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ABSTRACT

The quasi-static evolution of the Jacobi ellipsoid by gravitational radiation is determined by inte-
grating the equation that gives the rate of dissipation of the angular momentum with the constraint that
the ellipsoid remains Jacobian at all times. It is found that the evolution is in the direction of increasing
angular velocity toward a non-radiating state at the point of bifurcation with the Maclaurin sequence.

I. INTRODUCTION

In current discussions of pulsars (cf. Ostriker and Gunn 1969; Ferrari and Ruffini
1969) a problem which has arisen concerns the evolution of a uniformly rotating object
that is radiating gravitationally. It has often been supposed that the evolution is in the
direction of decreasing angular velocity on the presumption that the dissipation of
energy by gravitational radiation is at the expense of the rotational kinetic energy. This
need not necessarily be the case: the energy that is dissipated can equally be at the
expense of the potential and/or the internal energy. Since configurations that are
symmetric about the axis of rotation cannot radiate gravitationally, we must first
know the origin of the non-axisymmetry of the configuration before we can be certain
of its evolution. In the case of the classical ellipsoid of Jacobi, the origin of its triaxial
nature is fully understood. Consequently, in this case, its evolution by gravitational
radiation can be uniquely determined. It will appear that the evolution is actually in
the direction of imcreasing angular velocity (see Chandrasekhar 1970a, where a pre-
liminary account of this result is given).

II. THE RATES OF DISSIPATION OF ENERGY AND ANGULAR
MOMENTUM BY A ROTATING OBJECT

The rates of dissipation of the energy E and the angular momentum L of an object
by gravitational radiation are given by (cf. Chandrasekhar and Esposito 1970, egs.
[115] and [125])

dE _ G @D, d® Dy
at 4565< ar  ae (1)
and dL 4G yd3l,, a2

CLy _ 24 ap & LBy

& 5N\ ae > )
where

Dog = 31,8 — daplyy, 3)

denotes the quadrupole moment and I,s the moment-of-inertia tensor of the object.
Also, in equation (2) it has been supposed that the indices a 3 B8 # v are in cyclical
order.

If the object is quasi-static in a frame of reference rotating with an angular velocity
Q about one of the principal axes of the moment-of-inertia tensor (say, the 3-axis),
then (see Chandrasekhar 1970, egs. [17] and [18])
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( = —-493(.[11—122)'0 1 (5)
dts inertial frame 1 0 ’

where I1; and Iy are the components of the moment-of-inertia tensor (in the rotating
frame) along its two principal axes in the equatorial plane.
Inserting the relations (5) and (4) in equations (1) and (2), we obtain

2
and dL 326(2
7 il (In — I»)?, )

where L now denotes the angular momentum of the object about its axis of rotation.
An immediate consequence of the relations (6) and (7) is

dL 1 dE
Food (8)

—a known result (cf. Ostriker and Gunn 1969, eq. [B19]).

It should be noted that in deriving equatlons (6) and (7) the assumption has been
made that the rates of fractional decrease in the energy and in the angular momentum
of the object are slow compared to @; but this assumption is already implicit in the
premises which underlie the original equatlons (1) and (2).

III. THE EVOLUTION OF THE JACOBI ELLIPSOID BY GRAVITATIONAL RADIATION

The structure of the Jacobi ellipsoid is governed by two equations (cf. Chandrasekhar
1969, § 39; this book will be referred to hereafter as E.F.E.): the equation,

a’alAr, = 643, )

which determines the geometry (i.e., the ratio of the axes a1:a2:as) of the ellipsoid; and
the equation,

0 = 2312 'Ier ) (10)

which determines the angular velocity @ that is to be associated with each Jacobian
figure. In equations (9) and (10), 4,;... and B;;... are the “index symbols” as usually
defined in this theory (E.F.E., § 21).
The evolution of the Jacobi ellipsoid as it radiates grav1tat10na.lly can be determined
uite simply without an explicit appeal to the full equations of motion. Thus, equation
? 7) in the context of the Jacobi ellipsoid gives

2 (ot + a0 = 55X (o — ayer, (11)

where M denotes the mass of the ellipsoid.

As we have already noted, the use of equation (11) presupposes that the emission of
gravitational radiation alters the figure and the angular velocity of the ellipsoid at
rates that are slow compared to its instantaneous angular velocity ©. In other words,
during the evolution of the Jacobi ellipsoid, equations (9) and (10) will continue to
specify the figure and the angular velocity at each instant; and @,8:¢; must also remain
constant in view of the assumed homogeneity of the configuration.
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Lettin
8 N =a/ay and N3 = a3/a1, (12)

and inserting for Q its value given in equation (10), we find that equation (11) can be
rewritten in the form
1 (1 - )‘22)2

d[LAN o1,
dt [()\2)\3)2/3 \/Bu] I W (Bu)™?, (13)

where ¢ is measured in the unit
ascd aNa
T = g~ 8(z) a9

d = (@1a9a3)"/® is the mean radius of the ellipsoid, and Rs = 2GM /c? is the Schwarz-
schild radius. Also, it might be noted here that

3 udu
B =\ S TG + w0 F W 4

is a function of A\; and A; only.
Expanding the left-hand side of equation (13) and making use of the relations

4B 1 B 1
'—6—;;—2' = X; (Blz — 3(1223122) and a):: = )\—3 (Bl2 - (1323123) (16)
(which can be readily derived from eq. [15]), we obtain

'y

dt
= —(ANs)3(1 — N)%(Bro)? .

Equation (17) must be considered together with the constraint provided by equation

d
MM — 1By — 301+ M)arBud B — M1 + M) 3By + 0Bun) T

(n

(9), namely,
F()\z, )\3) = )\22((1121412) - )\32A3 = 0 . (18)
In differential form this constraint equation is equivalent to
Al ax A? a\
A2 (311123122 - XEE By d_; = N3 (3333 - 5\‘:—2 0Bz 'ETS . (19)

Equations (17) and (19) provide a pair of ordinary differential equations for A\; and
N3 which can be integrated without difficulty. The results of the integration are given in
Table 1 and further exhibited in Figure 1. For the sake of definiteness it has been sup-
posed that the Jacobi ellipsoid at time ¢ = 0 is the most elongated that is compatible
with stability, namely, a2/a; = 0.43223 and as/a; = 0.34506, where Q%/7Gp = 0.28403
(E.F.E., p. 110).

It will be observed that the angular velocity increases during the evolution of the
Jacobi ellipsoid. This result is indeed to be expected since along the Jacobian sequence
the angular velocity decreases while the angular momentum increases.

It is manifest from Figure 1 that the Jacobi ellipsoid approaches, asymptotically, the
non-radiating Maclaurin spheroid (with A2 = 1 and \; = 0.58272) at the point of
bifurcation of the Maclaurin and the Jacobian sequences. We shall show in § IV below
this approach toward the point of bifurcation is exponential.

! It should be noted that the combinations of the index symbols (such as a,®Bix and as*Bus, besides
B:;) which occur in this and similar equations below are functions of A; and A; only.
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1IV. THE APPROACH TO THE NON-RADIATING STATE

As we have seen in § ITI, the Jacobi ellipsoid, as it continues to radiate gravitation-
ally, approaches asymptotically a non-radiating state characterized by

A=1, A= (A1 =0.58272, and Q¥/xGp = 0.37423. (20)
Therefore, for ascertaining the nature of the asymptotic approach, we shall let

and determine the limiting form which equation (13) takes when Ao — 0. In this limit,
the right-hand side of this equation becomes

2(Bn)%? N2 (22)

- 0\3) s

o.62

0.60

kY2
0.55
0.50 1 —L L 1 L L 0.0
o 10 20 30 40 50 60 70
-

F1e. 1.—Illustrating the evolution of the Jacobi ellipsoid by gravitational radiation. The abscissa
measures the time in the unit 7' (defined in eq. [14]), and the ordinates are the eccentricity e of the equa-
torial section (scale on the right-hand side) and the angular velocity @ measured in the unit (xGp)/?
(scale on the left-hand side).

Therefore, the left-hand side of the equation must also be O(8\s?) as 6As — 0. We shall
presently show that, in fact, both

14 N2

W and Bm (23)

G()\z, )\3) =
are of O(8\g?) as &N\ — 0.
First, we observe that it follows from quite elementary considerations that

Mz = 3(\)dhs + O(ON?) as N — 0. (24

2 This relation follows from the fact that the Lagrangian displacement, which deforms the Maclaurin
spheroid (with semiaxes a1, 1, and @3) at the point of bifurcation into an adjacent Jacobi ellipsoid, re-
sults in an ellipsoid having the semiaxes a; + 841, &1 — day, and a3 Therefore, for a Jacobi ellipsoid,
near the point of bifurcation, A = 1 — 28a1/a1 and A3 = @3(1 — dai/a1)/a1. In other words, for A — 1,
A = —28a1/m, and 6A; = —(Nghdai/a1; and the result stated follows.
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Also, it can be shown that By and 6G vanish to the first order for changes in As and \;
(in the neighborhood of the point of bifurcation) that are in the ratio given in equation
(24). The relation between d\; and 6\; to the second order in &), is, therefore, needed;
and this relation can be determined by making use of the Taylor expansion of the rela-
tion (18), to the second order in §A; and 8A;, in the neighborhood of A\ = 1 and \; =
(Ns)1. Thus, we consider

()00 (D)t ()4 () o+ 1 () -0, 29

where the subscript 1 distinguishes that the quantity in parentheses is to be evaluated
for A2 = 1 and A\; = (\3)1.

Straightforward but somewhat lengthy reductions are required to establish the fol-
lowing formulae:

( 2 ) = 302Byy — -—B13 — 40.159732 ,

dF
(53?;) - %i‘ “‘Bna - 3333) = —0.548228 ,

2
(a F) = 60 Bul -_ 150 Buu + 3032.3113 = —0.0813466 , (26)

&F
ax2a>\3) =3 Z_: (@B — ar0s"Buns) — 3 Z—f (Bis — a5*Buys) = —0.0601069

2
(a F) = —6.333 - 301431133 + 15(132B333 = —0.734506 s

where all the index symbols are to be evaluated for the critical Maclaurin spheroid at
the point of bifurcation. Inserting the foregoing results in equation (10), we find that
to the second order in o\,

M = 1(Ns)10N; + BoN?  where B = —0.163003. 27

We next determine the behavior of By near A2 = 1 and N3 = (A;), from the Taylor
expansion

2 2
8Bys = aB“) one + (2B LY aB“) onE + ( Brs ) SAabhe

O\e 0)\3 ON? O3
9By (28)
e O
We find
0B,
——) = Bu -_ 3(1123111 = —0.0688244 ,
)0
0B
axf) - g.;. (Bu — 6;*Bu;) = +0.236217 ,
2
%—Bf) — —3(3a¢Bu — 501Buy) = —0.026196 , (29)
2 1
2B
52—(&)1 = % (Bu — ag?Bus — 3a:*Bum + 301%a5?Bins) = —0.0432234 ,
2
aBn) = —3012(B113 - 03231133) = —0257016 .
N? /1
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To the first order in 8)g, 6B;2 vanishes for 6A; = 3(N3)10M2; and to the second order in
oN2 we have

_ aBm) (62B12 8?Bs 1y 82B12>
6By = ‘”2 W M2 + 3k MedNs/s + ) M 1]' (30)

Inserting for the various coefficients in equation (30) their values given in equations
(27) and (29), we obtain

8By = QoA where Q = —0.0751050. (31)

Finally, considering the function G(\e, )\3) defined in equation (23), we find

G
(7\ ) 2 (3 =3 (>\3)12’3 ’ 3>\3) % (>\3)15’3

(), . " (5= 3
i) ()\3)1 /32 IMN2ONs ~3 ()\3)15/3 ’ i) ()\3)18/3

The Taylor expansion for G(Az, X\3) at A2 = 1 and A\; = (A3)1, together with equation
(27), now gives

Gh =
(32)

2
[SEL
4B 5

P = — 3o+ gogms = 17129075 - (34)

G()\Q, )\3) + P6)\2 (5)\2 d 0) ’ (33)

where

Returning to equation (13), we first rewrite it in the form

G | 16Be _ (A= M) g

Bl2 dt + ZG dt - ()\ Y )4/3 (Bl2) . (35)
Next, making use of equations (31) and (32), we find that as As — 1, the equation takes
the limiting form

Q 14 (Bu)®
[ BuP + 55 | 5P = — oM. (36)
Hence,
o\e — constant e~¥7 37
where
A 4/3
((g) ¥ | BuP + O\()?m] = 16.039 . (38)
Since Q%/7Gp = 2By, it follows that
QMCSQ/ 1I'Gp = 0By = Q(”\z2 (5)\2 - 0) ’ (39)

where Qu. denotes the angular velocity of the Maclaurin spheroid at the point of
bifurcation. Combining equations (37) and (39), we can write

60 = (e — Q) — constant e~2/7 . (40)

Equations (37) and (40) specify the manner in which the Jacobi ellipsoid, radiating
gravitationally, approaches the non-radiating state.

It may be noted here that for ¢ = 20 km and M = 1 solar mass, the unit of time T
specified in equation (14) is 2.90 X 10~%s. The time constant in equation (40), namely,
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8.02 T, is 0.232 s whereas the period of rotation at the point of bifurcation is 2.92 X
10~2 s. The basic assumption that the Jacobi ellipsoid evolves adiabatically is thus
amply justified even under these somewhat extreme conditions.

V. CONCLUDING REMARKS

The fact that the Jacobi ellipsoid evolves by gravitational radiation in the direction
of increasing angular velocity toward the point of bifurcation with the Maclaurin se-
quence, together with the result established in the preceding paper (Chandrasekhar
1970b), gives rise to a curious dilemma.: the dissipation of energy by gravitational radia-
tion induces secular instability in the very spheroid toward which it is assisting the
Jacobi ellipsoid to evolve.? It is as if radiation reaction is promoting evolution; but only
toward a catastrophe! (See, however, the Note added in proof.) One may speculate
whether this behavior has a moral in the larger context of gravitational collapse.

I am greatly indebted to Miss Donna D. Elbert for carrying out the integration of
equations (17) and (19) which is included in Table 1 and exhibited in Figure 1.

The research reported in this paper has in part been supported by the Office of Naval
Research under contract Nonr-2121(24) with the University of Chicago.

Note added in proof —An alternative possibility suggested to me by Dr. J. P. Ostriker
is the following:

A homogeneous uniformly rotating nonviscous mass may be expected to evolve up the
Maclaurin sequence, in a time-scale 7x (say), as its density increases. When the mass
passes beyond the point of bifurcation, the secular instability due to gravitational radia-
tion will result in the dissipation of both its energy and its angular momentum on the
time-scale = (defined in eq. [61] of the preceding paper). And if r << 75, we may expect
the configuration to hover about the point of bifurcation. As Dr. Ostriker points out,
on these arguments (if correct), the angular velocity @, at the point of bifurcation will
represent the equilibrium angular velocity of a neutron star and the total energy output
of a pulsar will just equal 37,9,
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