vv

13977 Reputation

20 Badges

10 years, 36 days

MaplePrimes Activity


These are answers submitted by vv

B:=(4*exp(x/2) - 3*x - 2*exp(x/3)+1)^11 + (4*exp(x/2) + x - 2*exp(x/3)+1)^11 - 13:
A:=combine(expand(B)):
A1:=simplify(A, size): B1:=simplify(B, size):
length~([A, B, A1, B1]);
MmaTranslator:-Mma:-LeafCount~([A, B, A1, B1]);                   

                    [6209, 120, 3487, 120]

                      [1539, 38, 976, 38]

It will be very difficult (no algorithms available) to simplify A to B.  For the other software too!

eval(A-B, x=2*t):
simplify(factor(expand(%))) assuming real;

                     0

Maple 2024 does not solve the problem.
Here is a workaround:

convert(series((f:=(lhs-rhs)(eq)),t,16),polynom):
solve([coeffs(%,t)]);
eval(f,%); #check

        {A[1]=0, A[2]=0, A[3]=-7/25, A[4]=1/25, A[5]=-2/5, A[6]=1/5, A[7]=3/16, A[8]=0, A[9]=0, A[10]=3/8}
        0

f := n -> (ln(x)^n)^(1/n);

simplify(f(2))  returns  csgn(ln(x))*ln(x)
just because the "simple" function  csgn exists.  csgn(z) equals sqrt(z^2)/z for z<>0.

simplify(f(3))  remains unsimplified because a similar "sign" function does not exist for z^(1/3);

For n = 3 or n=5,  simplify((log(x)^n)^(1/n)) assuming x::positive, x<1   give both  - ln(x) * (-1)^(1/n)
but when n=3,   (-1)^(1/3)   is further simplified to 1/2+I*sqrt(3)/2; 
When n=5, it would be too complicated:  (-1)^(1/5) = sqrt(5)/4 + 1/4 + sqrt(2)*sqrt(5 - sqrt(5))*I/4.

odetest cannot work with such generalized series. But it is easy to test the solution directly: 

fsol:=series(rhs(maple_sol), x=0):
# series(eval(lhs(ode), y(x)=fsol), x);  # O(x^5)
map(series, map(eval, ode, y(x)=fsol), x)

          O(x^5) = 0

restart;

X,Y := t->5*cos(t), t->(5+sin(6*t))*sin(t):

with(plots):

P0:=plot([X,Y, 0..2*Pi], color=black):

T:=D(Y)/D(X): # the sloap of the tangent

K:=unapply(VectorCalculus:-Curvature(<X(t),Y(t)>),t):

tt[1],tt[2] := eval( [a,b], fsolve({T(a)-T(b), K(a)-K(b)}, {a, b}, {a=0..1, b=3..5}) )[];

.5465721754, 4.440166423

(1)

tt[3],tt[4] := eval( [a,b], fsolve({T(a)-T(b), K(a)-K(b)}, {a, b}, {a=2..2.5, b=3..6}) )[];

2.168601832, 3.704639334

(2)

tt[5],tt[6] := eval( [a,b], fsolve({T(a)-T(b), K(a)-K(b)}, {a, b}, {a=2.5..3, b=3..6}) )[];

2.845163972, 5.737842021

(3)

col:=[red$2,blue$2,green$2]:

curvatures=seq(K(tt[i]),i=1..6)

curvatures = (1.391345054, 1.391345047, 1.111111250, 1.111111261, 0.3791851261e-1, 0.3791851136e-1)

(4)

display(P0,
        seq( pointplot([[X(tt[i]),Y(tt[i])]], color=col[i]), i=1..6),
        seq( plot(T(tt[i])*(x-X(tt[i])) + Y(tt[i]), x=-40..40, color=col[i]), i=1..6),
        symbolsize=24, symbol=solidcircle, scaling=unconstrained, view=[-7..7,-7..7],gridlines=false
);

 

 


 

Download equal-sloap-curvature-vv.mw

The correct syntax for rsolve is:

sol := rsolve({f(n)=sin(f(n-1)), f(0)=a}, f(n));

(sin@@n)(a)

(1)

Unfortunately Maple cannot compute the following "classical" limit directly:

 

limit(sol*sqrt(n/3), n=infinity) assuming a>0,a<Pi;

limit((1/3)*(sin@@n)(a)*3^(1/2)*n^(1/2), n = infinity)

(2)

However, it can more than this: it is able to compute the asymptotic expansion!

 

asympt('rsolve'({f(0) = a, f(n) = sin(f(n - 1))}, f(n)), n);

3^(1/2)*(1/n)^(1/2)+(_C-(3/10)*3^(1/2)*ln(n))*(1/n)^(3/2)+O((1/n)^(5/2))

(3)

So, the limit is 1.

Note however that this is a generic result; for its validity we must add a condition e.g. 0<a, a<Pi.

Using the identity theorem, a very simple solution is possible:

u := sin(2*x)/(cosh(2*y) - cos(2*x)):
f:=eval(u, [y=0,x=z]) + I*C : # C = real constant
simplify(convert(f, cot));

        C*I + cot(z)

The idea is to expand in power series and then change the order of summation. After that, the limit will be simple.

restart;

f := k*t^k/(1-t^k); # without (1-t)^2

k*t^k/(1-t^k)

(1)

f := convert(eval(f, t^k=u), FPS, u) assuming k::posint

Sum(k*u^(n+1), n = 0 .. infinity)

(2)

f := (eval(%, u=t^k)) assuming k>0,t>0

Sum(k*(t^k)^(n+1), n = 0 .. infinity)

(3)

term := op(1,%)

k*(t^k)^(n+1)

(4)

F := Sum(sum((1-t)^2*term, k=1..infinity),n=0..infinity) assuming t>0,t<1;

Sum((t-1)^2*t^(n+1)/(t^(n+1)-1)^2, n = 0 .. infinity)

(5)

limit(F, t=1,left)

Sum(1/(n+1)^2, n = 0 .. infinity)

(6)

ans = value(%);

ans = (1/6)*Pi^2

(7)
 

 

Download lim_ser-vv.mw

Maple can guess the result:

s:=sum( arctan(2/n^2), n=1 .. infinity);
ans:=identify(evalf(s));
evalf[200](s - ans);  # check 200 digits, --> 0

                  

PS. Why don't you express the series in Maple, i.e.  sum( arctan(2/n^2), n=1 .. infinity) ?

PS2. Of course this is not a proof.  It is easy to obtain one in Maple, but only if the user knows it mathematically.
I omit it because you probably know it.

Maple cannot compute it, but it's easy with Stoltz-Cesaro theorem:

a:=n -> 2^n/n:
limit(a(n) / (a(n)-a(n-1)), n=infinity);

                    2

J:=Int(ln(x)*ln(1 - x), x = 0 .. 1);

Int(ln(x)*ln(1-x), x = 0 .. 1)

(1)

F2:=convert(ln(1-x), FPS);

Sum(-x^(n+1)/(n+1), n = 0 .. infinity)

(2)

J1:=Int(ln(x)*op(1,F2), x=0..1);

Int(-ln(x)*x^(n+1)/(n+1), x = 0 .. 1)

(3)

value(%) assuming n>=0; # by parts

1/((n+1)*(n+2)^2)

(4)

V1:=convert(%, parfrac);

-1/(n+2)+1/(n+1)-1/(n+2)^2

(5)

J = sum(V1, n=0..infinity);  # Easy to justify by dominated convergence

Int(ln(x)*ln(1-x), x = 0 .. 1) = 2-(1/6)*Pi^2

(6)


Download INT1-vv.mw

Try  (*.mw, not *.mpl):

interface(worksheetdir);

 

 1/(1 - x*y) = Sum( (x*y)^k, k=0 .. infinity );
Applying the double integral over (0,1)^2 implies (by monotone convergence):
 Int( 1/(1 - x*y), x=0..1, y=0..1 ) = Sum( 1/k^2, k =1 .. infinity );
==>  Int( 1/(1 - x*y), x=0..1, y=0..1 ) = Pi^2 / 6.

You have to use LinearAlgebra[Modular]:

restart
A:=Matrix(9,[
0,0,0,-1,1,-1,-1,0,0,
0,-1,0,1,-1,1,0,-1,-1,
0,0,-1,0,0,0,1,1,0,
0,1,0,-1,-1,1,-1,-1,0,
0,0,0,0,0,-1,1,0,-1,
0,0,0,0,0,-1,0,1,1,
0,0,1,-1,1,1,-1,-1,0,
0,0,0,0,0,1,1,-1,0,
0,0,0,0,0,0,0,0,0], datatype=integer[8]):
with(LinearAlgebra[Modular]):
Rank(3,A);
#                               7
B := Copy(3,A):
RowReduce(3,B,9,9,9,'det',0,'rank',0,0,true): B;

            

 

Edit. To obtain a basis for the nullspace explicitly, it is better to use:

with(LinearAlgebra[Modular]):
A1 := Copy(3,A):
r:=MatBasis(3, A1, 9, true): r,A1;
colonbasis, nullspacebasis:= A1[1..r, ..], A1[r+1.., ..];
colonbasis . nullspacebasis^+  mod 3; # check (==> 0 matrix)
1 2 3 4 5 6 7 Last Page 3 of 120