0.1 The Eigenvalue Problem
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The eigenvalue problem for the temperature distributions in the both phases,
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0.2 Dispersion Analysis

An equation which represent the relationship between the decay rate o and the wave number [ is known

as dispersion equation and can be obtained by using the energy jump across the liquid-vapour interface.
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From the basic state we know that
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Substituting (9) into (8) yields
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The complete solution for () can be obtained by substituting ¢uiq, ¢vap and ¥ into (10) which is solved

numerically using Maple.



