restart;

Goal: contour plots of a function of 2 variables, with the contours labeled on the plot.

with(Statistics) :
with(LinearAlgebra) :
with(ArrayTools) :
with(plots) :

Raw data snippet:

	10	0.1019	10383.58572	1.655	14.71813365	0.998691616
	11	9.07E-02	8226.470762	1.803	12.90034311	1.260564864
	12	8.08E-02	6528.624733	1.95	11.28046011	1.588389657
	13	7.20E-02	5183.987877	2.075	9.788142028	2.000390481
	14	6.41E-02	4106.236798	2.2	8.462283333	2.525426689
	15	5.71E-02	3260.402376	2.185	7.093692368	3.180589021
	16	5.08E-02	2582.66636	2.17	5.935732561	4.015230214
	17	4.53E-02	2052.085201	2.455	5.313314448	5.053396416
	18	4.03E-02	1624.086202	2.74	4.710047837	6.385129058
	19	3.59E-02	1288.806986	2.595	3.853921119	8.046200954
	20	3.20E-02	1021.439211	2.45	3.145470855	10.1523418
	21	2.85E-02	812.2481006	2.8	2.831644788	12.76703509
	22	2.54E-02	642.6209972	3.15	2.519501897	16.13703886
	23	2.26E-02	510.7588056	3.325	2.178968494	20.30312525
$chart1 \coloneqq$	24	2.01E-02	404.0090552	3.5	1.875083342	25.66774152
	25	1.79E-02	320.4092507	3.325	1.535917323	32.36485831
	26	1.59E-02	254.0830058	3.15	1.25626199	40.81343405
	27	1.42E-02	201.6395285	3.325	1.085227546	51.42840829
	28	1.26E-02	159.7692264	3.5	0.935076409	64.90611637
	29	1.13E-02	127.6897014	3.325	0.770381699	81.21250097
	30	1.00E-02	100.6006647	3.15	0.627045628	103.0808298
	31	8.90E-03	79.20981477	3.15	0.52412244	130.9181195
	32	7.95E-03	63.2023522	3.15	0.442484882	164.0761718
	33	7.10E-03	50.40988212	3.15	0.373452411	205.7136332
	34	6.30E-03	39.68990718	3.15	0.312146571	261.2754913
	35	5.60E-03	31.35992666	3.15	0.261595208	330.6767938
	36	5.00E-03	24.99994154	3.15	0.220700212	414.80097
	37	4.50E-03	20.24995265	3.15	0.188437145	512.0999629
	38	3.96E-03	15.68156333	3.15	0.155557345	661.2861091

```
1 #This is the procedure that generates the output I need to display as a contour plot, with contour labels on the plot
2
3 procedure1:=proc(cur,len,Vdrop,chartvar);
        local Rpf,n_r,n_tr,n;
4
        Rpf:=Vdrop/(cur*len);
5
        n r:=1:
6
        n tr:=1;
7
        for n from 1 to RowDimension(chartvar)
8
9
        do
             if Rpf > chartvar[n,6]
10
11
              then
12
                   n_r:=n;
              end if;
13
             if cur < chartvar[n,5]</pre>
14
15
              then
16
                   n_tr:=n;
             end if;
17
18
        end do;
        chartvar[min(n_r,n_tr),1];
19
20 end proc:
```

Try a few values to make sure the procedure is returning the expected results-

procedure1(12, 3.3.2808, 250, chart1) = 11procedure1(2.5, 2.3.2808, 250, chart1) = 21

Results are as expected.

Make a second function of just the first two variables, that calls the original procedure, specifically for contour plotting. Add the ".0001" to help contour plot function converge on just a single line rather than wide swatches of equal values

 $procedure11 := (cur, len) \rightarrow procedure1(cur, len*3.2808, 250, chart1) + .0001:$

Contour plot below (for fast rendering, until ready to do high quality print, make the "grid" values small, so result is chunky-looking here).

contourplot(procedure 11, .1..4, .1..8, size = [1, "golden"], color = "blue", axis = [gridlines = [30, color = grey]], labels = ["x axis label"], grid = [100, 100], contours = [10, 11, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 10]36, 38])

I need to see the contour values but unfortunately there seems to be no way to display the contour values on the plot without hovering over individual contour lines from within the Maple app. This of course won't work for any type of file output like PDFs, for example.

I found a clever program on a Maple forum to create contour plots with the contour values displayed. https://www.mapleprimes.com/posts/202222-Contour-Curves-With-Labels.

I am not very familiar with Maple programming at this point, so much of what is done here I don't really understand well.

```
Contours With Labels := \operatorname{proc}(Expr, Range1::(range(realcons)), Range2::(range(realcons)), Number::posint := 8, S::(set(realcons)) := \{ \}, GraphicOptions::list := [color = black, axes = box, size = [.5, 1]], Coloring::`=`:= NULL)
   local r1, r2, L, f, L1, h, S1, P, P1, r, M, C, T, p, p1, m, n, A, B, E;
    uses plots, plottools;
       \hat{f} := unapply(Expr, x, y);
       if S = \{ \} then
            r1 := rand(convert(Range1, float));
            r2 := rand(convert(Range2, float));
            L := [seq([r1(), r2()], i=1..205)];
            L1 := convert(sort(select(a \rightarrow type(a, realcons), [seq(f(op(t)), t=L)]), (a, b) \rightarrow is(abs(a) < abs(b))), set);
            h := (L1[-6] - L1[1]) / Number;
            S1 := [seq(L1[1] + 1 * h/2 + h * (n - 1), n = 1..Number)];
        else
            S1 := convert(S, list);
        fi;
        print(Contours = evalf[2](S1));
       r := k \rightarrow rand(20..k - 20);
       M := [ ];
       T := [ ];
        for C in S1 do
            P := implicit (Expr = C, x = Range1, y = Range2, op (GraphicOptions), gridrefine = 3);
            P1 := [getdata(P)];
            for p in P1 do
                p1 := convert(p[3], listlist);
                n := nops(p1);
                if n < 500 then
                    m := if(40 < n, r(n)), round(n/2);
                    M := if(40 < n, [op(M), p1[1..m - 11], p1[m + 11..n]], [op(M), p1]);
                    T := [op(T), [op(p1[m]), evalf[2](C)]]
                else
                    if 500 \le n then
                        h := \operatorname{floor}(n/2);
                        m := r(h)();
                        M := [op(M), p1[1..m - 11], p1[m + 11..m + h - 11], p1[m + h + 11..n]];
                        T := [op(T), [op(p1[m]), evalf[2](C)], [op(p1[m+h]), evalf[2](C)]]
                    fi: fi:
                od; od;
                A := plot(M, op(GraphicOptions));
                B := textplot(T);
                if Coloring = NULL then
                    E := NULL
                else
                    E := densityplot(Expr, x = Range1, y = Range2, op(rhs(Coloring))))
                fi;
                display(E, A, B);
            end proc:
```

Below is an example use case of the program. It generates a render that illustrates exactly what I am trying to do- i.e. show the contour values on the plot.

ContoursWithLabels($x^2 - y^2$, -3..3, -3..3, 10);

Contours = [-8.0, -6.4, -4.8, -3.2, -1.6, -0.043, 1.5, 3.1, 4.7, 6.3]

Or pass it a set of specific contours to use ContoursWithLabels($x^2 - y^2$, -3..3, -3..3, {-1,-4, -6, 1, 4, 6});

Contours = [-6., -4., -1., 1., 4., 6.]

However this won't work with my procedure passed as the expression (below). This is what I need help getting to work-

ContoursWithLabels(procedure11, .1..4, .1..4) Error, (in ContoursWithLabels) invalid subscript selector