`&theta;__R`^2*add(add(T[n](eta)*(diff(T[l-n](eta), eta))*(diff(T[k-1-l+n](eta), eta)), n = 0 .. l), l = 0 .. k-1)+3*R*`&theta;__R`^3*add(add(add(T[n](eta)*(diff(T[l-n](eta), eta))*(diff(T[r-l](eta), eta))*(diff(T[k-1-r+l](eta), eta)), n = 0 .. l), l = 0 .. r), r = 0 .. k-1)+Pr*add((diff(T[n](eta), eta))*F[k-1-n](eta), n = 0 .. k-1)+Pr*`&varpi;`*add(T[n](eta)*(diff(F[k-1-n](eta), eta)), n = 0 .. k-1)+Pr*Ec*add((diff(F[n](eta), `$`(eta, 2)))*(diff(F[k-1-n](eta), `$`(eta, 2))), n = 0 .. k-1)+Pr*Ec*We*add(add((diff(F[n](eta), `$`(eta, 2)))*(diff(F[l-n](eta), `$`(eta, 2)))*(diff(F[k-1-l+n](eta), `$`(eta, 2))), n = 0 .. l), l = 0 .. k-1)); Bcs := F[k](0) = 0, (D(F[k]))(0) = 0, (D(F[k]))(last) = 0, H[k](0) = -m*((D@@2)(F[k]))(0), (D(T[k]))(0) = -Bi*(1-T[k](0)), H[k](last) = 0, T[k](last) = 0; mu1 := evalf(dsolve({Bcs, ode1, ode2, ode3})); F[k] := unapply(rhs(mu1[1]), eta); H[k] := unapply(rhs(mu1[2]), eta); T[k] := unapply(rhs(mu1[3]), eta) end do

diff(diff(diff(F[1](eta), eta), eta), eta)-(diff(F[1](eta), eta))-h*(.216*exp(-eta)+(1.1-exp(-eta))*exp(-eta)-(exp(-eta))^2+.3*exp(-.1*eta))

 

diff(diff(H[1](eta), eta), eta)-H[1](eta)-h*(.3700000000*exp(-eta)-.2*(1.1-exp(-eta))*exp(-eta)+.2*(exp(-eta))^2)

 

diff(diff(T[1](eta), eta), eta)-T[1](eta)-h*(.3461538462*exp(-eta)+0.4132544376e-1*(exp(-eta))^2-0.6315157032e-1*(exp(-eta))^3+0.1815062499e-3*(exp(-eta))^4-.1661538462*(1.1-exp(-eta))*exp(-eta))

 

F[1](0) = 0, (D(F[1]))(0) = 0, (D(F[1]))(2) = 0, H[1](0) = -.2*((D@@2)(F[1]))(0), (D(T[1]))(0) = -.3+.3*T[1](0), H[1](2) = 0, T[1](2) = 0

 

{F[1](eta) = .3333333333*exp(-2.*eta)*h-.2693493690*h*exp(-1.*eta)+0.4234760054e-1*h*exp(eta)+3.030303030*h*exp(-.1000000000*eta)+.6580000000*eta*h*exp(-1.*eta)-3.136634596*h, H[1](eta) = .1060208291*sinh(eta)*h-0.9746025248e-1*cosh(eta)*h+.1333333333*h*cosh(2.*eta)-.1333333333*h*sinh(2.*eta)-0.7500000000e-1*cosh(eta)*eta*h+0.7500000000e-1*sinh(eta)*eta*h, T[1](eta) = -0.1237048664e-14*sinh(eta)*(-0.1026868282e15*h+0.1881097846e15)-0.1237048664e-14*cosh(eta)*(0.9332203263e14*h-0.1813430204e15)+0.1210041666e-4*h*cosh(4.*eta)+0.6915976332e-1*h*cosh(2.*eta)-0.6915976332e-1*h*sinh(2.*eta)-0.1210041666e-4*h*sinh(4.*eta)-0.4084615384e-1*cosh(eta)*h-0.7893946290e-2*h*cosh(3.*eta)+0.7893946290e-2*h*sinh(3.*eta)+0.4084615384e-1*sinh(eta)*h-0.8169230769e-1*cosh(eta)*eta*h+0.8169230769e-1*sinh(eta)*eta*h}

 

proc (eta) options operator, arrow; .3333333333*exp(-2.*eta)*h-.2693493690*h*exp(-1.*eta)+0.4234760054e-1*h*exp(eta)+3.030303030*h*exp(-.1000000000*eta)+.6580000000*eta*h*exp(-1.*eta)-3.136634596*h end proc

 

proc (eta) options operator, arrow; .1060208291*sinh(eta)*h-0.9746025248e-1*cosh(eta)*h+.1333333333*h*cosh(2.*eta)-.1333333333*h*sinh(2.*eta)-0.7500000000e-1*cosh(eta)*eta*h+0.7500000000e-1*sinh(eta)*eta*h end proc

 

proc (eta) options operator, arrow; -0.1237048664e-14*sinh(eta)*(-0.1026868282e15*h+0.1881097846e15)-0.1237048664e-14*cosh(eta)*(0.9332203263e14*h-0.1813430204e15)+0.1210041666e-4*h*cosh(4.*eta)+0.6915976332e-1*h*cosh(2.*eta)-0.6915976332e-1*h*sinh(2.*eta)-0.1210041666e-4*h*sinh(4.*eta)-0.4084615384e-1*cosh(eta)*h-0.7893946290e-2*h*cosh(3.*eta)+0.7893946290e-2*h*sinh(3.*eta)+0.4084615384e-1*sinh(eta)*h-0.8169230769e-1*cosh(eta)*eta*h+0.8169230769e-1*sinh(eta)*eta*h end proc

 

diff(diff(diff(F[2](eta), eta), eta), eta)+1.999999999*exp(-2.*eta)*h-1.316000000*h*exp(-1.*eta)-.3000000000*h*exp(-.1000000000*eta)-(diff(F[2](eta), eta))-h*(-.5866666665*exp(-2.*eta)*h+.4935368612*h*exp(-1.*eta)+0.9316472119e-2*h*exp(eta)-0.6666666666e-3*h*exp(-.1000000000*eta)-.1447600000*eta*h*exp(-1.*eta)+(1.1-exp(-eta))*(-.6666666666*exp(-2.*eta)*h+.9273493690*h*exp(-1.*eta)+0.4234760054e-1*h*exp(eta)-.3030303030*h*exp(-.1000000000*eta)-.6580000000*eta*h*exp(-1.*eta))+(.3333333333*exp(-2.*eta)*h-.2693493690*h*exp(-1.*eta)+0.4234760054e-1*h*exp(eta)+3.030303030*h*exp(-.1000000000*eta)+.6580000000*eta*h*exp(-1.*eta)-3.136634596*h)*exp(-eta)+0.6204165820e-3*cosh(eta)*h-0.4492050496e-3*sinh(eta)*h+0.5333333332e-2*h*sinh(2.*eta)-0.5333333332e-2*h*cosh(2.*eta)-0.1500000000e-2*sinh(eta)*eta*h+0.1500000000e-2*cosh(eta)*eta*h-exp(-eta)*(-2.666666666*exp(-2.*eta)*h+2.243349369*h*exp(-1.*eta)+0.4234760054e-1*h*exp(eta)-0.3030303030e-2*h*exp(-.1000000000*eta)-.6580000000*eta*h*exp(-1.*eta))+(1.333333333*exp(-2.*eta)*h-1.585349369*h*exp(-1.*eta)+0.4234760054e-1*h*exp(eta)+0.3030303030e-1*h*exp(-.1000000000*eta)+.6580000000*eta*h*exp(-1.*eta))*exp(-eta))

 

diff(diff(H[2](eta), eta), eta)+.1500000000*sinh(eta)*h-.1500000000*cosh(eta)*h-.3999999999*h*cosh(2.*eta)+.3999999999*h*sinh(2.*eta)-H[2](eta)-h*(-0.6738229526e-1*sinh(eta)*h+0.7465878540e-1*cosh(eta)*h+.5333333332*h*cosh(2.*eta)-.5333333332*h*sinh(2.*eta)-0.6375000000e-1*cosh(eta)*eta*h+0.6375000000e-1*sinh(eta)*eta*h-.2*(.3333333333*exp(-2.*eta)*h-.2693493690*h*exp(-1.*eta)+0.4234760054e-1*h*exp(eta)+3.030303030*h*exp(-.1000000000*eta)+.6580000000*eta*h*exp(-1.*eta)-3.136634596*h)*exp(-eta)+(0.3102082910e-1*cosh(eta)*h-0.2246025248e-1*sinh(eta)*h+.2666666666*h*sinh(2.*eta)-.2666666666*h*cosh(2.*eta)-0.7500000000e-1*sinh(eta)*eta*h+0.7500000000e-1*cosh(eta)*eta*h)*(1.1-exp(-eta))+.2*exp(-eta)*(-.6666666666*exp(-2.*eta)*h+.9273493690*h*exp(-1.*eta)+0.4234760054e-1*h*exp(eta)-.3030303030*h*exp(-.1000000000*eta)-.6580000000*eta*h*exp(-1.*eta))+(.1060208291*sinh(eta)*h-0.9746025248e-1*cosh(eta)*h+.1333333333*h*cosh(2.*eta)-.1333333333*h*sinh(2.*eta)-0.7500000000e-1*cosh(eta)*eta*h+0.7500000000e-1*sinh(eta)*eta*h)*exp(-eta)-.2666666666*exp(-2.*eta)*h+.3170698738*h*exp(-1.*eta)-0.8469520108e-2*h*exp(eta)-0.6060606060e-2*h*exp(-.1000000000*eta)-.1316000000*eta*h*exp(-1.*eta))

 

-.1633846153*cosh(eta)*h+.1633846153*sinh(eta)*h+diff(diff(T[2](eta), eta), eta)-T[2](eta)-.2074792899*h*cosh(2.*eta)+.2074792899*h*sinh(2.*eta)-0.1815062499e-3*h*cosh(4.*eta)+0.1815062499e-3*h*sinh(4.*eta)+0.6315157032e-1*h*cosh(3.*eta)-0.6315157032e-1*h*sinh(3.*eta)-h*(-.1225384615*cosh(eta)*eta*h+.1225384615*sinh(eta)*eta*h-0.5112426036e-2*(-0.1237048664e-14*sinh(eta)*(-0.1026868282e15*h+0.1881097846e15)-0.1237048664e-14*cosh(eta)*(0.9332203263e14*h-0.1813430204e15)+0.1210041666e-4*h*cosh(4.*eta)+0.6915976332e-1*h*cosh(2.*eta)-0.6915976332e-1*h*sinh(2.*eta)-0.1210041666e-4*h*sinh(4.*eta)-0.4084615384e-1*cosh(eta)*h-0.7893946290e-2*h*cosh(3.*eta)+0.7893946290e-2*h*sinh(3.*eta)+0.4084615384e-1*sinh(eta)*h-0.8169230769e-1*cosh(eta)*eta*h+0.8169230769e-1*sinh(eta)*eta*h)*(exp(-eta))^2*(-0.1237048664e-14*cosh(eta)*(-0.1026868282e15*h+0.1881097846e15)-0.1237048664e-14*sinh(eta)*(0.9332203263e14*h-0.1813430204e15)+0.4840166664e-4*h*sinh(4.*eta)+.1383195266*h*sinh(2.*eta)-.1383195266*h*cosh(2.*eta)-0.4840166664e-4*h*cosh(4.*eta)+0.4084615385e-1*sinh(eta)*h-0.2368183887e-1*h*sinh(3.*eta)+0.2368183887e-1*h*cosh(3.*eta)-0.4084615385e-1*cosh(eta)*h-0.8169230769e-1*sinh(eta)*eta*h+0.8169230769e-1*cosh(eta)*eta*h)-.1107692308*(-0.1237048664e-14*sinh(eta)*(-0.1026868282e15*h+0.1881097846e15)-0.1237048664e-14*cosh(eta)*(0.9332203263e14*h-0.1813430204e15)+0.1210041666e-4*h*cosh(4.*eta)+0.6915976332e-1*h*cosh(2.*eta)-0.6915976332e-1*h*sinh(2.*eta)-0.1210041666e-4*h*sinh(4.*eta)-0.4084615384e-1*cosh(eta)*h-0.7893946290e-2*h*cosh(3.*eta)+0.7893946290e-2*h*sinh(3.*eta)+0.4084615384e-1*sinh(eta)*h-0.8169230769e-1*cosh(eta)*eta*h+0.8169230769e-1*sinh(eta)*eta*h)*exp(-eta)*(-0.1237048664e-14*cosh(eta)*(-0.1026868282e15*h+0.1881097846e15)-0.1237048664e-14*sinh(eta)*(0.9332203263e14*h-0.1813430204e15)+0.4840166664e-4*h*sinh(4.*eta)+.1383195266*h*sinh(2.*eta)-.1383195266*h*cosh(2.*eta)-0.4840166664e-4*h*cosh(4.*eta)+0.4084615385e-1*sinh(eta)*h-0.2368183887e-1*h*sinh(3.*eta)+0.2368183887e-1*h*cosh(3.*eta)-0.4084615385e-1*cosh(eta)*h-0.8169230769e-1*sinh(eta)*eta*h+0.8169230769e-1*cosh(eta)*eta*h)+.1838076922*cosh(eta)*h-.1838076922*sinh(eta)*h+0.5538461538e-1*(-0.1237048664e-14*sinh(eta)*(-0.1026868282e15*h+0.1881097846e15)-0.1237048664e-14*cosh(eta)*(0.9332203263e14*h-0.1813430204e15)+0.1210041666e-4*h*cosh(4.*eta)+0.6915976332e-1*h*cosh(2.*eta)-0.6915976332e-1*h*sinh(2.*eta)-0.1210041666e-4*h*sinh(4.*eta)-0.4084615384e-1*cosh(eta)*h-0.7893946290e-2*h*cosh(3.*eta)+0.7893946290e-2*h*sinh(3.*eta)+0.4084615384e-1*sinh(eta)*h-0.8169230769e-1*cosh(eta)*eta*h+0.8169230769e-1*sinh(eta)*eta*h)*exp(-eta)*(-0.1237048664e-14*sinh(eta)*(-0.1026868282e15*h+0.1881097846e15)-0.1237048664e-14*cosh(eta)*(0.9332203263e14*h-0.1813430204e15)+0.1936066666e-3*h*cosh(4.*eta)+.2766390532*h*cosh(2.*eta)-.2766390532*h*sinh(2.*eta)-0.1936066666e-3*h*sinh(4.*eta)+.1225384615*cosh(eta)*h-0.7104551661e-1*h*cosh(3.*eta)+0.7104551661e-1*h*sinh(3.*eta)-.1225384615*sinh(eta)*h-0.8169230769e-1*cosh(eta)*eta*h+0.8169230769e-1*sinh(eta)*eta*h)-0.3408284026e-2*(exp(-eta))^2*(-0.1237048664e-14*sinh(eta)*(-0.1026868282e15*h+0.1881097846e15)-0.1237048664e-14*cosh(eta)*(0.9332203263e14*h-0.1813430204e15)+0.1210041666e-4*h*cosh(4.*eta)+0.6915976332e-1*h*cosh(2.*eta)-0.6915976332e-1*h*sinh(2.*eta)-0.1210041666e-4*h*sinh(4.*eta)-0.4084615384e-1*cosh(eta)*h-0.7893946290e-2*h*cosh(3.*eta)+0.7893946290e-2*h*sinh(3.*eta)+0.4084615384e-1*sinh(eta)*h-0.8169230769e-1*cosh(eta)*eta*h+0.8169230769e-1*sinh(eta)*eta*h)*(-0.1237048664e-14*sinh(eta)*(-0.1026868282e15*h+0.1881097846e15)-0.1237048664e-14*cosh(eta)*(0.9332203263e14*h-0.1813430204e15)+0.1936066666e-3*h*cosh(4.*eta)+.2766390532*h*cosh(2.*eta)-.2766390532*h*sinh(2.*eta)-0.1936066666e-3*h*sinh(4.*eta)+.1225384615*cosh(eta)*h-0.7104551661e-1*h*cosh(3.*eta)+0.7104551661e-1*h*sinh(3.*eta)-.1225384615*sinh(eta)*h-0.8169230769e-1*cosh(eta)*eta*h+0.8169230769e-1*sinh(eta)*eta*h)-0.72e-1*(1.333333333*exp(-2.*eta)*h-1.585349369*h*exp(-1.*eta)+0.4234760054e-1*h*exp(eta)+0.3030303030e-1*h*exp(-.1000000000*eta)+.6580000000*eta*h*exp(-1.*eta))^2*exp(-eta)+.72*(-0.1237048664e-14*cosh(eta)*(-0.1026868282e15*h+0.1881097846e15)-0.1237048664e-14*sinh(eta)*(0.9332203263e14*h-0.1813430204e15)+0.4840166664e-4*h*sinh(4.*eta)+.1383195266*h*sinh(2.*eta)-.1383195266*h*cosh(2.*eta)-0.4840166664e-4*h*cosh(4.*eta)+0.4084615385e-1*sinh(eta)*h-0.2368183887e-1*h*sinh(3.*eta)+0.2368183887e-1*h*cosh(3.*eta)-0.4084615385e-1*cosh(eta)*h-0.8169230769e-1*sinh(eta)*eta*h+0.8169230769e-1*cosh(eta)*eta*h)*(1.1-exp(-eta))+0.5112426036e-2*(exp(-eta))^2*(-0.1237048664e-14*cosh(eta)*(-0.1026868282e15*h+0.1881097846e15)-0.1237048664e-14*sinh(eta)*(0.9332203263e14*h-0.1813430204e15)+0.4840166664e-4*h*sinh(4.*eta)+.1383195266*h*sinh(2.*eta)-.1383195266*h*cosh(2.*eta)-0.4840166664e-4*h*cosh(4.*eta)+0.4084615385e-1*sinh(eta)*h-0.2368183887e-1*h*sinh(3.*eta)+0.2368183887e-1*h*cosh(3.*eta)-0.4084615385e-1*cosh(eta)*h-0.8169230769e-1*sinh(eta)*eta*h+0.8169230769e-1*cosh(eta)*eta*h)^2-0.2359581249e-2*(exp(-eta))^3*(-0.1237048664e-14*cosh(eta)*(-0.1026868282e15*h+0.1881097846e15)-0.1237048664e-14*sinh(eta)*(0.9332203263e14*h-0.1813430204e15)+0.4840166664e-4*h*sinh(4.*eta)+.1383195266*h*sinh(2.*eta)-.1383195266*h*cosh(2.*eta)-0.4840166664e-4*h*cosh(4.*eta)+0.4084615385e-1*sinh(eta)*h-0.2368183887e-1*h*sinh(3.*eta)+0.2368183887e-1*h*cosh(3.*eta)-0.4084615385e-1*cosh(eta)*h-0.8169230769e-1*sinh(eta)*eta*h+0.8169230769e-1*cosh(eta)*eta*h)-0.5112426038e-1*(exp(-eta))^2*(-0.1237048664e-14*cosh(eta)*(-0.1026868282e15*h+0.1881097846e15)-0.1237048664e-14*sinh(eta)*(0.9332203263e14*h-0.1813430204e15)+0.4840166664e-4*h*sinh(4.*eta)+.1383195266*h*sinh(2.*eta)-.1383195266*h*cosh(2.*eta)-0.4840166664e-4*h*cosh(4.*eta)+0.4084615385e-1*sinh(eta)*h-0.2368183887e-1*h*sinh(3.*eta)+0.2368183887e-1*h*cosh(3.*eta)-0.4084615385e-1*cosh(eta)*h-0.8169230769e-1*sinh(eta)*eta*h+0.8169230769e-1*cosh(eta)*eta*h)+.2769230770*exp(-eta)*(-0.1237048664e-14*cosh(eta)*(-0.1026868282e15*h+0.1881097846e15)-0.1237048664e-14*sinh(eta)*(0.9332203263e14*h-0.1813430204e15)+0.4840166664e-4*h*sinh(4.*eta)+.1383195266*h*sinh(2.*eta)-.1383195266*h*cosh(2.*eta)-0.4840166664e-4*h*cosh(4.*eta)+0.4084615385e-1*sinh(eta)*h-0.2368183887e-1*h*sinh(3.*eta)+0.2368183887e-1*h*cosh(3.*eta)-0.4084615385e-1*cosh(eta)*h-0.8169230769e-1*sinh(eta)*eta*h+0.8169230769e-1*cosh(eta)*eta*h)-0.3932635414e-3*(exp(-eta))^3*(-0.1237048664e-14*sinh(eta)*(-0.1026868282e15*h+0.1881097846e15)-0.1237048664e-14*cosh(eta)*(0.9332203263e14*h-0.1813430204e15)+0.1936066666e-3*h*cosh(4.*eta)+.2766390532*h*cosh(2.*eta)-.2766390532*h*sinh(2.*eta)-0.1936066666e-3*h*sinh(4.*eta)+.1225384615*cosh(eta)*h-0.7104551661e-1*h*cosh(3.*eta)+0.7104551661e-1*h*sinh(3.*eta)-.1225384615*sinh(eta)*h-0.8169230769e-1*cosh(eta)*eta*h+0.8169230769e-1*sinh(eta)*eta*h)-0.3932635414e-3*(exp(-eta))^3*(-0.1237048664e-14*sinh(eta)*(-0.1026868282e15*h+0.1881097846e15)-0.1237048664e-14*cosh(eta)*(0.9332203263e14*h-0.1813430204e15)+0.1210041666e-4*h*cosh(4.*eta)+0.6915976332e-1*h*cosh(2.*eta)-0.6915976332e-1*h*sinh(2.*eta)-0.1210041666e-4*h*sinh(4.*eta)-0.4084615384e-1*cosh(eta)*h-0.7893946290e-2*h*cosh(3.*eta)+0.7893946290e-2*h*sinh(3.*eta)+0.4084615384e-1*sinh(eta)*h-0.8169230769e-1*cosh(eta)*eta*h+0.8169230769e-1*sinh(eta)*eta*h)+0.1278106509e-1*(exp(-eta))^2*(-0.1237048664e-14*sinh(eta)*(-0.1026868282e15*h+0.1881097846e15)-0.1237048664e-14*cosh(eta)*(0.9332203263e14*h-0.1813430204e15)+0.1936066666e-3*h*cosh(4.*eta)+.2766390532*h*cosh(2.*eta)-.2766390532*h*sinh(2.*eta)-0.1936066666e-3*h*sinh(4.*eta)+.1225384615*cosh(eta)*h-0.7104551661e-1*h*cosh(3.*eta)+0.7104551661e-1*h*sinh(3.*eta)-.1225384615*sinh(eta)*h-0.8169230769e-1*cosh(eta)*eta*h+0.8169230769e-1*sinh(eta)*eta*h)+0.1278106509e-1*(exp(-eta))^2*(-0.1237048664e-14*sinh(eta)*(-0.1026868282e15*h+0.1881097846e15)-0.1237048664e-14*cosh(eta)*(0.9332203263e14*h-0.1813430204e15)+0.1210041666e-4*h*cosh(4.*eta)+0.6915976332e-1*h*cosh(2.*eta)-0.6915976332e-1*h*sinh(2.*eta)-0.1210041666e-4*h*sinh(4.*eta)-0.4084615384e-1*cosh(eta)*h-0.7893946290e-2*h*cosh(3.*eta)+0.7893946290e-2*h*sinh(3.*eta)+0.4084615384e-1*sinh(eta)*h-0.8169230769e-1*cosh(eta)*eta*h+0.8169230769e-1*sinh(eta)*eta*h)-.1384615385*exp(-eta)*(-0.1237048664e-14*sinh(eta)*(-0.1026868282e15*h+0.1881097846e15)-0.1237048664e-14*cosh(eta)*(0.9332203263e14*h-0.1813430204e15)+0.1936066666e-3*h*cosh(4.*eta)+.2766390532*h*cosh(2.*eta)-.2766390532*h*sinh(2.*eta)-0.1936066666e-3*h*sinh(4.*eta)+.1225384615*cosh(eta)*h-0.7104551661e-1*h*cosh(3.*eta)+0.7104551661e-1*h*sinh(3.*eta)-.1225384615*sinh(eta)*h-0.8169230769e-1*cosh(eta)*eta*h+0.8169230769e-1*sinh(eta)*eta*h)+0.55384615e-2*(-0.1237048664e-14*sinh(eta)*(-0.1026868282e15*h+0.1881097846e15)-0.1237048664e-14*cosh(eta)*(0.9332203263e14*h-0.1813430204e15)+0.1210041666e-4*h*cosh(4.*eta)+0.6915976332e-1*h*cosh(2.*eta)-0.6915976332e-1*h*sinh(2.*eta)-0.1210041666e-4*h*sinh(4.*eta)-0.4084615384e-1*cosh(eta)*h-0.7893946290e-2*h*cosh(3.*eta)+0.7893946290e-2*h*sinh(3.*eta)+0.4084615384e-1*sinh(eta)*h-0.8169230769e-1*cosh(eta)*eta*h+0.8169230769e-1*sinh(eta)*eta*h)*exp(-eta)+.144*(exp(-eta))^2*(1.333333333*exp(-2.*eta)*h-1.585349369*h*exp(-1.*eta)+0.4234760054e-1*h*exp(eta)+0.3030303030e-1*h*exp(-.1000000000*eta)+.6580000000*eta*h*exp(-1.*eta))+0.3323076924e-1*exp(-eta)*(-.6666666666*exp(-2.*eta)*h+.9273493690*h*exp(-1.*eta)+0.4234760054e-1*h*exp(eta)-.3030303030*h*exp(-.1000000000*eta)-.6580000000*eta*h*exp(-1.*eta))-.144*(1.333333333*exp(-2.*eta)*h-1.585349369*h*exp(-1.*eta)+0.4234760054e-1*h*exp(eta)+0.3030303030e-1*h*exp(-.1000000000*eta)+.6580000000*eta*h*exp(-1.*eta))*exp(-eta)-.1661538462*(.3333333333*exp(-2.*eta)*h-.2693493690*h*exp(-1.*eta)+0.4234760054e-1*h*exp(eta)+3.030303030*h*exp(-.1000000000*eta)+.6580000000*eta*h*exp(-1.*eta)-3.136634596*h)*exp(-eta)+.4149585798*h*cosh(2.*eta)-.4149585798*h*sinh(2.*eta)-0.1855572996e-14*sinh(eta)*(-0.1026868282e15*h+0.1881097846e15)-0.1855572996e-14*cosh(eta)*(0.9332203263e14*h-0.1813430204e15)+0.2904099999e-3*h*cosh(4.*eta)-0.2904099999e-3*h*sinh(4.*eta)-.1065682749*h*cosh(3.*eta)+.1065682749*h*sinh(3.*eta))

 

F[2](0) = 0, (D(F[2]))(0) = 0, (D(F[2]))(2) = 0, H[2](0) = -.2*((D@@2)(F[2]))(0), (D(T[2]))(0) = -.3+.3*T[2](0), H[2](2) = 0, T[2](2) = 0

 

{F[2](eta) = .3333333332*exp(-2.*eta)*h+.9870000000*h*exp(-1.*eta)-0.4198832886e-1*h^2*exp(eta)-0.1989325864e-16*h*(0.419226962e16*h-0.2128741273e16)*exp(eta)-.2083333333*h^2*exp(-3.*eta)+.2542329126*h^2*exp(-2.*eta)-1.975536464*h^2*exp(-1.*eta)-0.9946629322e-17*exp(-1.*eta)*h*(-0.1655193422e19*h+0.1263090568e18)+3.030303030*h*exp(-.1000000000*eta)-14.57431457*h^2*exp(-1.100000000*eta)-3.373737373*h^2*exp(-.1000000000*eta)-.4386666667*eta*h^2*exp(-2.*eta)+.6580000000*eta*h*exp(-1.*eta)-1.461534309*eta*h^2*exp(-1.*eta)-.2167650000*eta^2*h^2*exp(-1.*eta)+0.2799221924e-1*exp(eta)*h^2*eta+0.1989325864e-16*(0.1779235725e18*h-0.1576732427e18)*h, H[2](eta) = (0.2821250000e-1*eta^2*h^2+(-.4942034641*h^2-0.7500000000e-1*h)*eta-0.2742490254e-18*h*(-0.1281549569e20*h+0.2342416377e18)-.2471017320*h^2-0.3750000000e-1*h)*exp(-1.*eta)+0.2499999999e-1*h^2*exp(-3.*eta)+(-0.2742490254e-18*h*(-0.1556382526e17*h-0.1560730632e17)-0.6147894850e-4*eta*h^2+0.3073947425e-4*h^2)*exp(eta)-.1377333333*eta*h^2*exp(-2.*eta)+(-.1555804447*exp(-2.*eta)-3.174603174*exp(-1.100000000*eta)+0.6121824303e-2*exp(-.1000000000*eta))*h^2+.1333333333*exp(-2.*eta)*h, T[2](eta) = -0.2410735480e-2*h+0.3032751626e-5*eta^2*h^3*exp(-4.*eta)-0.3758069773e-2*eta^2*h^3*exp(-3.*eta)+0.1016233706e-2*eta^2*h^3*exp(-1.*eta)-0.1754753176e-9*eta*h^3*exp(-7.*eta)-0.8640391322e-2*eta*h^3*exp(-4.*eta)+0.1350497098e-1*eta*h^3*exp(-3.*eta)-0.3817957463e-2*eta*h^3*exp(-1.*eta)+0.2687947508e-5*eta*h^3*exp(-2.*eta)+0.2237422480e-4*eta*h^3*exp(-5.*eta)-0.8420154625e-3*eta*h^3*exp(-2.100000000*eta)+0.2717536116e-6*eta*h^3*exp(-6.*eta)-0.2553395329e-4*eta*h^2*exp(-4.*eta)+0.1028547553e-1*eta*h^2*exp(-3.*eta)+0.1506325845e-1*h^2-.1625873346*eta*h*exp(-1.*eta)-0.6754566296e-60*exp(eta)*(-0.2692977124e59*h+0.6196413063e58+0.1273657034e59*h^2-0.1071768408e57*h^3)-0.1743624949e-4*h^3*exp(-6.*eta)-0.5192856115e-2*h^3*exp(-5.*eta)-0.2651441454e-2*h^3*exp(-2.*eta)-0.1137884937e-1*h^3*exp(-3.*eta)-0.1908978731e-2*h^3*exp(-1.*eta)+0.6252604272e-6*h^3*exp(-7.*eta)+0.1531888462e-1*h^3*exp(-4.*eta)+0.7057148713e-13*exp(-10.*eta)*h^3-0.8506126901e-10*h^3*exp(-9.*eta)+0.2765432277e-7*h^3*exp(-8.*eta)+0.9916197104e-3*h^3*exp(-2.100000000*eta)-0.6757470170e-3*h^3*exp(-3.100000000*eta)-0.1323927303e-5*h^2*exp(-6.*eta)-0.1473597351e-3*h^2*exp(-5.*eta)-0.4728196407e-59*exp(-1.*eta)*(0.3986066543e59*h-0.5274079311e60*h^2-0.1332851344e58*h^3-0.4833038431e59)+0.1866560905e-3*h^3*exp(-.1000000000*eta)+0.1184822260e-8*h^2*exp(-7.*eta)+0.1413290424e-1*h^2*exp(-4.*eta)-0.1502629602e-3*h^3*exp(-1.200000000*eta)+0.5979535884e-4*h*exp(-4.*eta)-0.4618886344e-2*h*exp(-3.*eta)+0.1279658758e-2*h^2*exp(-2.100000000*eta)-0.6435813855e-1*h^2*exp(-3.*eta)+0.7911962236e-1*h^2*exp(-2.*eta)-.1409955101*h^2*exp(-1.*eta)-2.466333667*h^2*exp(-1.100000000*eta)+0.2398481512e-2*h*exp(eta)-0.8376336237e-1*eta*h^2*exp(-2.*eta)-.2819910203*eta*h^2*exp(-1.*eta)+0.1445007002e-1*eta^2*h^2*exp(-1.*eta)+0.1143525779e-6*h^3+0.3274430423e-4*h^3*exp(eta)+0.6639380307e-2*exp(eta)*h^2*eta-0.6548860847e-4*eta*h^3*exp(eta)-0.4796963023e-2*eta*h*exp(eta)-0.3319690153e-2*h^2*exp(eta)+0.9279457770e-1*exp(-2.*eta)*h-0.8129366728e-1*h*exp(-1.*eta)}

 

proc (eta) options operator, arrow; .3333333332*exp(-2.*eta)*h+.9870000000*h*exp(-1.*eta)-0.4198832886e-1*h^2*exp(eta)-0.1989325864e-16*h*(0.419226962e16*h-0.2128741273e16)*exp(eta)-.2083333333*h^2*exp(-3.*eta)+.2542329126*h^2*exp(-2.*eta)-1.975536464*h^2*exp(-1.*eta)-0.9946629322e-17*exp(-1.*eta)*h*(-0.1655193422e19*h+0.1263090568e18)+3.030303030*h*exp(-.1000000000*eta)-14.57431457*h^2*exp(-1.100000000*eta)-3.373737373*h^2*exp(-.1000000000*eta)-.4386666667*eta*h^2*exp(-2.*eta)+.6580000000*eta*h*exp(-1.*eta)-1.461534309*eta*h^2*exp(-1.*eta)-.2167650000*eta^2*h^2*exp(-1.*eta)+0.2799221924e-1*exp(eta)*h^2*eta+0.1989325864e-16*(0.1779235725e18*h-0.1576732427e18)*h end proc

 

proc (eta) options operator, arrow; (0.2821250000e-1*eta^2*h^2+(-.4942034641*h^2-0.7500000000e-1*h)*eta-0.2742490254e-18*h*(-0.1281549569e20*h+0.2342416377e18)-.2471017320*h^2-0.3750000000e-1*h)*exp(-1.*eta)+0.2499999999e-1*h^2*exp(-3.*eta)+(-0.2742490254e-18*h*(-0.1556382526e17*h-0.1560730632e17)-0.6147894850e-4*eta*h^2+0.3073947425e-4*h^2)*exp(eta)-.1377333333*eta*h^2*exp(-2.*eta)+(-.1555804447*exp(-2.*eta)-3.174603174*exp(-1.100000000*eta)+0.6121824303e-2*exp(-.1000000000*eta))*h^2+.1333333333*exp(-2.*eta)*h end proc

 

proc (eta) options operator, arrow; -0.2410735480e-2*h+0.1506325845e-1*h^2-.1625873346*eta*h*exp(-1.*eta)+0.1143525779e-6*h^3-0.6754566296e-60*exp(eta)*(-0.2692977124e59*h+0.6196413063e58+0.1273657034e59*h^2-0.1071768408e57*h^3)-0.1743624949e-4*h^3*exp(-6.*eta)-0.5192856115e-2*h^3*exp(-5.*eta)-0.2651441454e-2*h^3*exp(-2.*eta)-0.1137884937e-1*h^3*exp(-3.*eta)-0.1908978731e-2*h^3*exp(-1.*eta)+0.6252604272e-6*h^3*exp(-7.*eta)+0.1531888462e-1*h^3*exp(-4.*eta)+0.7057148713e-13*exp(-10.*eta)*h^3-0.8506126901e-10*h^3*exp(-9.*eta)+0.2765432277e-7*h^3*exp(-8.*eta)+0.9916197104e-3*h^3*exp(-2.100000000*eta)-0.6757470170e-3*h^3*exp(-3.100000000*eta)-0.1323927303e-5*h^2*exp(-6.*eta)-0.1473597351e-3*h^2*exp(-5.*eta)-0.4728196407e-59*exp(-1.*eta)*(0.3986066543e59*h-0.5274079311e60*h^2-0.1332851344e58*h^3-0.4833038431e59)+0.1866560905e-3*h^3*exp(-.1000000000*eta)+0.1184822260e-8*h^2*exp(-7.*eta)+0.1413290424e-1*h^2*exp(-4.*eta)-0.1502629602e-3*h^3*exp(-1.200000000*eta)+0.5979535884e-4*h*exp(-4.*eta)-0.4618886344e-2*h*exp(-3.*eta)+0.1279658758e-2*h^2*exp(-2.100000000*eta)+0.3274430423e-4*h^3*exp(eta)-0.8376336237e-1*eta*h^2*exp(-2.*eta)-.2819910203*eta*h^2*exp(-1.*eta)+0.1445007002e-1*eta^2*h^2*exp(-1.*eta)+0.6639380307e-2*exp(eta)*h^2*eta-0.3758069773e-2*eta^2*h^3*exp(-3.*eta)-0.3817957463e-2*eta*h^3*exp(-1.*eta)+0.3032751626e-5*eta^2*h^3*exp(-4.*eta)-0.8420154625e-3*eta*h^3*exp(-2.100000000*eta)+0.2717536116e-6*eta*h^3*exp(-6.*eta)+0.2237422480e-4*eta*h^3*exp(-5.*eta)-0.8640391322e-2*eta*h^3*exp(-4.*eta)+0.1028547553e-1*eta*h^2*exp(-3.*eta)+0.1016233706e-2*eta^2*h^3*exp(-1.*eta)+0.2687947508e-5*eta*h^3*exp(-2.*eta)-0.1754753176e-9*eta*h^3*exp(-7.*eta)-0.6548860847e-4*eta*h^3*exp(eta)-0.4796963023e-2*eta*h*exp(eta)-0.2553395329e-4*eta*h^2*exp(-4.*eta)+0.1350497098e-1*eta*h^3*exp(-3.*eta)+0.9279457770e-1*exp(-2.*eta)*h-0.8129366728e-1*h*exp(-1.*eta)+0.2398481512e-2*h*exp(eta)-0.3319690153e-2*h^2*exp(eta)-0.6435813855e-1*h^2*exp(-3.*eta)+0.7911962236e-1*h^2*exp(-2.*eta)-.1409955101*h^2*exp(-1.*eta)-2.466333667*h^2*exp(-1.100000000*eta) end proc

(3)

``


 

Download odeSubs.mw

First 85 86 87 88 89 90 91 Last Page 87 of 207