tomleslie

13876 Reputation

20 Badges

15 years, 164 days

MaplePrimes Activity


These are replies submitted by tomleslie

@Anthrazit 

I'd probably be using the StringTools:-SearchAll() command, which will return a sequence of all the starting indexes of the supplied pattern, from whihc it is trivial to select the starting index for any particular occurrence. For example to obtain the start index of the third occurrence of the pattern, one wold have

[StringTools:-SearchAll("aba", "abababababababababab" )][3];

@AHSAN 

accurate answers for this problem you have to use a high setting of DIgits - Set to 30 in the attached

DIsplaying 30 Digits can make the output look a litttle cluttered so you can separately control the amount of digits which are displayed. NB this affects display only: all calculations are done to the precision set by Digits.

See the atached


 

restart

Digits := 30; interface(displayprecision = 4)

4

(1)

P := -(9958.466892*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+2.439889255))*(0.261007e-4*k+3.055413*10^(-6)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^3-2.86369*10^(-16)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^8-2.26*10^(-15)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^7+0.16e-4*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.106924e-4*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+4.611637585*10^(-6)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^3-0.1910578434e-3*lambda^4-3.056762083*10^(-6)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^3-0.1557978257e-4*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+3.012211408*10^(-11)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^6-4.610017127*10^(-6)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^3+1.14531*10^(-6)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^4+2.72995*10^(-11)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^6+0.2699913289e-4*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*k-2.723097*10^(-11)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^6+2.83*10^(-16)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^8-2.26342*10^(-15)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^7-0.158580e-4*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-1.144560151*10^(-6)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^4-1.150701960*10^(-6)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^4+2.171377*10^(-10)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^5+2.29*10^(-15)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^7-4.54*10^(-11)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^6-9.0*10^(-6)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)-4.48946*10^(-11)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^6-3.054641904*10^(-6)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^3+2.169902*10^(-10)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^5-6.10984*10^(-6)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)+2.83*10^(-16)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^8-4.555918*10^(-6)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^3-2.26*10^(-15)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^7-3.010540298*10^(-11)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^6+0.2875578036e-4*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)+0.2841557560e-4*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)+0.3073879707e-4*lambda+0.155261e-4*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-2.86369*10^(-16)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^8-0.2642338092e-4*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*k-0.2660838513e-4*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*k+0.1650524630e-4*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1650484496e-4*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.2863334102e-4*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)-0.1833461551e-4*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*lambda-0.1833342214e-4*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*lambda+0.106975e-4*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+7.28416*10^(-11)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^5+2.29495*10^(-15)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^7+7.64564268*10^(-7)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^4-0.1674000840e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+7.632879155*10^(-7)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^4+1.140719237*10^(-6)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^4-1.519459*10^(-15)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^7+1.445217*10^(-10)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^5+1.899324*10^(-16)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^8+0.1981472958e-3*lambda^3-1.519459*10^(-15)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^7-4.605558319*10^(-6)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^3-6.11292*10^(-6)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)+2.29495*10^(-15)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^7-9.3627*10^(-6)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)-0.1069489149e-4*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-1.445703114*10^(-10)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^5+0.183311e-4*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*lambda+1.14719*10^(-6)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^4-4.559112439*10^(-6)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^3-7.2367*10^(-11)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^5-8.931240077*10^(-6)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)-2.16324*10^(-10)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^5+4.49704*10^(-11)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^6-2.86*10^(-16)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^8+1.150803103*10^(-6)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^4-2.86*10^(-16)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^8+0.663330427e-4*lambda^5-1.14257*10^(-6)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^4+4.607967783*10^(-6)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^3-0.835512256e-4*lambda^2+1.899324*10^(-16)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^8-0.2565264181e-4+4.555659255*10^(-6)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^3-0.16e-4*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-9.3922*10^(-6)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)-1.14560*10^(-6)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^4-0.1069507987e-4*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+9.4151*10^(-6)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)+8.9899*10^(-6)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)+8.9599*10^(-6)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)-7.64058733*10^(-7)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^4+4.55915*10^(-6)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^3+2.83*10^(-16)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^8+2.29*10^(-15)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^7-7.2*10^(-11)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^5+7.19049*10^(-11)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^5+6.110608393*10^(-6)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)+1.899324*10^(-16)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^8+1.899324*10^(-16)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^8+1.807661*10^(-11)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^6-2.687022860*10^(-11)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^6+4.81577*10^(-11)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^5-2.168014321*10^(-10)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^5+2.69309794*10^(-11)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^6+4.534365311*10^(-11)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^6-7.637931745*10^(-7)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^4-1.519459*10^(-15)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^7+6.11214955*10^(-6)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)-1.805990298*10^(-11)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^6+3.055990782*10^(-6)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^3-4.82063*10^(-11)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^5+2.83*10^(-16)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^8-1.519459*10^(-15)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^7-2.26342*10^(-15)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^7)/((0.6307162107e-4*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.2522864843e-3*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)+0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-7.999243141*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)-0.1780195173e-2*lambda^5+0.5202780960e-2*lambda^4-0.5381953532e-2*lambda^3+0.2239467016e-2*lambda^2-0.3382248522e-3*lambda+8.000645881)*((7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-28.22497888*lambda^5+82.49004656*lambda^4-85.33082616*lambda^3+35.50672993*lambda^2-5.362552072*lambda+10.24044298)*(0.6307162107e-4*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-1.999873857*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)+2.000126143)*((7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+2))

newP:=eval(P,[k=0.1]):

plot(newP,lambda=-1..1);

 

sols := fsolve(newP, lambda = -1 .. 1, maxsols = 3)

-.329543248729246670859214244152, -.333666875089007736876317588707

(2)

evalf(eval(newP, lambda = sols[1])); evalf(eval(newP, lambda = sols[2]))

-0.324354778471227278438260551979e-15

 

-0.303861053016358474098136276319e-13

(3)

 


 

Download resid2.mw

 

@Maple_lover1 

without going into the boring details of how you might want plot shading to be done ( see the options colorscheme, colorfunc and shading as mentioned beore), you basically want something as shown in the attached.

  restart;
  with(plots):
  with(plottools):
  display( [ plot3d
             ( sin(x*y),
               x=-3..3,
               y=-3..3,
               gridstyle=triangular,
               shading=zhue
             ),
             transform
             ( (x,y)->[x,y,-2] )
                      ( contourplot
                        ( sin(x*y),
                          x=-3..3,
                          y=-3..3,
                          contours=[-1/2,1/4,1/2,3/4],
                          filledregions=true,
                          coloring=[green,red]
                        )
             )
           ]
         );

 

 

Download mapPlot3.mw

You really only try to accept two simple statements: when it comes to plots

  1. If you can do it in Maple you can do it in Matlab
  2. If you can do it in Matlab you can do it in Maple

Now out of the thousands of plot possibilities available in both of these packages - will you ever be able to come with something in one package which cannot be replicated in the other - yeah, maybe? But good luck finding it!

@Maple_lover1 

that you play with the various plot3d options available, in paticular,

style
gridstyle
shading

( as well as color=colorscheme or color=colorfunc which will allow explicit shading based on coordinate values)

See the the additional execution group in the attached (which only scratches the surface of all the possibilities)

restart:
u:=1/(1. + exp(x))^2 + 1/(1. + exp(-5.*t))^2 - 0.2500000000 + x*(1/(1. + exp(1 - 5*t))^2 - 1./((1. + exp(-5*t))^2) + 0.1776705118 + 0.0415431679756514*piecewise(0. <= t and t <= 0.5000000000, 1.732050808, 0.) + 0.00922094377856479*piecewise(0. <= t and t <= 0.5000000000, 30.98386677*t - 7.745966692, 0.) + 0.0603742508215732*piecewise(0.5000000000 <= t and t <= 1., 1.732050808, 0.) - 0.00399645630498528*piecewise(0.5000000000 <= t and t <= 1., 30.98386677*t - 23.23790008, 0.)) + (-0.00243051684581302*piecewise(0. <= x and x <= 0.5000000000, 1.732050808, 0.) - 0.000809061198761621*piecewise(0. <= x and x <= 0.5000000000, 30.98386677*x - 7.745966692, 0.) - 0.0152377552205917*piecewise(0.5000000000 <= x and x <= 1., 1.732050808, 0.) - 0.00195593427342862*piecewise(0.5000000000 <= x and x <= 1., 30.98386677*x - 23.23790008, 0.))*piecewise(0. <= t and t <= 0.5000000000, 1.732050808, 0.) + (-0.000433590063316381*piecewise(0. <= x and x <= 0.5000000000, 1.732050808, 0.) - 0.000146112803263678*piecewise(0. <= x and x <= 0.5000000000, 30.98386677*x - 7.745966692, 0.) - 0.00319022339097685*piecewise(0.5000000000 <= x and x <= 1., 1.732050808, 0.) - 0.000477063086307787*piecewise(0.5000000000 <= x and x <= 1., 30.98386677*x - 23.23790008, 0.))*piecewise(0. <= t and t <= 0.5000000000, 30.98386677*t - 7.745966692, 0.) + (-0.00276114805649180*piecewise(0. <= x and x <= 0.5000000000, 1.732050808, 0.) - 0.000933166016624500*piecewise(0. <= x and x <= 0.5000000000, 30.98386677*x - 7.745966692, 0.) - 0.0207984584912892*piecewise(0.5000000000 <= x and x <= 1., 1.732050808, 0.) - 0.00314360556336114*piecewise(0.5000000000 <= x and x <= 1., 30.98386677*x - 23.23790008, 0.))*piecewise(0.5000000000 <= t and t <= 1., 1.732050808, 0.) + (0.000172746997599710*piecewise(0. <= x and x <= 0.5000000000, 1.732050808, 0.) + 0.0000586775450031145*piecewise(0. <= x and x <= 0.5000000000, 30.98386677*x - 7.745966692, 0.) + 0.00136190009033518*piecewise(0.5000000000 <= x and x <= 1., 1.732050808, 0.) + 0.000211410172315387*piecewise(0.5000000000 <= x and x <= 1., 30.98386677*x - 23.23790008, 0.))*piecewise(0.5000000000 <= t and t <= 1., 30.98386677*t - 23.23790008, 0.):

  plot3d( u,
          x=0..1,
          t=0..1,
          style=surface,
          axes=boxed,
          colorscheme=[yellow, red]
        );

 

plot3d( u,
        x=0..1,
        t=0..1,
        axes=normal,
        gridstyle=triangular,
        style=patch,
        shading=zhue
       );

 

 

 

 

 


 

Download mapPlot2.mw

 

@Maple_lover1 

the importatnt part of my original response, which is (original typos corrected)

It is not true that Matlab offers better plotting capability - so I wouldn.t bother anyway.

Now if you can explain exactly what plotting capabilyt exists within Matlab but not Maple I'd get interested. By the way I'm currently running Matlab R2020b and Maple 2020.1.1, although I do have several older versions of both packages if you think that "versions" are an issue.

From a plotting viewpoint - tell me what is worng with the following and I will fix it. NB the plot "renders" rather better in a Maple worksheet than it does on this site

restart:
u:=1/(1. + exp(x))^2 + 1/(1. + exp(-5.*t))^2 - 0.2500000000 + x*(1/(1. + exp(1 - 5*t))^2 - 1./((1. + exp(-5*t))^2) + 0.1776705118 + 0.0415431679756514*piecewise(0. <= t and t <= 0.5000000000, 1.732050808, 0.) + 0.00922094377856479*piecewise(0. <= t and t <= 0.5000000000, 30.98386677*t - 7.745966692, 0.) + 0.0603742508215732*piecewise(0.5000000000 <= t and t <= 1., 1.732050808, 0.) - 0.00399645630498528*piecewise(0.5000000000 <= t and t <= 1., 30.98386677*t - 23.23790008, 0.)) + (-0.00243051684581302*piecewise(0. <= x and x <= 0.5000000000, 1.732050808, 0.) - 0.000809061198761621*piecewise(0. <= x and x <= 0.5000000000, 30.98386677*x - 7.745966692, 0.) - 0.0152377552205917*piecewise(0.5000000000 <= x and x <= 1., 1.732050808, 0.) - 0.00195593427342862*piecewise(0.5000000000 <= x and x <= 1., 30.98386677*x - 23.23790008, 0.))*piecewise(0. <= t and t <= 0.5000000000, 1.732050808, 0.) + (-0.000433590063316381*piecewise(0. <= x and x <= 0.5000000000, 1.732050808, 0.) - 0.000146112803263678*piecewise(0. <= x and x <= 0.5000000000, 30.98386677*x - 7.745966692, 0.) - 0.00319022339097685*piecewise(0.5000000000 <= x and x <= 1., 1.732050808, 0.) - 0.000477063086307787*piecewise(0.5000000000 <= x and x <= 1., 30.98386677*x - 23.23790008, 0.))*piecewise(0. <= t and t <= 0.5000000000, 30.98386677*t - 7.745966692, 0.) + (-0.00276114805649180*piecewise(0. <= x and x <= 0.5000000000, 1.732050808, 0.) - 0.000933166016624500*piecewise(0. <= x and x <= 0.5000000000, 30.98386677*x - 7.745966692, 0.) - 0.0207984584912892*piecewise(0.5000000000 <= x and x <= 1., 1.732050808, 0.) - 0.00314360556336114*piecewise(0.5000000000 <= x and x <= 1., 30.98386677*x - 23.23790008, 0.))*piecewise(0.5000000000 <= t and t <= 1., 1.732050808, 0.) + (0.000172746997599710*piecewise(0. <= x and x <= 0.5000000000, 1.732050808, 0.) + 0.0000586775450031145*piecewise(0. <= x and x <= 0.5000000000, 30.98386677*x - 7.745966692, 0.) + 0.00136190009033518*piecewise(0.5000000000 <= x and x <= 1., 1.732050808, 0.) + 0.000211410172315387*piecewise(0.5000000000 <= x and x <= 1., 30.98386677*x - 23.23790008, 0.))*piecewise(0.5000000000 <= t and t <= 1., 30.98386677*t - 23.23790008, 0.):

  plot3d( u,
          x=0..1,
          t=0..1,
          style=surface,
          axes=boxed,
          colorscheme=[yellow, red]
        );

 

 

Download mapPlot.mw

@raj2018 

  1. I should probably have use fsolve() in my previous sheet, since you are only really interested in a numerical solution
  2. however even using fsolve() with guesses for the expected ranges of the unknowns - still no solution
  3. tried the DirectSearch() optimiser package ( a free add-on from the Maple Application centre). This *sometimes* works when the built-in fsolve() fails. This does provide "solutions" for a range of values for delta[d] - see the attched
  4. But are these solutions *plausible*?. DirectSearch() will just return the "best solution" it can find, which may or may not be the "actual" solution!!)

Some observations about the solutions found by by DirectSearch() - first of all the *form* of the ouput for each value of delta[d] is

  [  mean square residual error,  residual error in each equation,   values,    number of iterations taken to obtain solution]

  1. For delta[d] from 1e-04 to 1e-03, the values of u[i10] and u[i20] don't vary much at all, being around 3 and 1.5 respectively
  2. The value of phi[d0] varies by several orders of magnitude from O(10^-32) to O(10^-24)
  3. When the value of phi[d0] is O(10^-32), then the mean square residual is "pretty good", ie < O(10^-6), When the value of phi[d0] is O(10^-24), then the mean square residual is bad - up to O(10^7).
  4. The biggest contribution to the mean square residual always occurs from the error in solving the third equation in the system - from which one can conclude that this equation is numerically pretty unstable, with respect to the variable phi[d0]

What would I do next???

  1. Are the values obtained for the three unknowns vaguely plausible ie is phi[d0]~10^-30, u[i10]~2, and u[i20]~1.5 a "believable" solution
  2. If the answer to (1) above is "No" - then it means that you have some idea what the solution should be - so appropriately adjust the constraints on the variables in the DirectSearch() command (or possibly even fsolve()?) in order to assist the solution process
  3. If this system of equations represents a "physical situation" rather than a mathematical abstraction, then consider whether an appropriate choice of 'units' for various parameters/variables might reduce numerical instabilities. Any equation system which simultaneously contains coefficients/parameters of O(10^-48) and O(10^36) is just asking for trouble
  4. If (3) above is impossible then consider raisin the setting of Digits, wihc will force numerical calculations to be performed more accurately - althugh if the setting is high enough that hardware floats cannot be used (Digits=15, roughly) then computation times will increase substantially

See the attached - Note that you will not be able to re-execute this worksheet unless you first install the DirectSearch() add-on
 

restart;

Eq1:=-2.356739746*10^(-48)*(4.682096432*10^11*exp(phi[d0])*u[i10]*u[i20]-7.21774261*10^8*u[i10]^2*u[i20]-1.141225310*10^9*u[i10]*u[i20]^2+2.282450620*10^9*phi[d0]*u[i10]+1.443548522*10^9*phi[d0]*u[i20])/(exp(phi[d0])*phi[d0]*u[i10]*u[i20]=delta[d]);

Eq2:=1.839080460*10^(-38)*(8.117630990*10^9*u[i10]^3*u[i20]-1.217644649*10^9*u[i10]*u[i20]^3-3.988316460*10^9*u[i10]+2.490971436*10^10*u[i20])/(phi[d0]*(6.6471941*10^7*u[i10]-4.15161906*10^8*u[i20]))=delta[d]:


Eq3:=3.321295248*10^(-13)*(1.359375000*10^36*delta[d]*phi[d0]+1.5)/u[i10]+1.329438820*10^(-14)*(1.359375000*10^36*delta[d]*phi[d0]+1.5)/u[i20]-(-1.359375000*10^36*delta[d]*phi[d0]-1.5+1.510416667*10^37*delta[d]*phi[d0]^2)*(8.117630990*10^(-15)*u[i10]^2+1.660647624*10^(-14)*(1.359375000*10^36*delta[d]*phi[d0]+1.5)/u[i10])-1.359375000*10^36*delta[d]*phi[d0]*(-6.189239034*10^(-29)+3.634239206*10^(-25)*u[i10]*sqrt(u[i10]^2+2.547770701)*(1-2*phi[d0]/(u[i10]^2+0.4246284503e-1))^1.0+1.395213672*10^(-54)*u[i10]*sqrt(u[i10]^2+2.547770701)*phi[d0]^2*ln((phi[d0]^2/(1000000000000*(u[i10]^2+0.4246284503e-1)^2)+2.005078125*10^14/(1.275000000+2.265625000*10^34*delta[d]*phi[d0]))/(phi[d0]^2/(1000000000000*(u[i10]^2+0.4246284503e-1)^2)+(1/1000000000000)*(1-2*phi[d0]/(u[i10]^2+0.4246284503e-1))^1.0))/(u[i10]^2+0.4246284503e-1)^2+1.817119603*10^(-25)*u[i20]*sqrt(u[i20]^2+2.547770701)*(1-2*phi[d0]/(u[i20]^2+0.8492569001e-1))^1.0+6.976068361*10^(-56)*u[i20]*sqrt(u[i20]^2+2.547770701)*phi[d0]^2*ln((phi[d0]^2/(1000000000000*(u[i20]^2+0.8492569001e-1)^2)+2.005078125*10^14/(1.275000000+2.265625000*10^34*delta[d]*phi[d0]))/(phi[d0]^2/(1000000000000*(u[i20]^2+0.8492569001e-1)^2)+(1/1000000000000)*(1-2*phi[d0]/(u[i20]^2+0.8492569001e-1))^1.0))/(u[i20]^2+0.8492569001e-1)^2)+6.235395017*10^(-20)*delta[d]*(7.217742610*10^14*u[i10]*(1-2*phi[d0]/u[i10]^2)+1.141225310*10^15*u[i20]*(1-2*phi[d0]/u[i20]^2)-2.207161425*10^17*sqrt(2)*(1.359375000*10^36*delta[d]*phi[d0]+1.5)*exp(phi[d0]))= 0;

sys:=[ Eq1,Eq2,Eq3]:
 

-0.2356739746e-47*(0.4682096432e12*exp(phi[d0])*u[i10]*u[i20]-721774261.0*u[i10]^2*u[i20]-1141225310.*u[i10]*u[i20]^2+2282450620.*phi[d0]*u[i10]+1443548522.*phi[d0]*u[i20])/(exp(phi[d0])*phi[d0]*u[i10]*u[i20]) = -0.2356739746e-47*(0.4682096432e12*exp(phi[d0])*u[i10]*u[i20]-721774261.0*u[i10]^2*u[i20]-1141225310.*u[i10]*u[i20]^2+2282450620.*phi[d0]*u[i10]+1443548522.*phi[d0]*u[i20])/delta[d]

 

0.3321295248e-12*(0.1359375000e37*delta[d]*phi[d0]+1.5)/u[i10]+0.1329438820e-13*(0.1359375000e37*delta[d]*phi[d0]+1.5)/u[i20]-(-0.1359375000e37*delta[d]*phi[d0]-1.5+0.1510416667e38*delta[d]*phi[d0]^2)*(0.8117630990e-14*u[i10]^2+0.1660647624e-13*(0.1359375000e37*delta[d]*phi[d0]+1.5)/u[i10])-0.1359375000e37*delta[d]*phi[d0]*(-0.6189239034e-28+0.3634239206e-24*u[i10]*(u[i10]^2+2.547770701)^(1/2)*(1-2*phi[d0]/(u[i10]^2+0.4246284503e-1))^1.0+0.1395213672e-53*u[i10]*(u[i10]^2+2.547770701)^(1/2)*phi[d0]^2*ln(((1/1000000000000)*phi[d0]^2/(u[i10]^2+0.4246284503e-1)^2+0.2005078125e15/(1.275000000+0.2265625000e35*delta[d]*phi[d0]))/((1/1000000000000)*phi[d0]^2/(u[i10]^2+0.4246284503e-1)^2+(1/1000000000000)*(1-2*phi[d0]/(u[i10]^2+0.4246284503e-1))^1.0))/(u[i10]^2+0.4246284503e-1)^2+0.1817119603e-24*u[i20]*(u[i20]^2+2.547770701)^(1/2)*(1-2*phi[d0]/(u[i20]^2+0.8492569001e-1))^1.0+0.6976068361e-55*u[i20]*(u[i20]^2+2.547770701)^(1/2)*phi[d0]^2*ln(((1/1000000000000)*phi[d0]^2/(u[i20]^2+0.8492569001e-1)^2+0.2005078125e15/(1.275000000+0.2265625000e35*delta[d]*phi[d0]))/((1/1000000000000)*phi[d0]^2/(u[i20]^2+0.8492569001e-1)^2+(1/1000000000000)*(1-2*phi[d0]/(u[i20]^2+0.8492569001e-1))^1.0))/(u[i20]^2+0.8492569001e-1)^2)+0.6235395017e-19*delta[d]*(0.7217742610e15*u[i10]*(1-2*phi[d0]/u[i10]^2)+0.1141225310e16*u[i20]*(1-2*phi[d0]/u[i20]^2)-0.2207161425e18*2^(1/2)*(0.1359375000e37*delta[d]*phi[d0]+1.5)*exp(phi[d0])) = 0

(1)

#
# Use fsolve() to try for a numerical solution, using a value
# for delta[d] somewhere in the middle of the required range
#
# Apply ranges to the remaining unknown variables to assist the
# calculation. NB these ranges are complete GUESSWORK on my part.
# Any better knowledge of expected ranges of answers would be
# very useful and *may* allow an answer to be obtained
#
# Hmmmm - still no solution
#
    fsolve( eval(sys, delta[d]=1e-03),
            { phi[d0]=0..10, u[i10]=0..10, u[i20]=0..10}
          )

fsolve([-0.2356739746e-47*(0.4682096432e12*exp(phi[d0])*u[i10]*u[i20]-721774261.0*u[i10]^2*u[i20]-1141225310.*u[i10]*u[i20]^2+2282450620.*phi[d0]*u[i10]+1443548522.*phi[d0]*u[i20])/(exp(phi[d0])*phi[d0]*u[i10]*u[i20]) = -0.1103448276e-32*exp(phi[d0])*u[i10]*u[i20]+0.1701034089e-35*u[i10]^2*u[i20]+0.2689571047e-35*u[i10]*u[i20]^2-0.5379142094e-35*phi[d0]*u[i10]-0.3402068177e-35*phi[d0]*u[i20], 0.1839080460e-37*(8117630990.*u[i10]^3*u[i20]-1217644649.*u[i10]*u[i20]^3-3988316460.*u[i10]+0.2490971436e11*u[i20])/(phi[d0]*(66471941.00*u[i10]-415161906.0*u[i20])) = 0.1e-2, 0.3321295248e-12*(0.1359375000e34*phi[d0]+1.5)/u[i10]+0.1329438820e-13*(0.1359375000e34*phi[d0]+1.5)/u[i20]-(-0.1359375000e34*phi[d0]-1.5+0.1510416667e35*phi[d0]^2)*(0.8117630990e-14*u[i10]^2+0.1660647624e-13*(0.1359375000e34*phi[d0]+1.5)/u[i10])-0.1359375000e34*phi[d0]*(-0.6189239034e-28+0.3634239206e-24*u[i10]*(u[i10]^2+2.547770701)^(1/2)*(1-2*phi[d0]/(u[i10]^2+0.4246284503e-1))^1.0+0.1395213672e-53*u[i10]*(u[i10]^2+2.547770701)^(1/2)*phi[d0]^2*ln(((1/1000000000000)*phi[d0]^2/(u[i10]^2+0.4246284503e-1)^2+0.2005078125e15/(1.275000000+0.2265625000e32*phi[d0]))/((1/1000000000000)*phi[d0]^2/(u[i10]^2+0.4246284503e-1)^2+(1/1000000000000)*(1-2*phi[d0]/(u[i10]^2+0.4246284503e-1))^1.0))/(u[i10]^2+0.4246284503e-1)^2+0.1817119603e-24*u[i20]*(u[i20]^2+2.547770701)^(1/2)*(1-2*phi[d0]/(u[i20]^2+0.8492569001e-1))^1.0+0.6976068361e-55*u[i20]*(u[i20]^2+2.547770701)^(1/2)*phi[d0]^2*ln(((1/1000000000000)*phi[d0]^2/(u[i20]^2+0.8492569001e-1)^2+0.2005078125e15/(1.275000000+0.2265625000e32*phi[d0]))/((1/1000000000000)*phi[d0]^2/(u[i20]^2+0.8492569001e-1)^2+(1/1000000000000)*(1-2*phi[d0]/(u[i20]^2+0.8492569001e-1))^1.0))/(u[i20]^2+0.8492569001e-1)^2)+0.4500547630e-7*u[i10]*(1-2*phi[d0]/u[i10]^2)+0.7115990611e-7*u[i20]*(1-2*phi[d0]/u[i20]^2)-0.1376252335e-4*2^(1/2)*(0.1359375000e34*phi[d0]+1.5)*exp(phi[d0]) = 0], {phi[d0], u[i10], u[i20]}, {phi[d0] = 0 .. 10, u[i10] = 0 .. 10, u[i20] = 0 .. 10})

(2)

#
# Use the DirectSearch add-on optimisation package with the
# same constraints to determine whether solutions can be obtained
# for various values of delta[d] across the required range
#
  seq( [ DirectSearch:-SolveEquations
                       ( eval(sys, delta[d]=j),
                         [ phi[d0]=0..10, u[i10]=0..10, u[i20]=0..10 ]
                       )
       ],
       j= 1e-04..1e-03, 1e-04
     );

[[3.19460803484165*10^(-8), Vector(3, {(1) = -0.2487088061e-5, (2) = -0.133061047429682e-3, (3) = -0.119309062515421e-3}), [phi[d0] = 4.39999368528266*10^(-31), u[i10] = 2.98360668673353, u[i20] = 1.50800349885015], 771]], [[379008.267349024, Vector(3, {(1) = -0.6500013806e-12, (2) = -0.200000008640510e-3, (3) = -615.636473374494}), [phi[d0] = 1.68356130893318*10^(-24), u[i10] = 2.98360623089539, u[i20] = 1.50800427090504], 494]], [[2.59642027567093*10^(-7), Vector(3, {(1) = -0.101865773046122e-4, (2) = -0.435410816534470e-3, (3) = -0.264491364801759e-3}), [phi[d0] = 1.07427366636149*10^(-31), u[i10] = 2.98360616776824, u[i20] = 1.50800438081475], 773]], [[4.97583555741889*10^(-7), Vector(3, {(1) = -0.104446673180020e-4, (2) = -0.538841500887854e-3, (3) = -0.455109109541250e-3}), [phi[d0] = 1.04772812768309*10^(-31), u[i10] = 2.98360563725389, u[i20] = 1.50800528660184], 828]], [[1.22611706447686*10^(-6), Vector(3, {(1) = -0.445466164536864e-4, (2) = -0.109216128236589e-2, (3) = -0.176964393990126e-3}), [phi[d0] = 2.45656631825036*10^(-32), u[i10] = 2.98360646440409, u[i20] = 1.50800387665753], 820]], [[1.27212378604264*10^(-6), Vector(3, {(1) = -0.129541832316612e-4, (2) = -0.772200695800547e-3, (3) = -0.821986654748474e-3}), [phi[d0] = 8.44759684568413*10^(-32), u[i10] = 2.98360588229276, u[i20] = 1.50800486182296], 771]], [[1.50550033690128*10^(-6), Vector(3, {(1) = -0.332753272328057e-4, (2) = -0.114233248967109e-2, (3) = -0.446620165846419e-3}), [phi[d0] = 3.28867443728915*10^(-32), u[i10] = 2.98360814940436, u[i20] = 1.50800098608150], 811]], [[7.95992034093232*10^6, Vector(3, {(1) = -0.4572396327e-12, (2) = -0.800000006078140e-3, (3) = -2821.33307869377}), [phi[d0] = 2.39331217921800*10^(-24), u[i10] = 2.98360855438924, u[i20] = 1.50800028790066], 601]], [[2.34387556435520*10^(-6), Vector(3, {(1) = -0.295772909747718e-4, (2) = -0.129317346188895e-2, (3) = -0.818964679140646e-3}), [phi[d0] = 3.69985601029048*10^(-32), u[i10] = 2.98360717829695, u[i20] = 1.50800264816345], 899]], [[3.27345103272978*10^(-6), Vector(3, {(1) = -0.540071925813580e-4, (2) = -0.171792077937664e-2, (3) = -0.565050839894256e-3}), [phi[d0] = 2.02624339828116*10^(-32), u[i10] = 2.98360595919939, u[i20] = 1.50800473331530], 912]]

(3)

 

``


 

Download solveSys2.mw

@raj2018 

If I had three equations in three unknowns (x,y,z) and a "parameter " such as "tau", and I wanted to obtain values for (x,y,z) as tau varied over a substantial range (say 10^-2.. 10^3), I'd probably be using a semilogplot().

Something like the attached "toy" example

sys:=[ x + y + z = 2+tau,
       2*x + y = 3+tau,
       z=1+tau
     ];
plots:-semilogplot
       ( rhs~( solve
               ( eval
                 ( sys,
                   tau=t
                 ),
                 [x,y,z]
              )[]),
         t=1e-06..1e6
       );

[x+y+z = 2+tau, 2*x+y = 3+tau, z = 1+tau]

 

 

 

Download solveSys.mw

of why you would choose to set the options

minstep=500,maxstep=1000

when the independent variable range in which you are interesed appears to be 0..10

@raj2018 

since I can't read the paper (which you don't provide)

I can only state the mathematically obvious - that no-one can obtain numerical solutions from three equations in four unknowns

@raj2018 

from the last comment in my original worksheet - you now have three equations in four unknowns

#
# Just one problem: having inserted all of these parameters,
# just what is Eq1? It evaluates to 0=0, which is seriously,
# non-useful!!
Means one is still left with three *meaningful*
# equations (either [Eq2a, Eq3, Eq4], or [Eq2b, Eq3, Eq4]
# in four unknowns - NOT SOLVABLE
#

@Reshu Gupta 

Sometimes fsolve() fails because it cannot come up with a solution whihc statisfies the problem with sufficient accuracy. In such a circumstance, I use the (free) Maple add-on package called DirecctSearxh(), available here

https://www.maplesoft.com/applications/view.aspx?SID=87637

This uses optimization techniques (a bit like fsolve), but one difference is that it will generally produce the "best" solution it can come u with, even if the solution is not "very good" and leave it to the user to decide whether the  obtained solution is "acceptable". Applying DirectectSearch-:SolveEquations() to your problem results in a solution, with residual error of order 10^-7. Whether or not this level of residual error is acceptable is something only you can decide!!

The attached shows the obtained solution, but note that you will not be able to execute this worksheet unless you have the DirectSeaarch package downloaded/installed


 

restart

NULL

eq1 := -.1158095238*r+a-b+0.2204585538e-1*c*r*a+63.49206349*a^3*b*c+2.857142857*c*a*d-9.523809524*a*b^2*c+28.57142857*b*a^2*d-.3461199293*a*n*b^2+0.1763668427e-2*b*n*c+.3461199293*b*r*a^2+22.22222222*a^2*b*c-0.8024691358e-1*a*n*c-1.737037036*a*n*b+4.296296290*a*b*c+.8076131686*a^2*n*b+3.333333333*b*a*d+0.4012345678e-1*b*r*a+0.6613756614e-1*a*n*d-.2307466196*a^2*n*c+2.308690966*a^3*n*b+.6684444444*n+2.872296297*c-2.027174603*d+3.060035273*a*n+5.168724278*a^2*n+0.7336860671e-1*b*r-.8076131686*r*a^3-2.222222222*a*c^2-66.66666667*a^3*d-0.2257495591e-2*n^2-.2857142857*d^2+.7322751323*b*d+0.3527336861e-3*n*r*a-1.166137566*c^2-2.308690966*r*a^4+.3174603175*b*c^2-6.349206349*a^2*c^2-190.4761905*a^4*d-0.3174603176e-2*r*d+48.71644136*a^3*c-0.3527336861e-3*n^2*b-.3612345680*r*a-42.12345679*a^2*d-10.18518519*a*d+1.686419753*b*c-1.216519694*r*a^2-.1122398589*n*c+.6666666667*c*d-1.111111111*b^2*c+17.05349796*a^2*c-0.4012345678e-1*n*b^2+0.1111111111e-1*n*d+14.77562218*a^3*n+8.544903004*c*a+0.3703703704e-2*c*r-.1523456790*b*n = 0

eq2 := -1-16.16083676*a^3*n*b+.6684444445*r+b+8.034156380*r*a^2+.7412345679*n*c+51.11111112*a*d-6.785185182*b*c-0.2469135803e-2*n*r*a-3.299555555*n+2.056296296*r*a+254.8641975*a^2*d+0.2469135803e-2*n^2*b+0.2222222223e-1*r*d-341.0150895*a^3*c+1333.333334*a^4*d-10.61155556*c+8.616888889*d+44.44444444*a^2*c^2+16.16083676*r*a^4-2.222222222*b*c^2-5.125925926*b*d+1.615226337*a^2*n*c-.1543209877*c*r*a-.4629629630*a*n*d-444.4444444*a^3*b*c-20.00000000*c*a*d-2.422839505*b*r*a^2-200.0000000*b*a^2*d+66.66666667*a*b^2*c+0.1580246914e-1*n^2-133.3333333*a^2*b*c+2.422839505*a*n*b^2+.4814814815*a*n*c-0.1234567899e-1*b*n*c-4.845679012*a^2*n*b-16.74074070*a*b*c+12.64074074*a*n*b-.2407407407*b*r*a-20.00000000*b*a*d-18.33876543*a*n-31.01234567*a^2*n-.5135802470*b*r+2.000000000*d^2+4.845679012*r*a^3+13.33333333*a*c^2+400.0000000*a^3*d+1.025185186*b*n-49.56246917*c*a-0.2222222222e-1*c*r-0.6666666666e-1*n*d-103.4293553*a^3*n-102.3209878*a^2*c+.2407407407*n*b^2-4.000000000*c*d+6.666666666*b^2*c+6.829629631*c^2 = 0

eq3 := -1-16.16083676*a^3*n*b+.6684444445*r+b+8.034156380*r*a^2+.7412345679*n*c-51.11111112*a*d+6.785185182*b*c-0.2469135803e-2*n*r*a+3.299555555*n-2.056296296*r*a+254.8641975*a^2*d+0.2469135803e-2*n^2*b+0.2222222223e-1*r*d-341.0150895*a^3*c+1333.333334*a^4*d+10.61155556*c+8.616888889*d+44.44444444*a^2*c^2+16.16083676*r*a^4-2.222222222*b*c^2-5.125925926*b*d+1.615226337*a^2*n*c-.1543209877*c*r*a-.4629629630*a*n*d-444.4444444*a^3*b*c-20.00000000*c*a*d-2.422839505*b*r*a^2-200.0000000*b*a^2*d+66.66666667*a*b^2*c+0.1580246914e-1*n^2+133.3333333*a^2*b*c+2.422839505*a*n*b^2-.4814814815*a*n*c-0.1234567899e-1*b*n*c+4.845679012*a^2*n*b-16.74074070*a*b*c+12.64074074*a*n*b+.2407407407*b*r*a+20.00000000*b*a*d-18.33876543*a*n+31.01234567*a^2*n-.5135802470*b*r+2.000000000*d^2-4.845679012*r*a^3-13.33333333*a*c^2-400.0000000*a^3*d-1.025185186*b*n-49.56246917*c*a+0.2222222222e-1*c*r+0.6666666666e-1*n*d-103.4293553*a^3*n+102.3209878*a^2*c-.2407407407*n*b^2+4.000000000*c*d-6.666666666*b^2*c+6.829629631*c^2 = 0

eq4 := 1.216519694*r*a^2+.1122398589*n*c-10.18518519*a*d+.6666666667*c*d-1.111111111*b^2*c-14.77562218*a^3*n+17.05349796*a^2*c-0.4012345678e-1*n*b^2+1.737037036*a*n*b-4.296296290*a*b*c+.8076131686*a^2*n*b+3.333333333*b*a*d+0.4012345678e-1*b*r*a-0.8024691358e-1*a*n*c+22.22222222*a^2*b*c-.3461199293*b*r*a^2+.3461199293*a*n*b^2-0.1763668427e-2*b*n*c+.1158095238*r+a+b-2.308690966*a^3*n*b+.2307466196*a^2*n*c-0.6613756614e-1*a*n*d-0.2204585538e-1*c*r*a-63.49206349*a^3*b*c-2.857142857*c*a*d+9.523809524*a*b^2*c-28.57142857*b*a^2*d+.6684444444*n+2.872296297*c+2.027174603*d+1.166137566*c^2+.2857142857*d^2-.7322751323*b*d-.3174603175*b*c^2+6.349206349*a^2*c^2+2.308690966*r*a^4+190.4761905*a^4*d+0.3174603176e-2*r*d-48.71644136*a^3*c+0.3527336861e-3*n^2*b-.3612345680*r*a+42.12345679*a^2*d+0.2257495591e-2*n^2-0.3527336861e-3*n*r*a+1.686419753*b*c-3.060035273*a*n+5.168724278*a^2*n-0.7336860671e-1*b*r-.8076131686*r*a^3-2.222222222*a*c^2-66.66666667*a^3*d-.1523456790*b*n-8.544903004*c*a+0.3703703704e-2*c*r+0.1111111111e-1*n*d = 0

eq5 := 0.1851851852e-1*n*r*a-3.346666667*r-.1666666667*r*d-.4115226337*a^3*c+9.177777779*n-0.6430041150e-1*r*a^4-.8888888888*b*d-17.06666666*c+12.37333333*d-1.166666666*a*n*b-.2314814815*a*n*c+.1929012345*a^2*n*b-37.77777778*a*b*c+.1157407407*b*r*a-.1157407407*a*n*b^2-.4629629630*b*n*c-0.1851851852e-1*n^2*b-2.018518518*r*a+116.2962963*a^2*d+28.88888889*a*d-8.148148148*b*c-35.79259261*a*c+.1790123454*r*a^2-1.170370371*n*c-1.234567901*a^2*c-.1157407407*n*b^2+.1388888889*c*r+.4166666667*n*d+.4115226337*a^3*n-2.725925925*a*n+1.234567901*a^2*n+.2962962963*b*r-.1929012345*r*a^3+.5370370372*b*n-.1185185185*n^2+3.555555556*c^2+.1157407407*b*r*a^2+1.805555556*a*n*d+0.4629629630e-1*c*r*a-0.7716049383e-1*a^2*n*c+0.6430041150e-1*a^3*n*b = 0

eq6 := -0.1851851852e-1*n*r*a+3.346666667*r+9.177777779*n-17.06666666*c-12.37333333*d+2.725925925*a*n+1.234567901*a^2*n-.2962962963*b*r-.1929012345*r*a^3+.5370370372*b*n+.1388888889*c*r+.4166666667*n*d-.4115226337*a^3*n-1.234567901*a^2*c-.1157407407*n*b^2+35.79259261*a*c+.1185185185*n^2+1.166666666*a*n*b+37.77777778*a*b*c+.1929012345*a^2*n*b-.2314814815*a*n*c+.1157407407*b*r*a+.1157407407*a*n*b^2+.4629629630*b*n*c-0.4629629630e-1*c*r*a-.1157407407*b*r*a^2-1.805555556*a*n*d-0.6430041150e-1*a^3*n*b+0.7716049383e-1*a^2*n*c-3.555555556*c^2-8.148148148*b*c-2.018518518*r*a-116.2962963*a^2*d+0.1851851852e-1*n^2*b+.1666666667*r*d+.4115226337*a^3*c+0.6430041150e-1*r*a^4+.8888888888*b*d-.1790123454*r*a^2+1.170370371*n*c+28.88888889*a*d = 0

Digits := 30; interface(displayprecision = 10); sols := fsolve({eq1, eq2, eq3, eq4, eq5, eq6}, {a, b, c, d, n, r}, fulldigits)

fsolve({-3.346666667*r-17.06666666*c+9.177777779*n+12.37333333*d-.8888888888*b*d+0.1851851852e-1*n*r*a-0.6430041150e-1*r*a^4-.4115226337*a^3*c-0.1851851852e-1*n^2*b-.1666666667*r*d+116.2962963*a^2*d-2.018518518*r*a-1.170370371*n*c+28.88888889*a*d-8.148148148*b*c+.1790123454*r*a^2-1.234567901*a^2*c-.1157407407*n*b^2+.4166666667*n*d+.4115226337*a^3*n-35.79259261*c*a+.1388888889*c*r+.5370370372*b*n+0.6430041150e-1*a^3*n*b+0.4629629630e-1*c*r*a-0.7716049383e-1*a^2*n*c+1.805555556*a*n*d+.1157407407*b*r*a^2-.2314814815*a*n*c-.1157407407*a*n*b^2-.4629629630*b*n*c+.1929012345*a^2*n*b-1.166666666*a*n*b-37.77777778*a*b*c+.1157407407*b*r*a-2.725925925*a*n+1.234567901*a^2*n+.2962962963*b*r-.1929012345*r*a^3-.1185185185*n^2+3.555555556*c^2 = 0, 3.346666667*r-17.06666666*c+9.177777779*n-12.37333333*d+.8888888888*b*d-0.1851851852e-1*n*r*a+0.6430041150e-1*r*a^4+.4115226337*a^3*c+0.1851851852e-1*n^2*b+.1666666667*r*d-116.2962963*a^2*d-2.018518518*r*a+1.170370371*n*c+28.88888889*a*d-8.148148148*b*c-.1790123454*r*a^2-1.234567901*a^2*c-.1157407407*n*b^2+.4166666667*n*d-.4115226337*a^3*n+35.79259261*c*a+.1388888889*c*r+.5370370372*b*n-0.6430041150e-1*a^3*n*b-0.4629629630e-1*c*r*a+0.7716049383e-1*a^2*n*c-1.805555556*a*n*d-.1157407407*b*r*a^2-.2314814815*a*n*c+.1157407407*a*n*b^2+.4629629630*b*n*c+.1929012345*a^2*n*b+1.166666666*a*n*b+37.77777778*a*b*c+.1157407407*b*r*a+2.725925925*a*n+1.234567901*a^2*n-.2962962963*b*r-.1929012345*r*a^3+.1185185185*n^2-3.555555556*c^2 = 0, -1+.6684444445*r+b-10.61155556*c-3.299555555*n+8.616888889*d-5.125925926*b*d-2.222222222*b*c^2-0.2469135803e-2*n*r*a+44.44444444*a^2*c^2+16.16083676*r*a^4-341.0150895*a^3*c+1333.333334*a^4*d+0.2469135803e-2*n^2*b+0.2222222223e-1*r*d+254.8641975*a^2*d+2.056296296*r*a+.7412345679*n*c+51.11111112*a*d-6.785185182*b*c+8.034156380*r*a^2-4.000000000*c*d+6.666666666*b^2*c-102.3209878*a^2*c+.2407407407*n*b^2-0.6666666666e-1*n*d-103.4293553*a^3*n-49.56246917*c*a-0.2222222222e-1*c*r+400.0000000*a^3*d+1.025185186*b*n-16.16083676*a^3*n*b-.1543209877*c*r*a+1.615226337*a^2*n*c-.4629629630*a*n*d-20.00000000*c*a*d+66.66666667*a*b^2*c-444.4444444*a^3*b*c-2.422839505*b*r*a^2-200.0000000*b*a^2*d+.4814814815*a*n*c-133.3333333*a^2*b*c+2.422839505*a*n*b^2-0.1234567899e-1*b*n*c-4.845679012*a^2*n*b+12.64074074*a*n*b-16.74074070*a*b*c-20.00000000*b*a*d-.2407407407*b*r*a-18.33876543*a*n-31.01234567*a^2*n-.5135802470*b*r+4.845679012*r*a^3+13.33333333*a*c^2+0.1580246914e-1*n^2+2.000000000*d^2+6.829629631*c^2 = 0, -1+.6684444445*r+b+10.61155556*c+3.299555555*n+8.616888889*d-5.125925926*b*d-2.222222222*b*c^2-0.2469135803e-2*n*r*a+44.44444444*a^2*c^2+16.16083676*r*a^4-341.0150895*a^3*c+1333.333334*a^4*d+0.2469135803e-2*n^2*b+0.2222222223e-1*r*d+254.8641975*a^2*d-2.056296296*r*a+.7412345679*n*c-51.11111112*a*d+6.785185182*b*c+8.034156380*r*a^2+4.000000000*c*d-6.666666666*b^2*c+102.3209878*a^2*c-.2407407407*n*b^2+0.6666666666e-1*n*d-103.4293553*a^3*n-49.56246917*c*a+0.2222222222e-1*c*r-400.0000000*a^3*d-1.025185186*b*n-16.16083676*a^3*n*b-.1543209877*c*r*a+1.615226337*a^2*n*c-.4629629630*a*n*d-20.00000000*c*a*d+66.66666667*a*b^2*c-444.4444444*a^3*b*c-2.422839505*b*r*a^2-200.0000000*b*a^2*d-.4814814815*a*n*c+133.3333333*a^2*b*c+2.422839505*a*n*b^2-0.1234567899e-1*b*n*c+4.845679012*a^2*n*b+12.64074074*a*n*b-16.74074070*a*b*c+20.00000000*b*a*d+.2407407407*b*r*a-18.33876543*a*n+31.01234567*a^2*n-.5135802470*b*r-4.845679012*r*a^3-13.33333333*a*c^2+0.1580246914e-1*n^2+2.000000000*d^2+6.829629631*c^2 = 0, -.1158095238*r+a-b+2.872296297*c+.6684444444*n-2.027174603*d+.7322751323*b*d+.3174603175*b*c^2+0.3527336861e-3*n*r*a-6.349206349*a^2*c^2-2.308690966*r*a^4+48.71644136*a^3*c-190.4761905*a^4*d-0.3527336861e-3*n^2*b-0.3174603176e-2*r*d-42.12345679*a^2*d-.3612345680*r*a-.1122398589*n*c-10.18518519*a*d+1.686419753*b*c-1.216519694*r*a^2+.6666666667*c*d-1.111111111*b^2*c+17.05349796*a^2*c-0.4012345678e-1*n*b^2+0.1111111111e-1*n*d+14.77562218*a^3*n+8.544903004*c*a+0.3703703704e-2*c*r-66.66666667*a^3*d-.1523456790*b*n+2.308690966*a^3*n*b+0.2204585538e-1*c*r*a-.2307466196*a^2*n*c+0.6613756614e-1*a*n*d+2.857142857*c*a*d-9.523809524*a*b^2*c+63.49206349*a^3*b*c+.3461199293*b*r*a^2+28.57142857*b*a^2*d-0.8024691358e-1*a*n*c+22.22222222*a^2*b*c-.3461199293*a*n*b^2+0.1763668427e-2*b*n*c+.8076131686*a^2*n*b-1.737037036*a*n*b+4.296296290*a*b*c+3.333333333*b*a*d+0.4012345678e-1*b*r*a+3.060035273*a*n+5.168724278*a^2*n+0.7336860671e-1*b*r-.8076131686*r*a^3-2.222222222*a*c^2-0.2257495591e-2*n^2-.2857142857*d^2-1.166137566*c^2 = 0, .1158095238*r+a+b+2.872296297*c+.6684444444*n+2.027174603*d-.7322751323*b*d-.3174603175*b*c^2-0.3527336861e-3*n*r*a+6.349206349*a^2*c^2+2.308690966*r*a^4-48.71644136*a^3*c+190.4761905*a^4*d+0.3527336861e-3*n^2*b+0.3174603176e-2*r*d+42.12345679*a^2*d-.3612345680*r*a+.1122398589*n*c-10.18518519*a*d+1.686419753*b*c+1.216519694*r*a^2+.6666666667*c*d-1.111111111*b^2*c+17.05349796*a^2*c-0.4012345678e-1*n*b^2+0.1111111111e-1*n*d-14.77562218*a^3*n-8.544903004*c*a+0.3703703704e-2*c*r-66.66666667*a^3*d-.1523456790*b*n-2.308690966*a^3*n*b-0.2204585538e-1*c*r*a+.2307466196*a^2*n*c-0.6613756614e-1*a*n*d-2.857142857*c*a*d+9.523809524*a*b^2*c-63.49206349*a^3*b*c-.3461199293*b*r*a^2-28.57142857*b*a^2*d-0.8024691358e-1*a*n*c+22.22222222*a^2*b*c+.3461199293*a*n*b^2-0.1763668427e-2*b*n*c+.8076131686*a^2*n*b+1.737037036*a*n*b-4.296296290*a*b*c+3.333333333*b*a*d+0.4012345678e-1*b*r*a-3.060035273*a*n+5.168724278*a^2*n-0.7336860671e-1*b*r-.8076131686*r*a^3-2.222222222*a*c^2+0.2257495591e-2*n^2+.2857142857*d^2+1.166137566*c^2 = 0}, {a, b, c, d, n, r}, fulldigits)

(1)

`~`[indets]([eq1, eq2, eq3, eq4, eq5, eq6]); sol := DirectSearch:-SolveEquations([eq1, eq2, eq3, eq4, eq5, eq6])

[0.243993317469706405136411027106e-12, Vector[column](%id = 18446744074569518726), [a = 0.55786410048076296335527330919e-7, b = -.264563149383416753310110561095, c = 0.16746967139372775596511259314e-7, d = 0.963791937437534638819067564349e-1, n = 0.2011745799060715548019374041e-8, r = .353140170337459261345421375513], 980]

(2)

eval([eq1, eq2, eq3, eq4, eq5, eq6], sol[3])

[0.192338624539634612953001996707e-6 = 0, 0.204262860604715095532510037039e-6 = 0, -0.178609249391706012884682162961e-6 = 0, -0.130728029585177735078876176707e-6 = 0, -0.327252972108424669677901157169e-6 = 0, 0.958658714882282084319461864297e-7 = 0]

(3)

``


 

Download fsol2.mw

@radaar 

makes no sense

@pengcheng Xue 

In the attached I have added a couple of commands (highlighted in red) which check the value of y1_15 in solnumeric1 and solnumeric2. These are -0.1 and -0.2 respectively - so I don't see the justification for your comment

it seems not right. In solnumeric2, lambda equal to 0.2, but in the solution y1_15 still equal to -0.1? it should equal to -0.2, doesn't it?


 

restart

b := 25.4

f := 2.2

h := 10

E := 0.70e5

G := 0.26e5

Ec := 420

Gc := 220

nuc := .25

A11 := E*f

D11 := (1/12)*E*f^3

A55 := G*f

dt := f``

db := f

c := h

phi_ct := .55; delta0_ct := .12; phi_cb := .55; delta0_cb := .12

eq1_1 := (diff(y1_1(x), x))/(27.1) = 0

eq1_2 := (diff(y1_2(x), x))/(27.1) = 0

eq1_3 := (diff(y1_3(x), x))/(27.1) = y1_2(x)

eq1_4 := (diff(y1_4(x), x))/(27.1) = 2*b*phi_cb*(y1_17(x)+(1/2)*db*y1_19(x)-y1_20(x)-y1_21(x)*c-y1_22(x)*c^2-y1_23(x)*c^3)/delta0_cb^2

eq1_5 := (diff(y1_5(x), x))/(27.1) = b*phi_cb*(y1_18(x)-y1_24(x)-y1_25(x)*c-y1_26(x)*c^2)/delta0_cb^2

eq1_6 := (diff(y1_6(x), x))/(27.1) = y1_5(x)-2*b*db*phi_cb*(y1_17(x)+(1/2)*db*y1_19(x)-y1_20(x)-y1_21(x)*c-y1_22(x)*c^2-y1_23(x)*c^3)/delta0_cb^2*(1/2)

eq1_7 := (diff(y1_7(x), x))/(27.1) = -2*b*phi_cb*(y1_17(x)+(1/2)*db*y1_19(x)-y1_20(x)-y1_21(x)*c-y1_22(x)*c^2-y1_23(x)*c^3)/delta0_cb^2

eq1_8 := (diff(y1_8(x), x))/(27.1) = -2*b*c*phi_cb*(y1_17(x)+(1/2)*db*y1_19(x)-y1_20(x)-y1_21(x)*c-y1_22(x)*c^2-y1_23(x)*c^3)/delta0_cb^2+y1_11(x)

eq1_9 := (diff(y1_9(x), x))/(27.1) = -2*b*c^2*phi_cb*(y1_17(x)+(1/2)*db*y1_19(x)-y1_20(x)-y1_21(x)*c-y1_22(x)*c^2-y1_23(x)*c^3)/delta0_cb^2+2*y1_12(x)

eq1_10 := (diff(y1_10(x), x))/(27.1) = -2*b*c^3*phi_cb*(y1_17(x)+(1/2)*db*y1_19(x)-y1_20(x)-y1_21(x)*c-y1_22(x)*c^2-y1_23(x)*c^3)/delta0_cb^2+3*y1_13(x)

eq1_11 := (diff(y1_11(x), x))/(27.1) = -b*phi_cb*(y1_18(x)-y1_24(x)-y1_25(x)*c-y1_26(x)*c^2)/delta0_cb^2

eq1_12 := (diff(y1_12(x), x))/(27.1) = -b*c*phi_cb*(y1_18(x)-y1_24(x)-y1_25(x)*c-y1_26(x)*c^2)/delta0_cb^2+2*Ec*b*c*y1_25(x)+nuc*y1_7(x)

eq1_13 := (diff(y1_13(x), x))/(27.1) = -b*c^2*phi_cb*(y1_18(x)-y1_24(x)-y1_25(x)*c-y1_26(x)*c^2)/delta0_cb^2+2*(4*Ec*b*c^3*y1_26(x)*(1/3)+nuc*y1_8(x))

eq1_14 := (diff(y1_14(x), x))/(27.1) = y1_1(x)/(b*A11)

eq1_15 := (diff(y1_15(x), x))/(27.1) = y1_16(x)+y1_2(x)/(b*A55)

eq1_16 := (diff(y1_16(x), x))/(27.1) = -y1_3(x)/(b*D11)

eq1_17 := (diff(y1_17(x), x))/(27.1) = y1_4(x)/(b*A11) 

eq1_18 := (diff(y1_18(x), x))/(27.1) = y1_19(x)+y1_5(x)/(b*A55)

eq1_19 := (diff(y1_19(x), x))/(27.1) = -y1_6(x)/(b*D11)

eq1_20 := (diff(y1_20(x), x))/(27.1) = (-nuc^2+1)*(9*c^2*y1_7(x)-15*y1_9(x))/(8*Ec*b*c^3)-nuc*y1_25(x)

eq1_21 := (diff(y1_21(x), x))/(27.1) = (-nuc^2+1)*(75*c^2*y1_8(x)-105*y1_10(x))/(8*Ec*b*c^5)-2*nuc*y1_26(x)

eq1_22 := (diff(y1_22(x), x))/(27.1) = (-nuc^2+1)*(45*y1_9(x)-15*c^2*y1_7(x))/(8*Ec*b*c^5)

eq1_23 := (diff(y1_23(x), x))/(27.1) = (-nuc^2+1)*(175*y1_10(x)-105*c^2*y1_8(x))/(8*Ec*b*c^7)

eq1_24 := (diff(y1_24(x), x))/(27.1) = (9*c^2*y1_11(x)-15*y1_13(x))/(8*Gc*b*c^3)-y1_21(x)

eq1_25 := (diff(y1_25(x), x))/(27.1) = 3*y1_12(x)/(2*Gc*b*c^3)-2*y1_22(x)

eq1_26 := (diff(y1_26(x), x))/(27.1) = (45*y1_13(x)-15*c^2*y1_11(x))/(8*Gc*b*c^5)-3*y1_23(x)

``

eq2_1 := (diff(y2_1(x), x))/(23.7) = 0; eq2_2 := (diff(y2_2(x), x))/(23.7) = 0; eq2_3 := (diff(y2_3(x), x))/(23.7) = y2_2(x); eq2_4 := (diff(y2_4(x), x))/(23.7) = 2*b*phi_cb*(y2_17(x)+(1/2)*db*y2_19(x)-y2_20(x)-y2_21(x)*c-y2_22(x)*c^2-y2_23(x)*c^3)/delta0_cb^2; eq2_5 := (diff(y2_5(x), x))/(23.7) = b*phi_cb*(y2_18(x)-y2_24(x)-y2_25(x)*c-y2_26(x)*c^2)/delta0_cb^2; eq2_6 := (diff(y2_6(x), x))/(23.7) = y2_5(x)-2*b*db*phi_cb*(y2_17(x)+(1/2)*db*y2_19(x)-y2_20(x)-y2_21(x)*c-y2_22(x)*c^2-y2_23(x)*c^3)/delta0_cb^2*(1/2); eq2_7 := (diff(y2_7(x), x))/(23.7) = -2*b*phi_cb*(y2_17(x)+(1/2)*db*y2_19(x)-y2_20(x)-y2_21(x)*c-y2_22(x)*c^2-y2_23(x)*c^3)/delta0_cb^2; eq2_8 := (diff(y2_8(x), x))/(23.7) = -2*b*c*phi_cb*(y2_17(x)+(1/2)*db*y2_19(x)-y2_20(x)-y2_21(x)*c-y2_22(x)*c^2-y2_23(x)*c^3)/delta0_cb^2+y2_11(x); eq2_9 := (diff(y2_9(x), x))/(23.7) = -2*b*c^2*phi_cb*(y2_17(x)+(1/2)*db*y2_19(x)-y2_20(x)-y2_21(x)*c-y2_22(x)*c^2-y2_23(x)*c^3)/delta0_cb^2+2*y2_12(x); eq2_10 := (diff(y2_10(x), x))/(23.7) = -2*b*c^3*phi_cb*(y2_17(x)+(1/2)*db*y2_19(x)-y2_20(x)-y2_21(x)*c-y2_22(x)*c^2-y2_23(x)*c^3)/delta0_cb^2+3*y2_13(x); eq2_11 := (diff(y2_11(x), x))/(23.7) = -b*phi_cb*(y2_18(x)-y2_24(x)-y2_25(x)*c-y2_26(x)*c^2)/delta0_cb^2; eq2_12 := (diff(y2_12(x), x))/(23.7) = -b*c*phi_cb*(y2_18(x)-y2_24(x)-y2_25(x)*c-y2_26(x)*c^2)/delta0_cb^2+2*Ec*b*c*y2_25(x)+nuc*y2_7(x); eq2_13 := (diff(y2_13(x), x))/(23.7) = -b*c^2*phi_cb*(y2_18(x)-y2_24(x)-y2_25(x)*c-y2_26(x)*c^2)/delta0_cb^2+2*(4*Ec*b*c^3*y2_26(x)*(1/3)+nuc*y2_8(x)); eq2_14 := (diff(y2_14(x), x))/(23.7) = y2_1(x)/(b*A11); eq2_15 := (diff(y2_15(x), x))/(23.7) = y2_16(x)+y2_2(x)/(b*A55); eq2_16 := (diff(y2_16(x), x))/(23.7) = -y2_3(x)/(b*D11); eq2_17 := (diff(y2_17(x), x))/(23.7) = y2_4(x)/(b*A11); eq2_18 := (diff(y2_18(x), x))/(23.7) = y2_19(x)+y2_5(x)/(b*A55); eq2_19 := (diff(y2_19(x), x))/(23.7) = -y2_6(x)/(b*D11); eq2_20 := (diff(y2_20(x), x))/(23.7) = (-nuc^2+1)*(9*c^2*y2_7(x)-15*y2_9(x))/(8*Ec*b*c^3)-nuc*y2_25(x); eq2_21 := (diff(y2_21(x), x))/(23.7) = (-nuc^2+1)*(75*c^2*y2_8(x)-105*y2_10(x))/(8*Ec*b*c^5)-2*nuc*y2_26(x); eq2_22 := (diff(y2_22(x), x))/(23.7) = (-nuc^2+1)*(45*y2_9(x)-15*c^2*y2_7(x))/(8*Ec*b*c^5); eq2_23 := (diff(y2_23(x), x))/(23.7) = (-nuc^2+1)*(175*y2_10(x)-105*c^2*y2_8(x))/(8*Ec*b*c^7); eq2_24 := (diff(y2_24(x), x))/(23.7) = (9*c^2*y2_11(x)-15*y2_13(x))/(8*Gc*b*c^3)-y2_21(x); eq2_25 := (diff(y2_25(x), x))/(23.7) = 3*y2_12(x)/(2*Gc*b*c^3)-2*y2_22(x); eq2_26 := (diff(y2_26(x), x))/(23.7) = (45*y2_13(x)-15*c^2*y2_11(x))/(8*Gc*b*c^5)-3*y2_23(x)

``

eq3_1 := (diff(y3_1(x), x))/(101.6) = -2*b*phi_ct*(y3_20(x)-y3_21(x)*c+y3_22(x)*c^2-y3_23(x)*c^3-y3_14(x)+(1/2)*dt*y3_16(x))*(1+(y3_24(x)-y3_25(x)*c+y3_26(x)*c^2-y3_15(x))/delta0_ct)*exp(-(y3_24(x)-y3_25(x)*c+y3_26(x)*c^2-y3_15(x))/delta0_ct-(y3_20(x)-y3_21(x)*c+y3_22(x)*c^2-y3_23(x)*c^3-y3_14(x)+(1/2)*dt*y3_16(x))^2/delta0_ct^2)/delta0_ct^2

eq3_2 := (diff(y3_2(x), x))/(101.6) = -b*phi_ct*(y3_24(x)-y3_25(x)*c+y3_26(x)*c^2-y3_15(x))*exp(-(y3_24(x)-y3_25(x)*c+y3_26(x)*c^2-y3_15(x))/delta0_ct-(y3_20(x)-y3_21(x)*c+y3_22(x)*c^2-y3_23(x)*c^3-y3_14(x)+(1/2)*dt*y3_16(x))^2/delta0_ct^2)/delta0_ct^2

eq3_3 := (diff(y3_3(x), x))/(101.6) = y3_2(x)-2*b*dt*phi_ct*(y3_20(x)-y3_21(x)*c+y3_22(x)*c^2-y3_23(x)*c^3-y3_14(x)+(1/2)*dt*y3_16(x))*(1+(y3_24(x)-y3_25(x)*c+y3_26(x)*c^2-y3_15(x))/delta0_ct)*exp(-(y3_24(x)-y3_25(x)*c+y3_26(x)*c^2-y3_15(x))/delta0_ct-(y3_20(x)-y3_21(x)*c+y3_22(x)*c^2-y3_23(x)*c^3-y3_14(x)+(1/2)*dt*y3_16(x))^2/delta0_ct^2)/delta0_ct^2*(1/2)

eq3_4 := (diff(y3_4(x), x))/(101.6) = 2*b*phi_cb*(y3_17(x)+(1/2)*db*y3_19(x)-y3_20(x)-y3_21(x)*c-y3_22(x)*c^2-y3_23(x)*c^3)/delta0_cb^2

eq3_5 := (diff(y3_5(x), x))/(101.6) = b*phi_cb*(y3_18(x)-y3_24(x)-y3_25(x)*c-y3_26(x)*c^2)/delta0_cb^2

eq3_6 := (diff(y3_6(x), x))/(101.6) = y3_5(x)-2*b*db*phi_cb*(y3_17(x)+(1/2)*db*y3_19(x)-y3_20(x)-y3_21(x)*c-y3_22(x)*c^2-y3_23(x)*c^3)/delta0_cb^2*(1/2)

eq3_7 := (diff(y3_7(x), x))/(101.6) = -2*b*phi_cb*(y3_17(x)+(1/2)*db*y3_19(x)-y3_20(x)-y3_21(x)*c-y3_22(x)*c^2-y3_23(x)*c^3)/delta0_cb^2+2*b*phi_ct*(y3_20(x)-y3_21(x)*c+y3_22(x)*c^2-y3_23(x)*c^3-y3_14(x)+(1/2)*dt*y3_16(x))*(1+(y3_24(x)-y3_25(x)*c+y3_26(x)*c^2-y3_15(x))/delta0_ct)*exp(-(y3_24(x)-y3_25(x)*c+y3_26(x)*c^2-y3_15(x))/delta0_ct-(y3_20(x)-y3_21(x)*c+y3_22(x)*c^2-y3_23(x)*c^3-y3_14(x)+(1/2)*dt*y3_16(x))^2/delta0_ct^2)/delta0_ct^2

eq3_8 := (diff(y3_8(x), x))/(101.6) = -2*b*c*phi_ct*(y3_20(x)-y3_21(x)*c+y3_22(x)*c^2-y3_23(x)*c^3-y3_14(x)+(1/2)*dt*y3_16(x))*(1+(y3_24(x)-y3_25(x)*c+y3_26(x)*c^2-y3_15(x))/delta0_ct)*exp(-(y3_24(x)-y3_25(x)*c+y3_26(x)*c^2-y3_15(x))/delta0_ct-(y3_20(x)-y3_21(x)*c+y3_22(x)*c^2-y3_23(x)*c^3-y3_14(x)+(1/2)*dt*y3_16(x))^2/delta0_ct^2)/delta0_ct^2-2*b*c*phi_cb*(y3_17(x)+(1/2)*db*y3_19(x)-y3_20(x)-y3_21(x)*c-y3_22(x)*c^2-y3_23(x)*c^3)/delta0_cb^2+y3_11(x)

eq3_9 := (diff(y3_9(x), x))/(101.6) = -2*b*c^2*phi_cb*(y3_17(x)+(1/2)*db*y3_19(x)-y3_20(x)-y3_21(x)*c-y3_22(x)*c^2-y3_23(x)*c^3)/delta0_cb^2+2*b*c^2*phi_ct*(y3_20(x)-y3_21(x)*c+y3_22(x)*c^2-y3_23(x)*c^3-y3_14(x)+(1/2)*dt*y3_16(x))*(1+(y3_24(x)-y3_25(x)*c+y3_26(x)*c^2-y3_15(x))/delta0_ct)*exp(-(y3_24(x)-y3_25(x)*c+y3_26(x)*c^2-y3_15(x))/delta0_ct-(y3_20(x)-y3_21(x)*c+y3_22(x)*c^2-y3_23(x)*c^3-y3_14(x)+(1/2)*dt*y3_16(x))^2/delta0_ct^2)/delta0_ct^2+2*y3_12(x)

eq3_10 := (diff(y3_10(x), x))/(101.6) = -2*b*c^3*phi_ct*(y3_20(x)-y3_21(x)*c+y3_22(x)*c^2-y3_23(x)*c^3-y3_14(x)+(1/2)*dt*y3_16(x))*(1+(y3_24(x)-y3_25(x)*c+y3_26(x)*c^2-y3_15(x))/delta0_ct)*exp(-(y3_24(x)-y3_25(x)*c+y3_26(x)*c^2-y3_15(x))/delta0_ct-(y3_20(x)-y3_21(x)*c+y3_22(x)*c^2-y3_23(x)*c^3-y3_14(x)+(1/2)*dt*y3_16(x))^2/delta0_ct^2)/delta0_ct^2-2*b*c^3*phi_cb*(y3_17(x)+(1/2)*db*y3_19(x)-y3_20(x)-y3_21(x)*c-y3_22(x)*c^2-y3_23(x)*c^3)/delta0_cb^2+3*y3_13(x)

eq3_11 := (diff(y3_11(x), x))/(101.6) = -b*phi_cb*(y3_18(x)-y3_24(x)-y3_25(x)*c-y3_26(x)*c^2)/delta0_cb^2+b*phi_ct*(y3_24(x)-y3_25(x)*c+y3_26(x)*c^2-y3_15(x))*exp(-(y3_24(x)-y3_25(x)*c+y3_26(x)*c^2-y3_15(x))/delta0_ct-(y3_20(x)-y3_21(x)*c+y3_22(x)*c^2-y3_23(x)*c^3-y3_14(x)+(1/2)*dt*y3_16(x))^2/delta0_ct^2)/delta0_ct^2

eq3_12 := (diff(y3_12(x), x))/(101.6) = -b*c*phi_ct*(y3_24(x)-y3_25(x)*c+y3_26(x)*c^2-y3_15(x))*exp(-(y3_24(x)-y3_25(x)*c+y3_26(x)*c^2-y3_15(x))/delta0_ct-(y3_20(x)-y3_21(x)*c+y3_22(x)*c^2-y3_23(x)*c^3-y3_14(x)+(1/2)*dt*y3_16(x))^2/delta0_ct^2)/delta0_ct^2-b*c*phi_cb*(y3_18(x)-y3_24(x)-y3_25(x)*c-y3_26(x)*c^2)/delta0_cb^2+2*Ec*b*c*y3_25(x)+nuc*y3_7(x)

eq3_13 := (diff(y3_13(x), x))/(101.6) = -b*c^2*phi_cb*(y3_18(x)-y3_24(x)-y3_25(x)*c-y3_26(x)*c^2)/delta0_cb^2+b*c^2*phi_ct*(y3_24(x)-y3_25(x)*c+y3_26(x)*c^2-y3_15(x))*exp(-(y3_24(x)-y3_25(x)*c+y3_26(x)*c^2-y3_15(x))/delta0_ct-(y3_20(x)-y3_21(x)*c+y3_22(x)*c^2-y3_23(x)*c^3-y3_14(x)+(1/2)*dt*y3_16(x))^2/delta0_ct^2)/delta0_ct^2+2*(4*Ec*b*c^3*y3_26(x)*(1/3)+nuc*y3_8(x))

eq3_14 := (diff(y3_14(x), x))/(101.6) = y3_1(x)/(b*A11); eq3_15 := (diff(y3_15(x), x))/(101.6) = y3_16(x)+y3_2(x)/(b*A55); eq3_16 := (diff(y3_16(x), x))/(101.6) = -y3_3(x)/(b*D11); eq3_17 := (diff(y3_17(x), x))/(101.6) = y3_4(x)/(b*A11); eq3_18 := (diff(y3_18(x), x))/(101.6) = y3_19(x)+y3_5(x)/(b*A55); eq3_19 := (diff(y3_19(x), x))/(101.6) = -y3_6(x)/(b*D11); eq3_20 := (diff(y3_20(x), x))/(101.6) = (-nuc^2+1)*(9*c^2*y3_7(x)-15*y3_9(x))/(8*Ec*b*c^3)-nuc*y3_25(x); eq3_21 := (diff(y3_21(x), x))/(101.6) = (-nuc^2+1)*(75*c^2*y3_8(x)-105*y3_10(x))/(8*Ec*b*c^5)-2*nuc*y3_26(x); eq3_22 := (diff(y3_22(x), x))/(101.6) = (-nuc^2+1)*(45*y3_9(x)-15*c^2*y3_7(x))/(8*Ec*b*c^5); eq3_23 := (diff(y3_23(x), x))/(101.6) = (-nuc^2+1)*(175*y3_10(x)-105*c^2*y3_8(x))/(8*Ec*b*c^7); eq3_24 := (diff(y3_24(x), x))/(101.6) = (9*c^2*y3_11(x)-15*y3_13(x))/(8*Gc*b*c^3)-y3_21(x); eq3_25 := (diff(y3_25(x), x))/(101.6) = 3*y3_12(x)/(2*Gc*b*c^3)-2*y3_22(x); eq3_26 := (diff(y3_26(x), x))/(101.6) = (45*y3_13(x)-15*c^2*y3_11(x))/(8*Gc*b*c^5)-3*y3_23(x)

eq1_27 := diff(y1_27(x), x) = 0

odesys := [eq1_1, eq1_2, eq1_3, eq1_4, eq1_5, eq1_6, eq1_7, eq1_8, eq1_9, eq1_10, eq1_11, eq1_12, eq1_13, eq1_14, eq1_15, eq1_16, eq1_17, eq1_18, eq1_19, eq1_20, eq1_21, eq1_22, eq1_23, eq1_24, eq1_25, eq1_26, eq1_27, eq2_1, eq2_2, eq2_3, eq2_4, eq2_5, eq2_6, eq2_7, eq2_8, eq2_9, eq2_10, eq2_11, eq2_12, eq2_13, eq2_14, eq2_15, eq2_16, eq2_17, eq2_18, eq2_19, eq2_20, eq2_21, eq2_22, eq2_23, eq2_24, eq2_25, eq2_26, eq3_1, eq3_2, eq3_3, eq3_4, eq3_5, eq3_6, eq3_7, eq3_8, eq3_9, eq3_10, eq3_11, eq3_12, eq3_13, eq3_14, eq3_15, eq3_16, eq3_17, eq3_18, eq3_19, eq3_20, eq3_21, eq3_22, eq3_23, eq3_24, eq3_25, eq3_26, y1_1(0) = 0, y1_2(0) = 0, y1_3(0) = 0, y1_4(0) = 0, y1_5(0) = 0, y1_6(0) = 0, y1_7(0) = 0, y1_8(0) = 0, y1_9(0) = 0, y1_10(0) = 0, y1_11(0) = 0, y1_12(0) = 0, y1_13(0) = 0, y1_2(1)-y2_2(0)-y1_27 = 0, y1_3(1)-y2_3(0) = 0, y1_6(1)-y2_6(0) = 0, y1_7(1)-y2_7(0) = 0, y1_8(1)-y2_8(0) = 0, y1_9(1)-y2_9(0) = 0, y1_10(1)-y2_10(0) = 0, y1_11(1)-y2_11(0) = 0, y1_12(1)-y2_12(0) = 0, y1_13(1)-y2_13(0) = 0, y1_14(1) = y2_14(0), y1_15(1) = y2_15(0), y1_16(1) = y2_16(0), y1_17(1) = y2_17(0), y1_18(1) = y2_18(0), y1_19(1) = y2_19(0), y1_20(1) = y2_20(0), y1_21(1) = y2_21(0), y1_22(1) = y2_22(0), y1_23(1) = y2_23(0), y1_24(1) = y2_24(0), y1_25(1) = y2_25(0), y1_26(1) = y2_26(0), y1_14(1) = 0, y1_15(1) = -lambda, y1_17(1) = 0, y1_18(1) = 0, y2_1(1)-y3_1(0) = 0, y2_2(1)-y3_2(0) = 0, y2_3(1)-y3_3(0) = 0, y2_4(1)-y3_4(0) = 0, y2_5(1)-y3_5(0) = 0, y2_6(1)-y3_6(0) = 0, y2_7(1)-y3_7(0) = 0, y2_8(1)-y3_8(0) = 0, y2_9(1)-y3_9(0) = 0, y2_10(1)-y3_10(0) = 0, y2_11(1)-y3_11(0) = 0, y2_12(1)-y3_12(0) = 0, y2_13(1)-y3_13(0) = 0, y2_14(1) = y3_14(0), y2_15(1) = y3_15(0), y2_16(1) = y3_16(0), y2_17(1) = y3_17(0), y2_18(1) = y3_18(0), y2_19(1) = y3_19(0), y2_20(1) = y3_20(0), y2_21(1) = y3_21(0), y2_22(1) = y3_22(0), y2_23(1) = y3_23(0), y2_24(1) = y3_24(0), y2_25(1) = y3_25(0), y2_26(1) = y3_26(0), y3_1(1) = 0, y3_2(1) = 0, y3_3(1) = 0, y3_4(1) = 0, y3_5(1) = 0, y3_6(1) = 0, y3_7(1) = 0, y3_8(1) = 0, y3_9(1) = 0, y3_10(1) = 0, y3_11(1) = 0, y3_12(1) = 0, y3_13(1) = 0], [y1_1(x), y1_2(x), y1_3(x), y1_4(x), y1_5(x), y1_6(x), y1_7(x), y1_8(x), y1_9(x), y1_10(x), y1_11(x), y1_12(x), y1_13(x), y1_14(x), y1_15(x), y1_16(x), y1_17(x), y1_18(x), y1_19(x), y1_20(x), y1_21(x), y1_22(x), y1_23(x), y1_24(x), y1_25(x), y1_26(x), y1_27(x), y2_1(x), y2_2(x), y2_3(x), y2_4(x), y2_5(x), y2_6(x), y2_7(x), y2_8(x), y2_9(x), y2_10(x), y2_11(x), y2_12(x), y2_13(x), y2_14(x), y2_15(x), y2_16(x), y2_17(x), y2_18(x), y2_19(x), y2_20(x), y2_21(x), y2_22(x), y2_23(x), y2_24(x), y2_25(x), y2_26(x), y3_1(x), y3_2(x), y3_3(x), y3_4(x), y3_5(x), y3_6(x), y3_7(x), y3_8(x), y3_9(x), y3_10(x), y3_11(x), y3_12(x), y3_13(x), y3_14(x), y3_15(x), y3_16(x), y3_17(x), y3_18(x), y3_19(x), y3_20(x), y3_21(x), y3_22(x), y3_23(x), y3_24(x), y3_25(x), y3_26(x)]
NULL

solnumeric1 := dsolve(eval(odesys, lambda = .1), numeric)

solnumeric1(1)

[x = 1., y1_1(x) = HFloat(0.0), y1_2(x) = HFloat(-3.420984483671309e-31), y1_3(x) = HFloat(-9.266873428961157e-30), y1_4(x) = HFloat(-2.8265796778082293), y1_5(x) = HFloat(4.585656258526918), y1_6(x) = HFloat(29.73356557713309), y1_7(x) = HFloat(2.8265796778082293), y1_8(x) = HFloat(1.6414688476893966), y1_9(x) = HFloat(78.13532261272604), y1_10(x) = HFloat(134.29458529790443), y1_11(x) = HFloat(-4.585656258526918), y1_12(x) = HFloat(-12.84587679453849), y1_13(x) = HFloat(-141.040214445319), y1_14(x) = HFloat(0.0), y1_15(x) = HFloat(-0.09999999999999995), y1_16(x) = HFloat(0.004086375487434791), y1_17(x) = HFloat(0.0), y1_18(x) = HFloat(0.0), y1_19(x) = HFloat(-2.458791784171863e-4), y1_20(x) = HFloat(-0.001957542333257033), y1_21(x) = HFloat(1.9956662771272542e-4), y1_22(x) = HFloat(-1.5079719874448682e-6), y1_23(x) = HFloat(3.3273624675095036e-8), y1_24(x) = HFloat(-7.164450668824305e-4), y1_25(x) = HFloat(1.1943543119401487e-5), y1_26(x) = HFloat(1.0902056689470582e-6), y1_27(x) = HFloat(-11.236234112909697), y2_1(x) = HFloat(7.740295426479526e-11), y2_2(x) = HFloat(11.236234112909697), y2_3(x) = HFloat(266.2987484570526), y2_4(x) = HFloat(-13.486001518995927), y2_5(x) = HFloat(-0.02999714213517951), y2_6(x) = HFloat(-22.43800529304631), y2_7(x) = HFloat(13.486001518918538), y2_8(x) = HFloat(-94.16612630071822), y2_9(x) = HFloat(785.015722665203), y2_10(x) = HFloat(-6775.009356439386), y2_11(x) = HFloat(-11.206236970774473), y2_12(x) = HFloat(77.76745611873598), y2_13(x) = HFloat(-642.9939052968533), y2_14(x) = HFloat(4.689768932388945e-16), y2_15(x) = HFloat(-0.0187710269573956), y2_16(x) = HFloat(0.0020861962139203305), y2_17(x) = HFloat(-5.312274942589151e-5), y2_18(x) = HFloat(-0.005830316541460037), y2_19(x) = HFloat(-1.227143374954293e-4), y2_20(x) = HFloat(-0.0011198874012043685), y2_21(x) = HFloat(7.602496797322661e-5), y2_22(x) = HFloat(-2.932591600936832e-6), y2_23(x) = HFloat(5.109018589948548e-7), y2_24(x) = HFloat(-0.0066417834273388736), y2_25(x) = HFloat(1.1855664085790522e-4), y2_26(x) = HFloat(-6.471131431633229e-6), y3_1(x) = HFloat(0.0), y3_2(x) = HFloat(0.0), y3_3(x) = HFloat(0.0), y3_4(x) = HFloat(0.0), y3_5(x) = HFloat(0.0), y3_6(x) = HFloat(0.0), y3_7(x) = HFloat(0.0), y3_8(x) = HFloat(0.0), y3_9(x) = HFloat(0.0), y3_10(x) = HFloat(0.0), y3_11(x) = HFloat(0.0), y3_12(x) = HFloat(0.0), y3_13(x) = HFloat(0.0), y3_14(x) = HFloat(-7.007769576850207e-6), y3_15(x) = HFloat(-0.004786448735922665), y3_16(x) = HFloat(4.689280929440655e-6), y3_17(x) = HFloat(-1.115140128648413e-4), y3_18(x) = HFloat(-0.004788926306328681), y3_19(x) = HFloat(4.716347003469115e-6), y3_20(x) = HFloat(-5.966958988267552e-5), y3_21(x) = HFloat(-4.710193875348028e-6), y3_22(x) = HFloat(3.723242564645378e-9), y3_23(x) = HFloat(1.7383541695404693e-11), y3_24(x) = HFloat(-0.004787700776648968), y3_25(x) = HFloat(-8.409570657167222e-8), y3_26(x) = HFloat(3.920653061680723e-13)]

(1)

eval(y1_15(x), solnumeric1(1))

HFloat(-0.09999999999999995)

(2)

solnumeric2 := dsolve(eval(odesys, lambda = .2), numeric, approxsoln = solnumeric1)

solnumeric2(1)

[x = 1., y1_1(x) = HFloat(0.0), y1_2(x) = HFloat(9.91754437122494e-31), y1_3(x) = HFloat(2.644576426424349e-29), y1_4(x) = HFloat(-5.603094057809917), y1_5(x) = HFloat(9.09374039451959), y1_6(x) = HFloat(58.98274298987732), y1_7(x) = HFloat(5.603094057809917), y1_8(x) = HFloat(3.2116010541036433), y1_9(x) = HFloat(155.01059917305062), y1_10(x) = HFloat(263.6582486973655), y1_11(x) = HFloat(-9.09374039451959), y1_12(x) = HFloat(-25.455963354005693), y1_13(x) = HFloat(-279.67427671048745), y1_14(x) = HFloat(0.0), y1_15(x) = HFloat(-0.2), y1_16(x) = HFloat(0.008147823006539021), y1_17(x) = HFloat(0.0), y1_18(x) = HFloat(0.0), y1_19(x) = HFloat(-4.893683538006013e-4), y1_20(x) = HFloat(-0.0039005385684999427), y1_21(x) = HFloat(3.9734462659816e-4), y1_22(x) = HFloat(-2.9859642412915005e-6), y1_23(x) = HFloat(6.615629254455415e-8), y1_24(x) = HFloat(-0.0014201214341957485), y1_25(x) = HFloat(2.367533790680135e-5), y1_26(x) = HFloat(2.1613160651587853e-6), y1_27(x) = HFloat(-22.272088128521), y2_1(x) = HFloat(1.5436667559662633e-10), y2_2(x) = HFloat(22.272088128521), y2_3(x) = HFloat(527.8484886084707), y2_4(x) = HFloat(-26.813913122676354), y2_5(x) = HFloat(-0.08494021557889558), y2_6(x) = HFloat(-44.53630964170562), y2_7(x) = HFloat(26.813913122522), y2_8(x) = HFloat(-185.67774330021663), y2_9(x) = HFloat(1540.8472481573233), y2_10(x) = HFloat(-13273.813265855923), y2_11(x) = HFloat(-22.187147912942024), y2_12(x) = HFloat(150.80492022252844), y2_13(x) = HFloat(-1250.6342968076021), y2_14(x) = HFloat(9.352925173018744e-16), y2_15(x) = HFloat(-0.03785432269850503), y2_16(x) = HFloat(0.004183134428061269), y2_17(x) = HFloat(-1.0543574647814595e-4), y2_18(x) = HFloat(-0.01161348641778394), y2_19(x) = HFloat(-2.457531544510972e-4), y2_20(x) = HFloat(-0.0022286402553366356), y2_21(x) = HFloat(1.5246937829587885e-4), y2_22(x) = HFloat(-5.951726042431068e-6), y2_23(x) = HFloat(1.0187398718768428e-6), y2_24(x) = HFloat(-0.013219098060327176), y2_25(x) = HFloat(2.3118797147645158e-4), y2_26(x) = HFloat(-1.2378566530075372e-5), y3_1(x) = HFloat(0.0), y3_2(x) = HFloat(0.0), y3_3(x) = HFloat(0.0), y3_4(x) = HFloat(0.0), y3_5(x) = HFloat(0.0), y3_6(x) = HFloat(0.0), y3_7(x) = HFloat(0.0), y3_8(x) = HFloat(0.0), y3_9(x) = HFloat(0.0), y3_10(x) = HFloat(0.0), y3_11(x) = HFloat(0.0), y3_12(x) = HFloat(0.0), y3_13(x) = HFloat(0.0), y3_14(x) = HFloat(-1.3745405304885917e-5), y3_15(x) = HFloat(-0.009551602627064183), y3_16(x) = HFloat(9.360925305428535e-6), y3_17(x) = HFloat(-2.2225649768539837e-4), y3_18(x) = HFloat(-0.009556617751405889), y3_19(x) = HFloat(9.405647034785441e-6), y3_20(x) = HFloat(-1.1883051871990019e-4), y3_21(x) = HFloat(-9.397755462238224e-6), y3_22(x) = HFloat(7.530356834861044e-9), y3_23(x) = HFloat(3.442926203355596e-11), y3_24(x) = HFloat(-0.009554139152946705), y3_25(x) = HFloat(-1.6942434208819727e-7), y3_26(x) = HFloat(9.048398286920709e-12)]

(3)

eval(y1_15(x), solnumeric2(1))

HFloat(-0.2)

(4)

NULL


 

Download toughODE2.mw

@acer 

my original answer (developed in Maple2020.1  in Maple 18 - It seems to work OK

@sand15 

If you posted your worksheet, I could try it on my machine.

  1. If I can reproduce your problem then it is a Maple/worksheet issue, which may be possible to correct or workaround.
  2. If I can't reproduce then it is most likely to be an installation issue on your machine

The above determination would represent some progress in assisting with your problem

First 42 43 44 45 46 47 48 Last Page 44 of 207