vv

14092 Reputation

20 Badges

10 years, 95 days

MaplePrimes Activity


These are answers submitted by vv

Your  algebraic fractions al already simplified (but there are of course other possibilities, e.g. partial fractions).
For a factorization, the field K is needed.
For K=Q, the polynomials are already factorized.
If you want K=C (complete factorization) the simplest way is to find the roots with solve. E.g.

p:=(k+2)*(k^2+5)*(k^3-5*k^2+13*k-8)/(6*k*(k^2-3*k+8)):
p1,p2:=(numer,denom)(p):
R1,R2:=[solve(p1,k,explicit)],[solve(p2,k,explicit)]:
mul(k-r,r=R1)/mul(k-r,r=R2);

Actually, the solution of your ODE is

A(t) = a * exp( I * ( a^2*t + b ) ),  where  a, b are real constants.

This can be obtained with Maple writing A(t) in polar form:

restart;
ode := diff(A(t),t) - I * conjugate(A(t))*A(t)^2:
simplify(eval(ode, A(t)=R(t)*exp(I*phi(t)) )  /exp(I*phi(t)) ) assuming real:
evalc([Re,Im](%)):
dsolve(%);

restart;
a := Matrix(3, 3, [[x, y, z], [y, z, x], [z, x, y]]):
ex:= Matrix(3, 3, [[x, y, z], [y, z, x], [z, x, y]]) + B:
#eval(ex, a=A); #does not work
evalindets(ex, 'Matrix', u -> `if`(EqualEntries(u,a),A,u));

                             B + A
evalindets(ex, 'Matrix', u -> `if`(LinearAlgebra[Equal](u,a),A,u));
                             B + A

 

# Open Newton–Cotes (N=n-1)
ONC:=proc(n::posint)
local nodes:=[seq(k/n,k=1..n-1)], B,w,i,k,x;
B:=i -> [seq(`if`(k=i,1,0),k=1..n-1)]:
w:=[seq(int(CurveFitting:-PolynomialInterpolation(nodes,B(i),x),x=0..1),i=1..n-1)] ;
`1/(b-a)`.'c'=w,'p'=2*floor(n/2)+1
end:

ONC(5);
       `1/(b-a)` . c = [11/24, 1/24, 1/24, 11/24], p = 5

Optimization:-Minimize(
0,
{
cos(q[1])*cos(q[3])-sin(q[1])*sin(q[3])+sin(q[1])*q[2]+cos(q[1]) - 1 = 0,
sin(q[1])*cos(q[3])+cos(q[1])*sin(q[3])-cos(q[1])*q[2]+sin(q[1]) -1 = 0
},


q[1] = 2 ..  Pi, q[2] = 1 .. 1.5, q[3] = -3 .. -2

#   q[1] = 0 ..  Pi, q[2] = 0.1 .. 1.5, q[3] = -Pi/2 .. 4*Pi/3
# ,  initialpoint = [q[1]=2.0944, q[2]=1.4, q[3]=-2.7925]

);

       [0., [q[1] = 2.30431169727399, q[2] = 1.03640893001776, q[3] = -2.75622305752699]]

int_part:=proc(f,h,t,n::integer)
local k,u,v,s;
u:=f;
v:=h;
s:=0;
for k from 1 to n do;
  u:=int(u,t);
  s:=s-(-1)^(k)*u*v;
  v:=diff(v,t);
od;
s;
end:

int_part(exp(-x*t), 1/sqrt(t*(t+1)), t, 6):
A:=unapply(simplify(-eval(%,t=1)),x);

proc (x) options operator, arrow; (1/2048)*exp(-x)*2^(1/2)*(1024*x^5-768*x^4+1216*x^3-3024*x^2+10404*x-46035)/x^6 end proc

(1)

J:= x -> Int((exp(-x*t))/sqrt(t*(t+1)),t=1..infinity):

evalf[20](eval( [A(x), A(x)-J(x)], x=20));  # check

[0.70333100226385465863e-10, -0.211984348249630e-15]

(2)

 

It seems that Maple needs help here.

solve({combine(7*cos(2*t)=7*cos(t)^2-5), t>=0, t<=2*Pi}, t, allsolutions, explicit);

restart;

with(plots):with(plottools):
p:=display(textplot([0,0,"A"]), 'font'=["times","roman",200],size=[210,200],axes=none ):
q:=display(textplot([0,0,"B"]), 'font'=["times","roman",200],size=[210,200],axes=none ):
FA:="A.png": FB:="B.png":  plottools:-exportplot(FA,p):  plottools:-exportplot(FB,q):
A:=plot3d(1, x=-1..1, y=-1..1,  image =FA): B:=plot3d(1, x=-1..1, y=-1..1,  image =FB):

f := (u,a,b) -> transform( (x,y,z) -> [a+x*cos(u)-y*sin(u),b+x*sin(u)+y*cos(u)]):
display(f(0,0,0)(A),f(Pi/6,4,0)(A),f(-Pi/3,2,-2)(B), axes = none,scaling=constrained);

 

 

u:=Re(exp(1/4-(1/4)*signum(x))*cos((1/2)*ln(abs(x))/Pi)-I*exp(1/4-(1/4)*signum(x))*sin((1/2)*ln(abs(x))/Pi)):

u1:=simplify(u) assuming x>0;
u2:=simplify(u) assuming x<0;

cos((1/2)*ln(x)/Pi)

 

exp(1/2)*cos((1/2)*ln(-x)/Pi)

(1)

limsup(u, x=infinity) = limsup(u1, x=infinity) =1  should be clear now. Also for liminf.

 

To see the oscillations, a semilog plot is needed.

plots:-semilogplot(u,x=10..10^100);

 

 

With Maple the approach should be completely different, see:
https://www.mapleprimes.com/questions/204335-Can-Rotate-3d-Text-Like-This-Be-Done-In-Maple

 

A := Matrix(3, 3, [[2, -3, 1], [-3, 5, 0], [1, 0, 5]]):

L:=LinearAlgebra:-LUDecomposition(A, method='Cholesky')^*;

Warning, Matrix is not positive-definite

 

_rtable[18446744074366462782]

(1)

A - L^* . L; # check

_rtable[18446744074366456886]

(2)

f := (x-2)^2+1:
ff := f(x);
    (x(x)-2)^2+1

So, ff is a mathematical nonsense but syntactically correct.
Because  const(x)  simplifies to  const  we have e.g.
eval(ff, x=12);
    101

So, actually ff will work in numerical computations if eval is used.

Minimize(g, {x >= -2, x <= 2});
gives a syntax error. Use:

Minimize(g, -2..1);
         
[2., Vector[column](1, [1.])]


About the piecewise stuff.

The Optimization package assumes that the objective function and constraints are twice continuously differentiable.
You cannot expect correct results if they are not so.
 

Use

A:=ImportMatrix("yourpath\\-Validierung-Stahl-AI-.txt");

and you will have a 1214 x 1356  Matrix.

It's a specially cooked system.

 

restart;

sys:={
21000 = ((10/1000)/60)*4181*983*(x-y),
H = -((10/1000)/60)*4181*ln(1-((x-y)/(x-40))),
H = 124+102*ln(x-40)+(7+2*ln(x-40)) };

{21000 = (4109923/6000)*x-(4109923/6000)*y, H = -(4181/6000)*ln(1-(x-y)/(x-40)), H = 131+104*ln(x-40)}

(1)

evalf[1000]( fsolve(sys, {x,y,H}, {x=50..100,y=30..100,H=400..500} )   );

{H = 486.9792717948501357867918018059386067855156547114174326869481418810967243566285398975787784552235204706669347559475195400290118640303716801287372634993661346148619910232495800569296330392394830627549743601915872902357242427148731055409553705001658423528217321565927918891190491572966479397271232198426513612569355038417041808873881442623841262343853418832298327693593790610240451083265130917877844785166083247626127110701898215838963336513184408835894194697247808253085787062731557015693465725077077852896999228843274976631083570662482036300138497124715790019203338925750433405104219573337388245857036034857797986214888125128213468426540193206945839888044251684815660805344557214322036920099275934107239459489909624991382336777779198068497280647366466732283885118035797277802575588920390167295368604982886417919721008912823848353938665076022764471765288194352037535498835268165004232995241166817494393305369865683989720565493276815812710671414695060596389471870171101177308498370799633961387014797870, x = 70.65750866865388962274962328977939489377294903091858411945917234945764190715981783600325358893585110961932863462405500054380580852731304211782069883061069513954397685796059926183531905585579097223962590053390294660021611110475792368859465250322207982971943756610525306678494949905387521858682023969792135750167009335860887007621303198544321368035359069175536312026362350448543477228656103669649753257153387272484737179648441014252898713320281206372610926492497110938583549273159942143012717266939216706865489265272371561718110362755576369288566379279748261854103496737662967801146998815897672787725783471077732933162054089997390996937068458728288379330756605842335927722582205633540658909087373621564984005454626854462329726540402400771083530825578130314424765827873541484037247233111699579267679369342370990364580403457147196305388562501611449040359242137916479015561482141032930179069021129023984141254333721654117596419374749676562545752857082962606395129368846731712926167576535994552285681007055, y = 40.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000958347308577476849155817266967208600479833803954882640800358625509636683984970528639967775046602065201922053597715478431016498682880079609787467682537323162308315760688601560985179585421913717270699604525982018646370272917837250840635796722371496634076989812851876433207535565380863444548970077618286474517739106107056439827996365038277140944772163420380808436265855437736016956601251559483196367236991702787708084161571078609077635832578435472524929603687671421461968192303179415316459681254027553729208024619289830444214278717989841247739063311010334060299714878719957897139070573801145583905093544680767085382367073228848646299934993482758918092665796726848329309766789651450780060432670622190}

(2)

evalf(%);

{H = 486.9792718, x = 70.65750867, y = 40.00000000}

(3)

 

The exact answer should be Pr(infinity), where

Pr := proc(n::posint) local k; 
add((2/3)^k/3*`if`(is(sin(k)<=1/2),1,0),k=0..n)
end: 

which of course cannot be computed by Maple.
Maple answers:
Pr(13); evalf(%);
    
2839595/4782969
     0.5936887736
which is an approximation (not too good).

evalf[50](Pr(300));
    .59502775989667091140797025425657732088366035178640


 

 

First 76 77 78 79 80 81 82 Last Page 78 of 121