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Abstract 

While there are many good existing solvers, in this paper, a discretization scheme using 

higher derivative method (HDM) with A-stability property is implemented for efficient solution of 

boundary value problems (BVPs) described by Ordinary Differential Equations (ODEs). The 

proposed approach uses nth derivative to get 2n order of accuracy at each node point in BVPs. The 

derivation of HDM schemes can be related to the stability function of the Implicit Runge-Kutta 

methods (IRK) and Padé approximation, and the coefficients of the HDM schemes can be found 

by Hermite collocation methods. Once the analytical derivatives are found, HDM scheme is 

applied for every node. Illustrative examples are included to demonstrate the applicability of HDM 

for the solution of BVPs. The algorithm is implemented and shared as an open access Maple® 

code.  

 

Keywords: Boundary Value Problems; Ordinary Differential Equations; Symbolic 

Computation; Higher Derivative Method 

 

 

I. Introduction 

Boundary value problems (BVPs) appear in many domains including electrical circuits, 

control, economics, fluid flow, heat/mass transfer, electrochemical engineering, etc. The numerical 

methods for solution of BVPs are based on finite difference methods, or (multiple) shooting 

methods [1]. The finite difference methods are typically coupled with Implicit Runge-Kutta (IRK) 

methods or collocation methods within a particular mesh for higher order accuracy [2–5]. Many 

of the implementations use deferred correction or extrapolation methods to improve accuracy and 
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efficiency [6]. The semi-implicit and fully implicit RK methods proved to be the useful for the 

solutions of BVPs, but any IRK method involves the solution of a non-linear system of n s×

equations; where n is the number of differential equations and s is the number of stages of IRK 

methods. Thus, it requires more computational effort per step including memory and CPU time 

when the number of discretization variables is increased especially for Newton’s method for 

solving the resulting system of nonlinear algebraic equations. Since it has a maximum of s-order 

of accuracy at the internal collocation points, it is often times not accurate enough for control 

variables while solving optimal control problems. Without having the need for solving variables 

in the internal stages, mono-implicit forms have been used as well [7]. Mono implicit forms include 

variables only at mesh points.  

Stability of the numerical discretization scheme is an important issue for solving ordinary 

differential equations (ODEs) in IVPs or BVPs. While developing robust discretization schemes, 

the aim is to ensure stability that can provide converged solutions while solving stiff set of 

differential equations characterized by rapidly decaying transients. Therefore, numerical methods 

that are “A-stable” are usually preferred. A-stable methods generally allow the use of larger step 

sizes because they guarantee that the rapidly decaying terms will continue to decrease for any step 

size used [8]. Implementations of A-stable single-step methods using higher derivatives are 

available in the literature. Gad et al. [9] proposed a generalized class of A-stable integration 

formulas using higher derivatives for IVPs, and this concept was first presented by Obrechkoff 

[10]. On the other hand, Gupta [4] utilized Boundary Value Runge-Kutta (BVRK) up to 8th order 

while finding the solution of a nonlinear system of first order BVPs considering RK internal stages 

within a single step. A-stable property in IVPs also refers to the stability in BVPs [5,11,12]. 

In many of the popular codes, the numerical solution of a nonlinear BVP is generally 

accomplished by adopting linearization schemes leading to the fact that a BVP can have more than 

one solution [13]. Typically, nth order BVPs are converted into n first order BVPs to apply IRK 

type of methods. Unlike IVPs, where a unique solution can be guaranteed with initial conditions 

of differential variables, BVPs sometimes have the situation that either no solution or multiple 

solutions exist even for the simple set of differential equations. This aspect poses challenges to 

develop efficient numerical methods that guarantee a unique/meaningful solution with high 

precision for the BVPs. Popular methods available today to solve first order BVPs include Lobatto-

IIIA IRK algorithm used in bvp4c [14], Gauss-Legendre collocation used in COLSYS [15,16] 
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and COLNEW [17,18], and Mono-implicit Runge-Kutta (MIRK) methods with deferred correction 

used in TWPBVP developed by Cash [7,19] or in MIRKDC developed by Enright and Muir [20]. 

To obtain convergence, a good initial guess may be necessary. The initial guess involves two parts: 

(1) a proper initial mesh that reveals the behavior of the solution (2) the guess solutions at the mesh 

points. After obtaining convergence according to the initial mesh and the guess value, the codes 

adjust the mesh and obtain accurate numerical solutions with a modest number of mesh points.  

 While there are very good solvers for BVPs, a natural question is why do we need another 

BVP solver? It is indeed possible to attain higher order of accuracy without losing stability by 

using higher derivatives [21]. These methods have not been converted to production codes because 

of the need to find higher derivatives, and the stability is not guaranteed if numerical approximation 

is used for finding higher derivatives. With recent improvement in computer algebra system and 

symbolic mathematical software like Maple® [22], one can find the analytical form of derivatives 

enabling development of an efficient code for solving BVPs using higher order derivatives. 

In this paper, the use of higher derivative method (HDM) with the property of A-stability 

for the solution of BVPs is presented. The use of nth derivative leads us to formulate a 2n order 

HDM scheme. The HDM seems to require more work for computation of differentiation, but has 

the advantage that it needs lesser number of discretized variables with higher orders of accuracy 

(2n, where n is the use of the order of derivative) with A-stability. The HDM schemes only involve 

single-step, so the system is compact (the integration from one node point to another involves only 

variables at the two node points), and can be considered as a MIRK type of method (implicit in 

only one node point when the value is known at the previous node). The continuous solution 

(interpolation polynomial) accurate to the order 2n can be derived at any point in the spatial domain 

when constant step sizes are used. The code developed in this paper can solve many stiff and non-

stiff BVPs without having the need to provide an initial guess in very few seconds to minutes. To 

the best of our knowledge, the application of higher derivative discretization scheme for the 

solution of BVPs has not been reported in the literature. Numerical tests on several test problems 

show the advantages of the proposed approach.    

 

II. Higher Derivative Method 

A BVP problem can be considered as a system of the first-order ODEs represented in the 

form of Eq. (1). 
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 ( ) [ ], ,  , ,  R ndy f x y y x a b y
dx

λ= = ∈ ∈  (1) 

With boundary conditions as ( )y a α= , ( )y b β= .The total number of boundary 

conditions matches the number of first order ODEs. 

The concept of HDM scheme originates from the stability function of A-stable IRK 

methods, for example, Lobatto IIIA methods and Gauss–Legendre methods. 

The (implicit) trapezoidal rule (second-order Lobatto IIIA method) is a second-order, 

single step, 2-stages method as given below.  

 ( ) ( )( )1 12n n n n
hy y f y f y+ += + +  (2) 

All Lobatto IIIA methods are collocation methods providing 2s-2 order of convergence at 

the terminal nodes, where s is the number of internal stages. 

Similarly, the implicit midpoint method (single step, 1-stage) is a second-order Gauss–

Legendre method as given below. 

 1
1 2

n n
n n

y yy y hf +
+

+ = +  
 

 (3) 

All Gauss–Legendre methods use the points of Gauss–Legendre quadrature as collocation 

points. If the method uses s stages, it has 2s order. 

Both trapezoidal rule and implicit midpoint method share the same stability function ( )R z

as given below. 

 ( )
11 2
11 2

z
R z

z

+
=

−
 (4) 

For IRK methods,  is a rational function with numerator and denominator of degree

s≤ . Both of the methods are A-stable (which means if and only if ( ) 1R z ≤  whenever z is in the 

left half-plane, ( )Re 0z ≤ .), but not L-stable (i.e. if it is A-stable and 
( )

( )
Re

lim 0
z

R z
→−∞

= ). 

It is observed that the stability function is the same as the diagonal Padé approximation to 

the exponential function ( ( ),n n zP ) [23]. For example, the stability function for trapezoidal rule 

and implicit midpoint as Eq.(4) can be represented as the diagonal Padé approximant, ( )1,1 zP . 

( )R z
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Birkhoff and Varga [24] pointed out that ( ),n n zP  has the property that ( ), 1n n z ≤P  for ( ) 0R z ≤ , 

where n = 1, 2,…, which matches the IRK stability function. Ehle [25] showed that an A-stable 

single-step method can be written as ( )1 ,n i i ny h yλ+ = P . Therefore, Eq. (4) can also be represented 

as 

  (5) 

 

After applying ( )'n n ny f y yλ= =  and ( )1 1 1'n n ny f y yλ+ + += = , we can get Eq. (2), again. 

This is the second-order (uses first derivative) HDM scheme, and has the smallest truncation error 

among all the second order linear multistep methods with A-stability property [26]. 

In addition, it is also possible to derive HDM using Hermite polynomials or collocation. 

For example, if we assume y is a continuous function and taking y to be a second-order polynomial 

as 

 2
0y y ax bx= + +  (6) 

One can obtain the two constants by forcing the first derivative at 0x =  and x h= .  

when 0x =  

 ( )0f y a=  (7) 

when x h=  

 ( ) 2hf y a bh= +  (8) 

Therefore, by solving Eqs.(7)-(8) in terms of a and b, we can get the coefficients as 

 ( )0a f y=  (9) 

 ( ) ( )0

2
hf y f y

b
h

−
=  (10) 

After substituting the coefficients into Eq. (6) and generalizing the formula from x = xn to 

x = xn+1, one can get the second-order (the first derivative) HDM scheme as in Eq. (2). The 

coefficients directly correspond to the diagonal Padé approximation (having the same stability 

functions as Lobatto IIIA and Gauss–Legendre types of IRK methods). This approach can be used 

to derive higher order HDM schemes. 

( )
( )1

11 2
11 2

n n

h
y y

h

λ

λ+

+
=

−
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The second derivative method (SDM) or the 4th order HDM scheme can be derived from 

the stability function of the fourth-order Lobatto IIIA method with stages 0, 1/2 and 1 (single step, 

3 stages) as 

 ( ) ( ) ( )1
5 1 1
24 3 24int n n int ny y h f y f y f y +

 = + + − 
 

 (11) 

 ( ) ( ) ( )1 1
1 2 1
6 3 6n n n int ny y h f y f y f y+ +

 = + + + 
 

 (12) 

They require solving for both internal variables and terminal values simultaneously in each 

step, so the computational efforts increase as the number of internal stages increases. It should be 

noted that Lobatto IIIA scheme with 3-stages can be written in the mono-implicit form, but it is 

difficult to write the scheme in the mono-implicit form if the number of stages is greater than 3. 

The fourth-order Gauss–Legendre method with stages 1 3
2 6

 
−  

 
, 1 3

2 6
 

+  
 

 (single step, 

2 stages) is given as 

 ( ) ( )1 1 3
4 4 6int, 1 n int, 1 int, 2y y h f y f y

  
= + + −      

 (13) 

 ( ) ( )1 3 1
4 6 4int, 2 n int, 1 int, 2y y h f y f y

  
= + + +      

 (14) 

 ( ) ( )1
1 1
2 2n n int, 1 int, 2y y h f y f y+

 = + + 
 

 (15) 

Both, the fourth-order Lobatto IIIA method and the fourth-order Gauss–Legendre method 

share the same stability function given by 

 ( )
2

2

1 11 2 12
1 11 2 12

z z
R z

z z

+ +
=

− +
 (16) 

For the second derivative method (SDM) as given in Eq.(17), one can either derive from 

Taylor series [21], Butcher's n stage IRK process of order 2n [25], Hermite interpolation formula 

[27] or the method of undetermined coefficients [28]. This method was first considered by 

Obrechkoff [10]. This formula is A-stable but not L-stable [29]. 

 ( ) ( )( ) ( ) ( )( )
2

1 1 1' '
2 12n n n n n n
h hy y f y f y f y f y+ + += + + + −  (17) 
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Similarly, collocation can be used to derive Eq.(17) starting from a fourth-order polynomial 

as Eq. (18). 

 2 3 4
0y y ax bx cx dx= + + + +  (18) 

One can obtain the four constants by forcing the first and second derivatives at and

.  

when  

 ( ) ( )0 0  and  ' 2f y a f y b= =  (19) 

when  

 ( ) ( )2 3 22 3 4   and  ' 2 6 12h hf y a bh ch dh f y b ch dh= + + + = + +  (20) 

Solving Eqs. (19)-(20) for a, b, c, and d, we can get 

 ( )0a f y=  (21) 

 ( )0'
2

f y
b =  (22) 

 ( ) ( ) ( ) ( )0 0
2

3 3 2 ' '
3

h hf y f y hf y hf y
c

h
− + − −

=  (23) 

 ( ) ( ) ( ) ( )0 0
3

2 2 ' '
4

h hf y f y hf y hf y
d

h
− + +

=  (24) 

Eq. (17) is obtained by substituting Eqs. (21)-(24) into Eq. (18) and by generalizing the 

method for any node xn to xn+1.. 

One can realize that the HDM, Lobatto IIIA and Gauss–Legendre types of IRK methods 

share the same A-stability function/region and the form and coefficients are the same as the 

diagonal Padé approximation to the exponential function. 

We can explore more of HDM’s properties by looking into the s-stage IRK methods, which 

can be represented by Eq. (25) for the stages and Eq. (26) for the terminal respectively.  

 ( ), ,
1

,      1,...,
s

n i n ij n j n j
j

y y h a f x c h y i s
=

= + + =∑  (25) 

 ( )1 ,
1

,
s

n n j n j n j
j

y y h b f x c h y+
=

= + +∑  (26) 

Eq. (26) is well defined if all the stages have unique solutions for all λ  in Eq. (1) with 

( )Re 0λ <  [30]. When applied to Eq. (1), it yields ( )1n ny R h yλ+ =  with the stability function as 

0x =

x h=

0x =

x h=
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Eq. (27), and it can be summarized in a rational form, with numerator and denominator with degree

s≤ . 

 ( ) ( ) ( )
( )

1 det
1

det

T
T

I zA z b
R z zb I zA

I zA
− − +

= + − =
−

1
1  (27) 

where ( )1,...,
T

sb b b= , ( )
, 1

s

ij i j
A a

=
= , ( )1,...,1 T=1  

The IRK method is A-stable, if ( ) 1R z ≤ for all complex z with negative real part 

( ( )Re 0z ≤ ) [26]. It is L-stable if it is A-stable and 
( )

( )
Re

lim 0
z

R z
→−∞

= . 

A-stability is well defined if the numerator and denominator of ( )R z  in Eq. (27) have no 

common zeros in the left half of z plane. In particular, any A-stable IRK method represented as a 

Padé approximation to the exponential function is well defined [30]. So, one can write the 

correlation in a more explicit way as Eq. (28). 

 ( ) ( )

( )
( ) ( )
( )

( ) ( ) ( )

0
1 ,

0

! !
! ! !

, and  
! !

! ! !

m
i

i
n n m n n nn

i

i

m n i m
z

m n i m i
y R z y z y y z h

m n i n
z

m n i n i

λ=
+

=

+ −
+ −

= = = =
+ −

−
+ −

∑

∑
P  (28) 

Since the general solution of linearized first-order ODEs can be expressed as the 

exponential function, it makes sense to consider the Padé approximation (unique and rational) to 

( )exp z of the order p m n= + , which has a property of  ( ) ( )1
, ,  0z p

m n z e O z p+− = ≥P  for A-

stability. 

 Based on more general understanding of the stability function and its corresponding Padé 

approximation, one can not only take advantage of the diagonal Padé approximation with A-

stability which is proved by Birkhoff and Varga [24] by using continued fraction expansions, but 

also use the first and the second sub-diagonal Padé approximations that have L-stability property  

as proved by Ehle [8,31]. 

The IRK methods which satisfy these conditions include those of order 2n  which 

correspond to diagonal members of the Padé table [2]; the methods of order 2 1n −  which 

correspond to the first sub-diagonal Padé table [32]; the methods of order 2 2n −  which correspond 

to the second sub-diagonal Padé table [30]. The corresponding stability functions of IRK methods 

and their Padé approximation are listed in Table 1, where s is the number of stages. 
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Table 1. The stability functions of A-stable IRK methods and their Padé approximation 

IRK Methods 
Order 

for IRK 

Stability function  

can express as... 

Order 

for Padé 
Stability 

Gauss–Legendre 2s  Diagonal Padé 

( ),n n zP  
2n  A-stable 

Lobatto IIIA 2 2s −  

Radau IIA 2 1s −  
The first sub-diagonal Padé 

( )1,n n z−P  
2 1n −  L-stable 

Lobatto IIIC 2 2s −  
The second sub-diagonal Padé 

( )2,n n z−P  
2 2n −  L-stable 

 

One can derive the HDM for any order either from the stability function of A-stable IRK 

methods by ( ) ( )1 ,n n m n ny R z y z y+ = = P or Hermite collocation methods. Eqs. (29)-(31) list the 

HDM methods, using the third derivative (6th order), the fourth derivative (8th order) and the fifth 

derivative (10th order), respectively. 

 ( ) ( )( ) ( ) ( )( ) ( ) ( )( )
2 3

1 1 1 1' ' '' ''
2 10 120n n n n n n n n
h h hy y f y f y f y f y f y f y+ + + += + + + − + +  (29) 

 
( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

2 3

1 1 1 1

4
3 3

1

3 ' ' '' ''
2 28 84

1680

n n n n n n n n

n n

h h hy y f y f y f y f y f y f y

h f y f y

+ + + +

+

= + + + − + +

+ −

 (30) 

 
( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

2 3

1 1 1 1

4 5
3 3 4 4

1 1

' ' '' ''
2 9 84

1008 30240

n n n n n n n n

n n n n

h h hy y f y f y f y f y f y f y

h hf y f y f y f y

+ + + +

+ +

= + + + − + +

+ − + +

 (31) 

L-stable family of HDM with properties similar to Radau IIA can also be derived by 

Hermite or polynomial collocation methods. 

For example, if we take y to be a straight line passing through y0. 

 0y y ax= +  (32) 

And equating the derivative at  x h=
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 ( )1nf y a+ =  (33) 

By finding a, we get the Euler Backward method with first order accuracy. 

 ( )1 1n n ny y hf y+ += +  (34) 

Similarly, by considering y as a cubic profile passing through y0. 

 2 3
0y y ax bx cx= + + +  (35) 

And equating the first derivative at , and first and second derivatives at , we get 

when   

 ( )0  f y a=  (36) 

when  

 ( ) ( )22 3   and  ' 2 6h hf y a bh ch f y b ch= + + = +  (37) 

Solving a, b and c, and substituting back into Eq. (35), one can arrive at the third order 

(second derivative) HDM scheme with L-stability as in 

 ( ) ( ) ( )2
1 1 1

1 2 1 '
3 3 6n n n n ny y h f y f y h f y+ + +

   = + + + −   
   

 (38) 

From the first sub-diagonal Padé approximation, one can get the order  with A-

stability (L-stability). HDM schemes using the third derivative (5th order), fourth derivative (7th 

order) and fifth derivative (9th order) are given below. 

 ( ) ( ) ( ) ( ) ( )2 3
1 1 1 1

2 3 1 3 1' ' ''
5 5 20 20 60n n n n n n ny y h f y f y h f y f y h f y+ + + +

     = + + + − +     
     

 (39) 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2
1 1 1

33 4
1 1

3 4 1 2' '
7 7 14 14

1 4 1'' ''
210 210 840

n n n n n n

n n n

y y h f y f y h f y f y

h f y f y h f y

+ + +

+ +

   = + + + −   
   

   + + + −   
   

 (40) 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2
1 1 1

3 33 4
1 1

45
1

4 5 3 5' '
9 9 36 36

2 5 1 5'' ''
252 252 3024 3024

1
15120

n n n n n n

n n n n

n

y y h f y f y h f y f y

h f y f y h f y f y

h f y

+ + +

+ +

+

   = + + + −   
   

   + + + −   
   
 +  
 

 (41) 

0x = x h=

0x =

x h=

2 1n −
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In order to extend to higher orders, a general form is needed. The HDM schemes were 

mentioned in few papers, but in different integration forms [8,17,25,33], so we summarize the 

explicit form of HDM schemes in Eq.(42). The values for the coefficients for HDM scheme are 

listed in Table 2. 

 ( ) ( ) ( )( )1
1 1

1
1 ,  1, 2,3...

n
ii ii

j j i j i j
i

y y h y y nα β+
+ +

=

= + + − =∑  (42) 
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Table 2. Coefficients for HDM schemes 

Padé approximants The choice for iα  and iβ  Order Stability 

Diagonal Padé 

( ),n n zP  
( ) ( )

( ) ( )
2 ! !

,  1, 2,...,
2 ! ! !i i

n i n
i n

n i n i
α β

−
= = =

−
 2n A-stable 

The first sub-

diagonal Padé 

( )1,n n z−P  

( ) ( )
( ) ( )

2 1 ! 1 !
,  1, 2,..., 1

2 1 ! ! 1 !i

n i n
i n

n i n i
α

− − −
= = −

− − −
 

0nα =  

( )
( ) ( )

2 1 ! !
,  1, 2,...,

2 1 ! ! !i

n i n
i n

n i n i
β

− −
= =

− −
 

2n-1 L-stable 

The second sub-

diagonal Padé 

( )2,n n z−P  

( ) ( )
( ) ( )

2 2 ! 2 !
,  1, 2,..., 2

2 2 ! ! 2 !i

n i n
i n

n i n i
α

− − −
= = −

− − −
 

1 0n nα α −= =  

( )
( ) ( )

2 2 ! !
,  1, 2,...,

2 2 ! ! !i

n i n
i n

n i n i
β

− −
= =

− −
 

2n-2 L-stable 

 

III. HDM Code Development for BVPs 

A Maple® code is developed that discretizes the BVPs based on the HDM scheme. It 

utilizes nth order derivative to get 2n order of accuracy at each node point. The code contains two 

routines that can be called by the user: (1) Procedure HDM (2) Procedure HDMadapt. The HDM 

procedure returns the solutions based on a given mesh and order, while HDMadapt procedure 

returns the solutions with automatically adjusted mesh and order. For most of the problems we 

tested, the solutions can be attained by the default setting of the initial derivative (fifth derivative) 

and the initial number of elements (10 elements) within few seconds. 

Procedure HDM takes the given ODEs, boundary conditions (BCs), range, absolute/relative 

tolerance, initial values of variables at each node, the number of elements (N), the size of the 

elements (spacing hi) as the input. One can further provide both known and unknown parameters, 

for the procedure. The discretization scheme is given in Fig. 1. The HDM procedure begins with 

finding the ODE variables and their analytical forms of derivatives according to the input given 
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by the user. For instance, the procedure will compute the first to the fifth derivatives if the default 

value, five, (10th order) is used. The HDM scheme is formed according to Eq. (42) and Table 2. 

The total number of HDM discretization equations is equal to the number of ODEs times the 

number of elements used. The total number of discretized variables is number of ODEs times the 

number of node points (= number of elements + 1). The value xi is determined by the size of the 

elements (spacing hi) as given in Eq. (43).  

Once the mesh is established, it can be substituted into the HDM scheme and boundary 

conditions. This becomes the equation set for the solution of BVPs by the Newton-Raphson 

method. Based on testing different linear algebra solvers, the sparse solver was found to be the 

most robust and efficient in Maple® and the same is used in this paper to handle the banded nature 

of the Jacobian generated by the single-step discretization scheme. The compact and mono implicit 

form of the method means that at any point i, there is a need to find the derivatives only with 

respect to the variables in the nodes i and i + 1, with boundary conditions handled separately. The 

code stores only non-zero values, and calculates the Jacobian matrix for ODEs only for the non-

zero elements according to the HDM discretization scheme. However, for unknown parameters, 

all the entries are calculated because the pattern cannot be predetermined.  

 ( )
i

i j
j

x Range left h= + ∑   (43) 

The solutions at discretization points and the solutions of unknown variables as well as the 

root-mean-square error at each node point are returned. In the default setting, the 10th order HDM 

scheme (finding 5th derivative by using ( )5,5 zP with A-stability), and the 9th order HDM scheme 

( ( )4,5 zP  with L-stability) are used to find the local error. The error is defined as given in Eq. (44) 

by using the HDM scheme from Eq. (42) and the coefficients from Table 2, where the coefficients 

of diagonal Padé are 1α and 2α , and the same for the first sub-diagonal Padé are 1β  and 2β . The 

flow diagram of HDM procedure is given in Fig. 2. 

 ( ) ( ) ( ) ( ) ( )( )1
1, 2, 1, 2, 1

1
1 ,  1, 2,3...

n
ii ii

i i j i i j
i

Error RootMeanSquare h y y nα α β β+
+

=

 = − + − − =  
∑  (44) 

Procedure HDMadapt dynamically adjusts the mesh size, and finds the solutions with 

proper order of accuracy. It does not require the input of the size of elements (spacing h) and initial 

values of variables at each node point. The HDMadapt procedure includes the HDM procedure and 
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adapts the mesh automatically based on the local error returned from the HDM procedure.  

To arrive at the accuracy of the solutions i.e. assuring that the error is smaller than the 

tolerance, one can increase the node points or the order of HDM scheme. A proper mesh density 

is required for the resolution of plotting purpose, but if the mesh is too dense, it will result in a 

large system of algebraic equations to be solved, which is computationally expensive. Therefore, 

finding a good balance of node points and order is crucial while solving BVPs. On the other hand, 

for some stiff BVPs (e.g. boundary layers problems), which characterize rapid transients in a 

narrow region, it is very hard to determine a proper mesh and approximate numerical solutions at 

the same time. However, since the mesh and the order can be adjusted, the HDMadapt procedure 

can handle most of the tough problems. For most of the problems tested, reasonable results (for 

tolerance < 1e-6) were achieved without adapting the meshes and with 10N ≤ elements. 

Since some initial guesses may not provide a converged solution, a “try/catch” kind of 

logical strategy is used in the HDM procedure. If the HDM procedure fails due to improper initial 

conditions, the number of elements (N) will be doubled; but only if the number of elements is 

greater than the maximum elements (assumed 200 by default for efficiency of Newton-Raphson), 

the derivative will be increased by one (two orders more accurate) till the maximum derivative is 

reached (assumed to be 9 by default, an arbitrary number).  

The mesh will be adjusted by the norm of the local error (because several unknown 

variables are present at the same node point). Two actions are taken to make the mesh adaptable: 

insertion and removal of node points. The general mechanism of node point insertion/removal is 

given in Fig. 3. The adaptive strategy is given in Fig. 4 and HDMadapt procedure is explained in 

Fig. 5. 
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Fig. 1. Discretization scheme for HDM codes 
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Fig. 2. The flow diagram of HDM procedure 
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Fig. 3.The adaptive mesh mechanism used by the proposed code 
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Fig. 4. The adaptive mesh/order strategy  
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Fig. 5. The flow diagram for HDMadapt procedure 
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IV. Examples 

1. HDM Error Analysis 

The error analysis is demonstrated by a simple 2-point BVP as given below 

 '' 0.1y y=  (45) 

with boundary conditions: ( )0 1.0y = , ( )1 0.0y =  

 The analysis is done by choosing different sizes of spacing (h), where the discretization 

points are equally distributed. In this analysis, 10 elements are chosen (11 node points). All the 

solutions at the nodes are compared with the values calculated by the analytical solution as 

given in Eq. (46). The solutions are generated by the HDM code, and the error is defined by the 

maximum absolute value of differences between the numerical and analytical solutions at each 

node. 

 ( )
2

10 10

2
101

x x

e ey x
e

−
−

−
−

−
=

−

 (46) 

Plotting the negative log value of the error and the negative log value of the spacing as 

the coordinates, the slope of the line indicates the numerical order of convergence of the HDM. 

The linear regression results for the 2nd to 12th order are studied as shown in Table 3 and Fig. 6, 

and the order (the slope of the regression) obtained is as expected (2n), where n is the highest 

derivative used. 

 

Table 3. The regression results of error analysis for different HDM schemes. 

Highest derivative used order Regression for y 

1 2nd 0.774145 2.175016h− +  

2 4th 2.794195 4.059814h− +  

3 6th 5.543270 6.004168h− +  

4 8th 8.830802 7.973144h− +  

5 10th 12.547187 9.953897h− +  

6 12th 16.632225 11.924494h− +  
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Fig. 6. Error analysis for different HDM schemes for a test BVP. 

 

2. Cash’s problem: A singularly perturbed two-point BVP 

This second order singularly perturbed two-point BVP as given in Eq. (47) is adopted from 

Jeff Cash’s collection of 35 test problems. This type of problem includes a small, positive 

parameter (ε ) multiplying the highest derivative term in the system of differential equations. The 

stiffness of the problem increases while with value of the parameter becomes smaller which makes 

the BVP difficult to solve. 

 '' 0y yε − =  (47) 

with boundary conditions: ( )0 1.0y = , ( )1 0.0y = . 

The analytical solution for this problem is shown as in Eq. (48). 

 ( )
2

2

1

x x

e ey x
e

ε ε

ε

−
−

−
−

−
=

−

 (48) 
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To begin with, this second order problem is converted into two first order ODEs and their 

boundary conditions are ( )1 0 1.0y = , ( )1 1 0.0y = . 

 1 2'y y=  (49) 

 2 1
1'y y
ε

=  (50) 

A tolerance value of 1e-6, fifth derivative and initial number of elements of 10 are used as 

the default inputs. Table 4 and Fig. 7 show the results for different values of parameter (ε ), 1e0, 

1e-1, 1e-2, 1e-3, and 1e-4, respectively. Decreasing the value of ε increases the stiffness of the 

ODE. The final number of elements used and Root Mean Squared Error (RMSE) are shown in 

Table 4. This example is computed in Maple® with 15 digits of accuracy. 

 

Table 4. The results for various values of  ε  in Cash’s problem 

ε  

Initial Final 

RMSE with analytical highest 

derivative 
elements 

highest 

derivative 
elements 

010  5 10 5 10 164.63190516467 28 105 −×  
110−  5 10 5 10 151.37972329241 40 106 −×  
210−  5 10 5 10 111.49610391565 53 108 −×  
310−  5 10 5 20 114.37571658468 02 107 −×  
410−  5 10 5 36 122.91072853070 29 107 −×  
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Fig. 7. The results of y for  Cash’s problem (line: analytical solutions; dots: numerical solutions) 

 

All the 35 test problems provided on Cash’s website were tested by the proposed HDM 

approach. The problem set can be found on Jeff Cash’s website 

(http://wwwf.imperial.ac.uk/~jcash/BVP_software/PROBLEMS.PDF) and HDMadapt 

procedure can successfully solve all the listed problems with given perturbation parameters. The 

complete list of test results and the Maple® code can be found at the corresponding author’s 

website (http://depts.washington.edu/maple/HDM.html). 

 

3. Troesch’s problem 

This is an inherently unstable, difficult, nonlinear, two-point BVP formulated by Weibel 

[34] and Troesch [35] that describes the confinement of a place column by radiation pressure. 

Increasing ε  increases the stiffness of the ODE. Due to the difficulties involved, several 

researchers have explored different approaches for solving this problem. For example, Roberts and 

Shipman [36] used a combination of perturbation technique, the parallel shooting method, and the 
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continuation method to accurately solve this problem, when 5ε < . Jones [37] used a modified 

Newton method instead to solve this problem for handling cases when 5ε ≥ , but it requires higher 

number of iterations. Miele et al. [38] used modified quasi-linearization method by dividing the 

interval of integration into a number of sub-intervals. Although less iterations are used, high 

numbers of integration steps were required in this case. Chiou and Na [39] used the method of 

transformation groups to solve this problem; however, the accuracy became a concern in their 

approach. Vazquez-Leal et al. [40] provided a general solution to the problem by using the 

homotopy perturbation method. The uses of Sinc-collocation method [41], Sinc-Galerkin method 

[42] and Christove rational functions [43] for solving this problem are also noteworthy. 

The problem is shown in Eq. (51) and it is subjected to the boundary conditions: 

( )0 0.0y = , ( )1 1.0y = . 

 ( )'' sinh ,  1y yε ε ε= >  (51) 

To obtain the solution of the problem, first it has been rewritten in the form of an equivalent 

first order system as given in Eqs. (52)-(53) with the boundary conditions: ( )1 0 0.0y = , 

( )1 1 1.0y = . 

 1 2'y y=  (52) 

 ( )2 1' sinhy yε ε=  (53) 

A tolerance value of 1e-6, fifth derivative, and 10 elements were chosen as the input. Fig. 

8 shows the results obtained by the proposed approach and its comparison with the results of Chiou 

and Na [39] and iterative methods when 8ε = . The final number of the nodes used in the proposed 

approach is 23 and the proposed mesh adaption strategy works well. 
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Fig. 8. Results for Troesch’s problem 

 

4. Unknown parameter problem 

 This problem is adopted form Example 1.4 in the book written by Ascher et al. [17] which 

describes momentum transfer and the heat transfer of fluid injection in a long vertical channel as 

in Eqs. (54)-(56).  

 ( )2''' ' '' 0f R f ff RA − − + =    (54) 

 '' ' 1 0h Rfh+ + =   (55) 

 '' ' 0Pfθ θ+ =   (56) 

 with boundary conditions: 

 when x = 0, ( ) ( ) ( ) ( )0 ' 0 0 0 0f f h θ= = = =  ; when x = 1, ( ) ( )1 1 1f θ= =  and ( ) ( )' 1 1 0f h= = . 
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 The variables f and h describe the two potential functions, θ is the temperature distribution 

function, R is the Reynolds number and P is the Peclet number (e.g. take P = 0.7R), and A is the 

undetermined constant. It is difficult to solve this problem numerically not only because of the 

unknown parameter (A) but also because the Reynolds number determines the stiffness of the 

problem. Stiffness increases with the Reynolds number (a rapidly changing boundary layer 

develops near x = 0). 

 In this example, a value of R = 100 (i.e. P = 70) is chosen, and the nonlinear third-order 

ODEs are transformed into equivalent first-order ODEs as 

 ( )2
1 2 2 3 3 2 1 3' ,  ' ,  and 'y y y y y RA R y y y= = = − + −   (57) 

 4 5 5 1 5' , and ' 1y y y Ry y= = − −   (58) 

 6 7 7 1 7' , and y y y Py y= = −   (59) 

 with ( ) ( ) ( ) ( )1 2 4 60 0 0 0 0y y y y= = = =  and ( ) ( ) ( ) ( )1 2 4 61 1 1 1 1 1 0y y y y− = = = − = . 

 With the default input values, the procedure HDMadapt ends up using 42 elements, and 

10th order HDM. The unknown parameter A was found to be  2.76063141405118. The result of 

2 'y f=  is given in Fig. 9. The code for this problem is presented in the Appendix A. 
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Fig. 9. The first derivative of the fluid potential in a long vertical channel predicted by the HDM 

scheme. 

 

5. Parameter estimation and optimal control 

When parameter estimation or optimal control is performed in a sequential approach, there 

is a need to solve the same model multiple times. In order to reduce the effort of repeated 

discretization for a fixed mesh, one can take advantage of the symbolic form of equations and 

Jacobian to discretize the problem only once. i.e. the discretized HDM scheme can be derived as 

a function of parameters, and the equation set and the analytical Jacobian are computed only once 

(as done in HDMpars procedure). The discretized HDM set and the Jacobian can be repeatedly 

called later in Newton-Raphson iterations (HDMpars2 procedure), so the effort can be greatly 

reduced in sequential estimation or control problems. Similarly, the error of the HDM scheme for 

a given problem for different values of the system parameters can be arrived in the same way. This 

approach can also be used as a continuation strategy for difficult problems. The code for this 

problem is presented in Appendix B. 
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A simple model given as Eq. (60) for [ ]1e+2,1e+1,1e+0,1e-1,1e-2ε = , respectively, is 

solved and plotted in Fig. 10. This model describes diffusion with a second-order reaction in a 

rectangular catalyst pellet. 

 2 2''y yε=   (60) 

with boundary conditions: ( )' 0 0y =  and ( )1 1y =  

 
Fig. 10. HDM simulation of diffusion and reaction in a rectangular catalyst pellet for different 

values of the Thiele modulus. Equations were created only once, but solved for different values of 

the parameters without recalculating the Jacobian.  

 

V. Conclusions 

The HDM method is a single step A-stable method that can greatly reduce the size of the 

discretized system and eventually the computational time while solving BVPs. In addition, 

solutions obtained at all the node points have the same order of accuracy. The HDM scheme is 
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generic enough to extend to any desired order. With an efficient Newton-Raphson method based 

on a sparse linear solver and the adaptive meshing strategy, the HDM scheme can handle many 

BVPs efficiently. 
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Appendix A: Package HDM, solving boundary value problems in Maple® 

 

A.1 Introduction 

The package HDM solves boundary value problems (BVPs) using higher derivative 

methods (HDM) in Maple®. In this appendix, we explain how to solve BVPs using this package. 

HDM can numerically solve BVPs of ordinary differential equations (ODEs) of the form shown 

in Eq. (61).  

 ( ) [ ], ,  , ,  R sdy f x y x a b y
dx

= ∈ ∈  (61) 

With boundary conditions as ( )y a α= , ( )y b β= . 

 

A.2 A BVP Example 

 This unknown parameter problem is taken from Example 4 in this paper which describes 

momentum and heat transfer of fluid injection in a long vertical channel. The ODEs and BCs are 

as Eqs. (57)-(59). 

 The statements in red in the following text are Maple commands and are to be executed on 

Maple command prompt.  

 

Reset the program to clear the memory from previous execution command. 

> restart: 

 

Read the txt file which contains the HDM solver for BVPs. 

> read("HDM.txt"): 

 

Declare the precision for the entire Maple® sheet. 

> Digits:=15; 

 

33 
 



Enter the first-order ODEs into EqODEs list. 

> 
EqODEs:=[diff(y1(x),x)=y2(x),diff(y2(x),x)=y3(x),diff(y3(x),x)=-

R*A+R*(y2(x)^2-y1(x)*y3(x)),diff(y4(x),x)=y5(x),diff(y5(x),x)=-

1-R*y1(x)*y5(x),diff(y6(x),x)=y7(x),diff(y7(x),x)=-

P*y1(x)*y7(x)]; 

 

Define the left boundary condition (bc1), and the right boundary condition (bc2). One should 

collect all the terms in one side. 

> bc1:=evalf([y1(x),y2(x),y4(x),y6(x)]); 

> bc2:=evalf([y1(x)-1,y2(x),y4(x),y6(x)-1]); 

 

Define the range (bc1 to bc2) of this BVP. 

> Range:=[0.,1.]; 

 

List any known parameters in the list.  

> pars:=[P=70,R=100]; 

 

List any unknown parameters in the list. When there is no unknown parameter, use [ ]. 

> unknownpars:=[A]; 

 

Define the initial derivative in nder (default is 5 for 10th order) and the number of the nodes in 

nele (default is 10 and distributed evenly across the range provided by the user). The code adapts 

to increase the order. For many problems, 10th order method with 10 elements are sufficient. 

> nder:=5;nele:=10; 
 

Define the absolute and relative tolerance for the local error. The error calculation is done based 

on the norm of both the 9th and 10th order simulation results.  

> atol:=1e-10;rtol:=atol/100; 
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Call HDMadapt procedure, input all the information entered above and save the solution in sol. 

HDMadapt procedure does not need the initial guess for the mesh. 

> sol:= 
HDMadapt(EqODEs,bc1,bc2,pars,unknownpars,nder,nele,Range,atol,rt
ol): 
 

Present some details of the solution. 

> sol[1][ (nops(sol[3])+1)*nops(EqODEs)+1..nops(sol[1])]; # 

unknownpars 

 

> sol[2]; # local error 

 

> sol[3]; # element spacing 

[ ] = A 2.76063141405118

0.516017280511727 10 -13 0.280404478021445 10 -13 0.134899333565169 10 -13, , ,[
0.843380403070125 10 -14 0.167535225524744 10 -13, ,
0.180234435328161 10 -13 0.130081862677236 10 -13, ,
0.451621256032576 10 -14 0.749079157248931 10 -11, ,

0.122411259557231 10 -10 0.609079772435872 10 -11, ,
0.179853244150479 10 -11 0.424861368893361 10 -11, ,
0.347122731398200 10 -11 0.122317276291983 10 -11, ,
0.857871045290069 10 -12 0.186057114444594 10 -13, ,

0.174392022266724 10 -13 0.122639604223559 10 -13, ,
0.626123370917862 10 -14 0.145217247840687 10 -14, ,
0.142198120732110 10 -14 0.253269624925408 10 -14, ,
0.247082309631126 10 -14 0.185661718412170 10 -14, ,

0.113883175163602 10 -14 0.553480170974474 10 -15, ,
0.171223827678051 10 -15 0.331492786706419 10 -14, ,
0.681872237775073 10 -14 0.513329216422696 10 -14, ,
0.284943314986258 10 -14 0.131819560402305 10 -14, ,

0.533280411666936 10 -15 0.193552603916320 10 -15, ,
0.640536040213990 10 -16 0.114863358153041 10 -13, ,
0.826247508702572 10 -15 0.681890398190881 10 -16, ,
0.797287234807799 10 -15 0.839249720850315 10 -16, ,

0.433065969235651 10 -15 ]
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> sol[4]; # final order 
 

> sol[5]; # Maximum local RMSE 
 

 

Store the dimension of the solution (after adjusting the mesh) to NN. 

> NN:=nops(sol[3])+1; 
 

 

Plot the interested variable (the ath ODE variable will be sol[1][i+NN*(a-1)] ) 

> xx:=Vector(NN): 

> xx[1]:=Range[1]: 
> for i from 1 to nops(sol[3]) do xx[i+1]:=xx[i]+sol[3][i]: od: 
> 
plot([seq([xx[i],rhs(sol[1][i+NN*1])],i=1..NN)],axes=boxed,style
=point); 

0.0125000000000000 0.0125000000000000 0.0125000000000000, , ,[
0.0125000000000000 0.0125000000000000 0.0125000000000000, , ,
0.0125000000000000 0.0125000000000000 0.0250000000000000, , ,
0.0250000000000000 0.0250000000000000 0.0250000000000000, , ,
0.0250000000000000 0.0250000000000000 0.0250000000000000, , ,

0.0250000000000000 0.0166666666666667 0.0166666666666667, , ,
0.0166666666666667 0.0166666666666667 0.0166666666666667, , ,
0.0166666666666667 0.0166666666666667 0.0166666666666667, , ,
0.0166666666666667 0.0166666666666667 0.0166666666666667, , ,
0.0166666666666667 0.0250000000000000 0.0250000000000000, , ,

0.0250000000000000 0.0250000000000000 0.0250000000000000, , ,
0.0250000000000000 0.0250000000000000 0.0250000000000000, , ,
0.0500000000000000 0.0500000000000000 0.0500000000000000, , ,
0.0500000000000000 0.0500000000000000 0.0500000000000000, , ]

5

0.122411259557231 10 -10

 := NN 43
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Appendix B: Procedure HDMpars, HDMpars2 in Maple® 

 

B.1 Introduction 

HDMpars generates the HDM equation set, Jacobian for the Newton-Raphson procedure, 

and the error formulas for the HDM as a function of the parameters of interest; HDMpars2 

performs Newton-Raphson iterations. 

 

A.2 A BVP Example 

The functions are the same as in Appendix A. 

> restart: 
> read("HDM.txt"); 
> Digits:=15; 
> EqODEs:=[diff(y1(x),x)=y2(x),diff(y2(x),x)=1/epsilon*y1(x)^2]; 
> bc1:=evalf([y2(x)]); 
> bc2:=evalf([y1(x)-1]); 
> Range:=[0.,1.]; 
> unknownpars:=[]; 
> nder:=5;nele:=10; 
 

Define the element size of each element. 

> h1:=Vector(nele,[seq((Range[2]-Range[1])/nele,i=1..nele)]): 
 
Define the symbolic parameters   

> sympars:=[epsilon];  
 

Generate the HDM equation set, Jacobian for Newton-Raphson, and the error formulas for the 

HDM and store them into Gen. 

> 
Gen:=HDMpars(EqODEs,bc1,bc2,sympars,unknownpars,nder,nele,Range,
h1,atol,rtol): 
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Give the initial conditions for the variables at the node points 

> 
ic0:=[seq(0.5,i=1..(nele+1)*nops(EqODEs)),seq(2,i=1..nops(unknow
npars))]; 
 

List of values of parameters 

> p:=[100,10,1,1e-1,1e-2,1e-3]; 
 

Substitute the parameter individually and execute the Newton-Raphson iteration. The solutions 

and the error at each node points will be returned. Note that one can use sol[1] as ic0 for sol[2] for 

continuation strategy. 

> for i from 1 to 5 do 
  pars:=[epsilon=p[i]]; 
  sol[i]:=HDMpars2(Gen,ic0,pars); 
end do: 
 

Plot the solutions obtained. The plot will be the same as Fig. 10. 

> xx:=Vector(nele+1): 
> xx[1]:=Range[1]: 
> for i from 1 to nele do xx[i+1]:=xx[i]+h1[i]: od: 
> clr:=[red,blue,green,cyan,black]: 
> for i from 1 to 5 do 
pp[i]:=plot([seq([xx[j],sol[i][1][j]],j=1..nele+1)],axes=boxed,c
olor=clr[i],legend=[epsilon=p[i]]): 
end do: 
> plots:-display(seq(pp[i],i=1..5),style=pointline,labels=[x, 
y]); 
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 HDMadapt:=proc(EqODEs,bc1,bc2,pars,xpars,nder,nele,Range,atol,rtol) 
    local hnew,N,ics,maxiter,ErrMax,k,sol,ErrList,ErrMin,x0,i, 
        x0old,OKpts,Rmvindx,Wntindx,x0wnt,hwnt,ErrListwnt,hpredict,Nsub,ndernew, 
        maxnele,maxnder,maxsize,cnt,rmv,nODEs,Ntot,NN,adaptflag,catchflag,nWntindx,nxpars; 
  
    # Copyright: Dr. Venkat R.Subramanian and MAPLE group members at UW. 
    # Original code is written by V. R. Subramanian (vsubram@uw.edu). 
    # Last modified by Jerry Chen (jerrysyc@uw.edu) on 2017/07/28 
  
    optimize; 
  
    # Use uniform mesh as a start 
    hnew:=[seq((Range[2]-Range[1])/nele,i=1..nele)]: 
    N:=nele; 
    #ics:=ic0; 
    ndernew:=nder; 
    nODEs:=nops(EqODEs); 
    nxpars:=nops(unknownpars);  
    ics:=[seq(0.5,i=1..(N+1)*nODEs+nxpars)]; 
   
    # maxiter for adapt 
    maxiter:= 20; 
    ErrMax:=10; 
    maxnele:=200; 
    maxnder:=9; 
    maxsize:=500; # maximum size of system 
  
    
    # loop till we find the converged answer   
    for k to maxiter while ErrMax > atol or ndernew < maxnder+1 do 
   
      try 
       sol:=HDM(EqODEs,bc1,bc2,pars,xpars,ndernew,N,Range,ics,hnew,atol,rtol); 
  
       # store the norm error as a list 
       ErrList:=op(sol[2]); 
   
       # find the min and max for the judging criteria 
       ErrMax:=max(ErrList); 

Attachment- Code for HDM
Click here to view linked References

http://ees.elsevier.com/cam/viewRCResults.aspx?pdf=1&docID=48882&rev=0&fileID=391060&msid={9FEFE638-1CD4-4FCC-9577-0E4A741052AF}


       ErrMin:=min(ErrList); 
  
       catchflag:= 0; 
  
     catch: 
       print("HDM fail, increase points to...", 2*N); 
       N:=2*N; 
       hnew:=[seq((Range[2]-Range[1])/N,i=1..N)]: 
       ics:=[seq(0.5,i=1..(N+1)*nODEs+nxpars)]; 
       if ndernew <= maxnder and N > maxnele then ndernew:= ndernew+1; end if; 
       catchflag:= 1; 
     end try: 
  
      # confirm to find the converged answer 
      if ErrMax < atol then break; end; 
    
      # if the situation is really bad (error is really big) or cannot find the answer => double the nodes 
      if ErrMin > 0.1 and catchflag = 0 then  
        print("ErrMin > 0.1, double the mesh to...",2*N); 
        hnew:=[seq(seq(hnew[i]/2,j=1..2),i=1..N)]; 
        NN:=[seq(op([1,seq(2,i=1..N)]),j=1..nODEs)]; 
        ics:=[seq(seq(seq(map(rhs,sol[1])[(k-1)*(N+1)+i],j=1..NN[i]),i=1..N+1),k=1..nODEs), 
              seq(rhs(sol[1][nODEs*(N+1)+i]),i=1..nxpars)]; 
        N:=2*N;    
   
      # minimize the error by insertion local points 
      elif catchflag = 0 then 
   
        # initial mesh points before add and removal 
        x0:=Vector(N+1,datatype=float[8]); 
        x0[1]:=Range[1]: 
        for i from 2 to N+1 do x0[i]:=x0[i-1]+hnew[i-1]:od:  
        x0old:=[seq(x0[i],i=1..N+1)]; #print("initial mesh points before add and removal",x0old); 
         
        # Find the index of the norm ErrList which is less then (atol/10)           
        OKpts:=[seq(`if`(ErrList[i]<atol/10,i,NULL),i=1..N)]; 
   
        # Based on OKpts, find the which index should be removed 
        # Removal rules: in a grouping of 3, remove 2 (4) point from 1,2,3,(4,5) 
        cnt:=1; 
        for i from 1 to nops(OKpts)-2 do 



          if OKpts[i+2]=OKpts[i]+2 then 
            rmv[cnt]:=i+1; 
            i:=i+1; 
            cnt:=cnt+1; 
          end if; 
        end do; 
        Rmvindx:=[seq(rmv[i],i=1..cnt-1)];  
        Wntindx:=remove(has,[seq(i,i=1..N)],Rmvindx); 
        nWntindx:= nops(Wntindx); 
      
        # New nodes and h after removal 
        x0wnt:=[x0[1],seq(x0[i+1],i=Wntindx)]; 
        hwnt:=[seq(x0wnt[i+1]-x0wnt[i],i=1..nWntindx)]; 
        ErrListwnt:=[seq(ErrList[i],i=Wntindx)]; 
   
        # Find the new h based on the 2n-1 accuracy 
        ## Nsub = number of insertion points for subintervals 
        ## hpredict = predict spacing 
        for i from 1 to nWntindx do hpredict[i]:=hwnt[i]*(atol/ErrListwnt[i])^(1/(2*nder-1));od; 
        for i from 1 to nWntindx do Nsub[i]:=trunc(hwnt[i]/hpredict[i])+1; od; 
        Ntot:=add(Nsub[i],i=1..nWntindx);     
   
        # update the info for the new mesh 
        if (Ntot > maxnele or Ntot*nODEs > maxsize) or adaptflag = 1 then  
          print("case1 - double the nodes to...",2*N); 
          hnew:=[seq(seq(hnew[i]/2,j=1..2),i=1..N)]; 
          NN:=[seq(op([1,seq(2,i=1..N)]),j=1..nODEs)]; 
          if adaptflag = 1 then 
            ics:=[seq(seq(seq(map(rhs,sol[1])[(k-1)*(N+1)+i],j=1..NN[i]),i=1..N+1),k=1..nODEs), 
                  seq(rhs(sol[1][nODEs*(N+1)+i]),i=1..nxpars)]; 
          else 
            ics:=[seq(0.5,i=1..(2*N+1)*nODEs+nxpars)]; 
          end if: 
          if ndernew <= maxnder and N > maxnele then ndernew:= ndernew+1; end if: 
          N:=2*N;  
          adaptflag:= 0; 
        else  
          print("case2 - insert/remove points based on 2n-1 error to...",Ntot); 
          hnew:=[seq(seq(hwnt[i]/Nsub[i],j=1..Nsub[i]),i=1..nWntindx)]; 
          NN:=[seq(op([1,seq(Nsub[i],i=1..nWntindx)]),j=1..nODEs)];  
          ics:=[seq(seq(seq(map(rhs,sol[1])[(k-1)*(nWntindx+1)+i],j=1..NN[i]),i=1..nWntindx+1),k=1..nODEs), 



                seq(rhs(sol[1][nODEs*(nWntindx+1)+i]),i=1..nxpars)]; 
          N:=Ntot;    
          adaptflag:= 1;    
        end if; 
         
      end if; # End with decision if ErrMin > 0.1   
   
    end do; # close the loop for maxiter 
   
    # Return  
    [sol[1],([seq(evalf(ErrList[i]),i=1..N)]),hnew,ndernew,ErrMax]; 
   
 end proc: 
 
 
 HDM:=proc(eqodes,bc1,bc2,pars,xpars,nder,N,rng,ic,hh,atol,rtol) 
    local node,odevars,vars,f,i,F,x0,pade_alpha,pade_beta,alpha,beta, 
        alpha1,beta1,YY,Eqq,Eqs,varsNR,iter,guess,sol,Err,nxpars; 
   
    # Copyright: Dr. Venkat R.Subramanian and MAPLE group members at UW. 
    # Original code is written by V. R. Subramanian (vsubram@uw.edu). 
    # Last modified by Jerry Chen (jerrysyc@uw.edu) on 2017/08/03 
    
    optimize; 
   
    # Define the variables  
    node:=nops(eqodes); 
    odevars:=select(type,map(op,map(lhs,EqODEs)),'function'); 
    vars:=[seq(odevars[i]=Y||i[j],i=1..node)]; # i=vars, j=nodes 
  
    # Find the derivatives  
    f[1]:=Vector(node,[seq(rhs(eqodes[i]),i=1..node)]); 
  
    for i from 2 to nder do  
      f[i]:=simplify(subs(eqodes,Vector(node,[seq(diff(f[i-1][j],x),j=1..node)]))); 
    end do: 
  
    for i from 1 to nder do  
      F[i]:=unapply(subs(op(pars),vars,f[i]),j,x); 
    od: 
  



    # Initialize the mesh 
    x0:=Vector(N+1,datatype=float[8]):   
    x0[1]:=rng[1]: 
    for i from 1 to N do x0[i+1]:=x0[i]+hh[i]: od: 
   
    # Pade coefficients 
    pade_alpha:=unapply((m+n-ii)!*(m)!/((m+n)!*ii!*(m-ii)!),m,n,ii): 
    pade_beta:=unapply((m+n-ii)!*(n)!/((m+n)!*ii!*(n-ii)!),m,n,ii): 
  
    for i from 1 to nder do 
      alpha[i]:= pade_alpha(nder,nder,i); 
      beta[i]:= alpha[i]; 
      beta1[i]:= pade_beta(nder-1,nder,i);  
    end do: 
  
    for i from 1 to nder-1 do 
      alpha1[i]:=pade_alpha(nder-1,nder,i);  
    end do: 
    alpha1[nder]:=0; 
  
    # HDM formula 
    YY:=unapply(Vector(node,[seq(Y||i[j],i=1..node)]),j); 
    for i from 1 to N do  
      Eqq[i]:=eval(YY(i-1)-YY(i)+add(hh[i]^j*(alpha[j]*F[j](i-1,x0[i])+(-1)^(j+1)*beta[j]*F[j](i,x0[i+1])) 
            ,j=1..nder)); 
    od; 
     
    Eqs:=evalf([seq(seq(Eqq[i][j],i=1..N),j=1..node), 
             op(subs(op(pars),vars,j=0,x=rng[1],bc1)),op(subs(op(pars),vars,j=N,x=rng[2],bc2))]); 
  
    # vars for NR 
    varsNR:=[seq(seq(Y||j[i],i=0..N),j=1..node),op(xpars)]: 
   
    # NR 
    iter:=15; 
    nxpars:=nops(xpars); 
    guess:=[seq(varsNR[i]=ic[i],i=1..node*(N+1)+nxpars)]; 
    sol:=SNewton(Eqs,guess,atol,rtol,iter,N,nxpars):  
   
    # Error (2n HDM formula - (2n-1) HDM formula) - Note: not consider error at the first point, x0 
    for i from 1 to N do  



      Err[i]:=evalf(LinearAlgebra:-Norm(subs(sol,add(hh[i]^j*((alpha[j]-alpha1[j])*F[j](i-1,x0[i]) 
              +(-1)^(j+1)*(beta[j]-beta1[j])*F[j](i,x0[i+1])),j=1..nder)))/sqrt(node)); 
    end do; 
   
    # Return  
    [sol,([seq(evalf(Err[i]),i=1..N)])]; 
   
 end proc: 
 
 
 SNewton := proc (Eqs, ics, atol, rtol, iter, nele, nxpars)  
     local Jac,N,scale,vars,Eqs1,yold,jac,i,LL,j,F,k,errL,dy,ynew,rhsics,N1,bcindex;  
      
     # Copyright: Dr. Venkat R.Subramanian and MAPLE group members at UW. 
     # Original code is written by V. R. Subramanian (vsubram@uw.edu). 
     # Last modified by Jerry Chen (jerrysyc@uw.edu) on 2017/08/03 
   
     optimize; 
      
     # Initialization 
     N:=nops(Eqs); 
     errL := 10;  
      
     # Input check 
     if nops(Eqs) <> nops(ics) then ERROR("Check the number of equations and variables"); end; 
     if nops(remove(has,indets(Eqs,name),map(lhs,ics))) <> 0 then  
        ERROR("Variables' name don't match");  
     end; 
   
     # Scale based on the ics to force all y caculate from 0 to 1. 
     rhsics:=map(rhs,ics); 
     vars:=[seq(lhs(ics[i])=y[i],i=1..N)]; 
     yold :=evalf(Vector([seq(rhsics[i],i=1..N)])); 
  
     # Create equation set 
     Eqs1:=subs(vars,Eqs); 
     F := unapply(`<,>`(seq(Eqs1[i],i = 1 .. N)),y);  
    
     # Create Jacobian 
     jac := Matrix(1 .. N,1 .. N,storage = sparse); 
     N1:=(N-nxpars)/(nele+1);  



     for k from 1 to N1 do 
       for i from 1 to nele do 
         for j from 1 to N1 do 
           jac[i+(k-1)*nele,i+(j-1)*(nele+1)]:=diff(Eqs1[i+(k-1)*(nele)],y[i+(j-1)*(nele+1)]);  
           jac[i+(k-1)*nele,i+1+(j-1)*(nele+1)]:=diff(Eqs1[i+(k-1)*(nele)],y[i+1+(j-1)*(nele+1)]); 
         od: 
       od: 
     od: 
     bcindex:=[seq(1+(i-1)*(nele+1),i=1..N1),seq(nele+1+(i-1)*(nele+1),i=1..N1)]; 
     for i from N1*nele+1 to N-nxpars do  
       for j from 1 to nops(bcindex) do 
         jac[i,bcindex[j]]:=diff(Eqs1[i],y[bcindex[j]]); 
       od: 
     od:     
     for j from N-nxpars+1 to N do 
       for i from 1 to N do 
         jac[i,j]:=diff(Eqs1[i],y[j]): 
         jac[j,i]:=diff(Eqs1[j],y[i]): 
       od: 
     od: 
     Jac:=unapply(jac,y); 
   
     # Iterate until the y converges less then the tolerence 
     for k to iter while errL > 1 do 
   
       # Avoid version caused "SparseDirect" failed happens in Maple classic worksheet  
       dy := LinearAlgebra:-LinearSolve(-Jac(yold),F(yold),method=SparseDirect);  
  
       if add(`if`(type((dy[i]),numeric),0,1),i=1..N)>0 then ERROR("Cannot converge"); end if; 
       ynew := yold + dy;  
       errL := LinearAlgebra:-Norm(dy,2)/LinearAlgebra:-Norm(Vector([seq(atol+rtol*ynew[i],i=1..N)]),2); 
  
       # update yold to next iteration  
       yold := ynew;  
   
     end do;  
     
     if iter < k then ERROR("Exceed max NR iteration: %1",iter) end if;  
   
     # Return 
     [seq(lhs(ics[i])=ynew[i],i=1..N)]; # with name 



  
      
 end proc: 
 
 
 HDMpars:=proc(eqodes,bc1,bc2,pars,xpars,nder,nele,rng,hh,atol,rtol) 
     local node,odevars,vars,f,i,F,x0,pade_alpha,pade_beta,alpha, 
         beta,alpha1,beta1,YY,Eqq,Eqs,varsNR,guess,sol,Err,nxpars, 
         N,errL,Eqs1,jac,N1,k,j,bcindex,Jac,LErr; 
    
     # Copyright: Dr. Venkat R.Subramanian and MAPLE group members at UW. 
     # Original code is written by V. R. Subramanian (vsubram@uw.edu). 
     # Last modified by Jerry Chen (jerrysyc@uw.edu) on 2017/08/11 
     
     optimize; 
    
     # Define the variables  
     node:=nops(eqodes); 
     odevars:=select(type,map(op,map(lhs,EqODEs)),'function'); 
     vars:=[seq(odevars[i]=Y||i[j],i=1..node)]; # i=vars, j=nodes 
   
     # Find the derivatives  
     f[1]:=Vector(node,[seq(rhs(eqodes[i]),i=1..node)]); 
   
     for i from 2 to nder do  
       f[i]:=simplify(subs(eqodes,Vector(node,[seq(diff(f[i-1][j],x),j=1..node)]))); 
     end do: 
   
     for i from 1 to nder do  
       F[i]:=unapply(subs(vars,f[i]),j,x); 
     od: 
   
     # Initialize the mesh 
     x0:=Vector(nele+1,datatype=float[8]):   
     x0[1]:=rng[1]: 
     for i from 1 to nele do x0[i+1]:=x0[i]+hh[i]: od: 
    
     # Pade coefficients 
     pade_alpha:=unapply((m+n-ii)!*(m)!/((m+n)!*ii!*(m-ii)!),m,n,ii): 
     pade_beta:=unapply((m+n-ii)!*(n)!/((m+n)!*ii!*(n-ii)!),m,n,ii): 
   



     for i from 1 to nder do 
       alpha[i]:= pade_alpha(nder,nder,i); 
       beta[i]:= alpha[i]; 
       beta1[i]:= pade_beta(nder-1,nder,i);  
     end do: 
   
     for i from 1 to nder-1 do 
       alpha1[i]:=pade_alpha(nder-1,nder,i);  
     end do: 
     alpha1[nder]:=0; 
   
     # HDM formula 
     YY:=unapply(Vector(node,[seq(Y||i[j],i=1..node)]),j); 
     for i from 1 to nele do  
       Eqq[i]:=eval(YY(i-1)-YY(i)+add(hh[i]^j*(alpha[j]*F[j](i-1,x0[i]) 
                 +(-1)^(j+1)*beta[j]*F[j](i,x0[i+1])),j=1..nder)); 
     od; 
      
     Eqs:=evalf([seq(seq(Eqq[i][j],i=1..nele),j=1..node),op(subs(vars,j=0,x=rng[1],bc1)), 
              op(subs(vars,j=nele,x=rng[2],bc2))]); 
  
     # vars for NR 
     varsNR:=[seq(seq(Y||j[i],i=0..nele),j=1..node),op(xpars)]: 
   
     # NR 
     nxpars:=nops(xpars); 
     N:=nops(Eqs); 
     vars:=[seq(varsNR[i]=y[i],i=1..N)]; 
   
     # Local Error 
     LErr:=Vector([seq(evalf(LinearAlgebra:-Norm(subs(vars,add(hh[i]^j*((alpha[j]-alpha1[j])*F[j](i-1,x0[i]) 
               +(-1)^(j+1)*(beta[j]-beta1[j])*F[j](i,x0[i+1])),j=1..nder)))/sqrt(node)),i=1..nele)]); 
  
     # Create equation set 
     Eqs1:=subs(vars,Eqs); 
       
     # Create Jacobian 
     jac := Matrix(1 .. N,1 .. N,storage = sparse); 
     N1:=(N-nxpars)/(nele+1);  
     for k from 1 to N1 do 
       for i from 1 to nele do 



         for j from 1 to N1 do 
           jac[i+(k-1)*nele,i+(j-1)*(nele+1)]:=diff(Eqs1[i+(k-1)*(nele)],y[i+(j-1)*(nele+1)]);  
           jac[i+(k-1)*nele,i+1+(j-1)*(nele+1)]:=diff(Eqs1[i+(k-1)*(nele)],y[i+1+(j-1)*(nele+1)]); 
         od: 
       od: 
     od: 
     bcindex:=[seq(1+(i-1)*(nele+1),i=1..N1),seq(nele+1+(i-1)*(nele+1),i=1..N1)]; 
     for i from N1*nele+1 to N-nxpars do  
       for j from 1 to nops(bcindex) do 
         jac[i,bcindex[j]]:=diff(Eqs1[i],y[bcindex[j]]); 
       od: 
     od:     
     for j from N-nxpars+1 to N do 
       for i from 1 to N do 
         jac[i,j]:=diff(Eqs1[i],y[j]): 
         jac[j,i]:=diff(Eqs1[j],y[i]): 
       od: 
     od: 
         
     [Eqs1,jac,LErr,node]; 
    
 end proc: 
 
 
 HDMpars2 := proc (Gen,ic0,pars)  
      local Jac,N,scale,vars,Eqs1,yold,jac,i,LL,j,F,k,errL,dy,ynew,rhsics,N1,bcindex,iter,Lerr,node;  
       
      # Copyright: Dr. Venkat R.Subramanian and MAPLE group members at UW. 
      # Original code is written by V. R. Subramanian (vsubram@uw.edu). 
      # Last modified by Jerry Chen (jerrysyc@uw.edu) on 2017/08/11 
    
      optimize; 
  
      # Initialization 
      N:=nops(Gen[1]); 
      errL := 10;  
      iter:=15; 
      node:=Gen[4]; 
  
      F := unapply(`<,>`(seq(subs(op(pars),Gen[1][i]),i = 1 .. N)),y);  
      Jac:=unapply(subs(op(pars),Gen[2]),y); 



  
      # Scale based on the ics to force all y caculate from 0 to 1. 
      rhsics:=ic0;   #map(rhs,ics); 
      yold:=evalf(Vector([seq(rhsics[i],i=1..N)])); 
       
      # Iterate until the y converges less then the tolerence 
      for k to iter while errL > 1 do 
    
        # Avoid version caused "SparseDirect" failed happens in Maple classic worksheet  
        dy := LinearAlgebra:-LinearSolve(-Jac(yold),F(yold),method=SparseDirect);  
   
        if add(`if`(type((dy[i]),numeric),0,1),i=1..N)>0 then ERROR("Cannot converge"); end if; 
        ynew := yold + dy;  
        errL := LinearAlgebra:-Norm(dy,2)/LinearAlgebra:-Norm(Vector([seq(atol+rtol*ynew[i],i=1..N)]),2); 
   
        # update yold to next iteration  
        yold := ynew;  
    
      end do;  
      
      if iter < k then ERROR("Exceed max NR iteration: %1",iter) end if;  
    
      Lerr:=subs(seq(y[i]=ynew[i],i=1..N),op(pars),Gen[3]); 
         
      # Return 
      [ynew,Lerr]; # without name 
     
 end proc: 


