
The Kronecker Delta and e - d 
Relationship

Techniques for more complicated vector identities

Overview
We have already learned how to use the Levi - Civita permutation tensor to describe cross products and to help prove vector
identities.  We will now learn about another mathematical formalism, the Kronecker delta, that will also aid us in computing
vector products and identities.

Dot Product Redux
We have already seen in class how to write vectors in component notation and to take the dot product of those vectors.  Let' s
revisit this problem and start by noting that if we have two vectors A and B, they can be written in component form as :

(1)
A = Ax x` + Ay y` + Az z`

B = Bx x` + By y` + Bz z`

Now, if we take the dot product of these vectors, we would write :

(2)A ◊ B = I Ax x` + Ay y` + Az z`M ÿ I Bx x` + By y` + Bz z`M
If we did the complete term - by - term dot product multiplication of eq. (2), we would get nine terms :

(3)

A ◊ B = Ax Bx x` ◊ x` + Ax By x` ◊ y` + Ax Bz x` ◊ z`

+ Ay Bx y` ◊ x` + Ay By y` ◊ y` + Ay Bz y` ◊ z`

+ Az Bx z` ◊ x` + Az By z` ◊ y` + Az Bz z` ◊ z`

We have learned in class that six of the terms in (3) will be non - zero, and that the only three non - zero terms are :

x
ˆ
⋅ x
ˆ
= y
ˆ
⋅ y
ˆ
= z
ˆ
⋅ z
ˆ
= 1

We can describe all the possible components of a dot product including both the zero and non - zero terms.  For this, we would
need a symbolic method of determining when the dot product of two unit vectors was 0 or 1.  The simple way of showing this is
with the Kronecker delta.  The Kronecker delta, dij is defined as:

dij = 0 if i ∫ j
1 if i = j where i and j are subscripts

As you can see, the Kronecker delta nicely summarizes the rules for computing dot products of orthogonal unit vectors; if the two
vectors have the same subscript, meaning they are in the same direction, their dot product is one.  If they have different sub-



scripts, meaning they are in different directions, their dot product is zero.
  
  We can write an expression for the dot product between two vectors as :

(4)A ◊ B = Ai Bj dij

You should be able to see that eq. (4) reduces quickly to the expression for dot product you are already familiar with. The
expression in (4) is zero for unless i=j.  Thus, we can set i=j in (4) and recover:

(5)A ◊ B = Ai Bi

as we learned from before.  You should still write dot products in the simple form indicated in (5), and you should get so familiar
with this that you recognize immediately that any product of the form Ga ¡a represents the dot product between the two vectors G
and ¡ since there is a repeated index.  The purpose of this exercise is to introduce you to the Kronecker delta notation.

The Kronecker Delta and Einstein Summation Notation
Recall that summation notation is built upon a simple protocol : repeated indices indicate a sum over that index from 1 to 3. Be
sure to recognize that expressions like dij  do not imply any summation since there is no repeated index.  Let's look at some
examples of summation notation involving Kronecker deltas.

ü Example 1 :

What is the value of dii?  This expression does have a repeated index, and means we should sum over all values of i from 1 to 3.
This means that:

(6)dii = d11 + d22 + d33 = 1 + 1 + 1 = 3

This is of course exactly the same result you would get from djj or dkk.  The choice of index is irrelevant, what matters is that the
index is repeated.

ü Example 2 :

What is the value of dij djk?  We realize that the first delta will go to zero unless i=j; we can make that substitution in the second
delta and contract the two deltas into one as:

(7)dij djk = dik

The logic is straightforward: the first delta will be zero unless i = j, and the second delta will be zero unless j = k; this is equiva-
lent to saying that the product is zero unless i = k, the result reflected on the right of (7)

ü Example 3 :

How would we evaluate the expression xi x j dij?  We now have two repeated indices, i and j, and we sum over both of them.
Setting "j" as the "inner" variable and summing over that first (only indexing the "i' counter once "j" runs from 1 to 3):

(8)

xi xj dij = x1 x1 d11 + x1 x2 d12 + x1 x3 d13

+ x2 x1 d21 + x2 x2 d22 + x2 x3 d23
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+ x3 x1 d31 + x3 x2 d32 + x3 x3 d33

= x1
2 + x2

2 + x3
3

Of course, there is no need (nor is it advisable) to do these summations explicitly; I show them here to help you with the transi-
tion from explicit summation notation to the implicit Einstein summation notation.  We could have deduced the final result in (8)
immediately by recognizing that the product of xi x j dij will be zero unless i=j, and if i=j, our expression simplifies to xi x j.

The e - d Relationship
As we investigate more complicated vector products, especially those dealing with cross products of cross products ( like Aâ(Bâ
C)), we will make frequent use of the "e-d relationship."  First of all, this is not the same "e-d" that you might have encountered in
studying continuity issues in first semester calculus (you may be familiar with the phrase..."for every e there is a d"...)

The relationship we are studying here relates products of permutation tensors to a series of  Kronecker deltas and bears no
substantive connection with continuity studies; they just make use of the same Greek letters.  The e-d  relationship we use in
vector analysis is:

(9)eijk eimn = djm dkn - djn dkm

Let' s consider (9) carefully to recognize the conditions under which we can use this relationship.  First, notice that the left is a
product of permutation tensors (the e symbols).  Notice that there is one repeated index (in this case the "i" index) and that this
index is in the same location in both tensors; in both tensors, the "i" index occupies the first index location.  In order to make use
of this e - d relationship, it is necessary that the repeated index appear in the same "slot" in both tensors. If there is a repeated
index occupying different slots (e.g. eijk emni where "i" is repeated but is in the first slot in the first tensor and the third slot in the
second tensor), you will need to permute (reorder) the indices in one of the tensors so that the repeated index occupies the same
slot in both.  At the end of this section I will show an example of how to do that.

Looking at (9) again, notice how the order of indices on the left relate to the order of indices on the right. The first pair of deltas
on the right Idjm dkn) have indices from the same slot position in their tensors, in other words djm has both "second slot" indices,
and dkn has both "third slot" indices.  The latter pair of deltas, djn dkm mix the indices, combining the second index from the first
tensor ("j") with the third index of the second tensor ("n"); the second delta dkm combines the third index from the first tensor
("k") with the second index of the second tensor ("m").  Some people find this language helpful in remembering the order of
subscripts when using the e-d relationship:

"inner-inner  outer-outer minus inner-outer outer-inner"

and some people don' t ... at any rate, (9) is a good equation to learn and use since we will make use of it frequently

What do we do if we encounter a product of permutation tensors where the repeated index is not in the same slot in both tensors?
This is something we will encounter is many situations, so we need to establish our protocols for dealing with this.  Let's consider
the product of eijk emni.  Since we have a repeated index, we know we can make use of the e-d relation, but we need to have "i"
occupy the same slot in both tensors.  We can do this by realizing that these indices are cyclic, that means we do not change the
value of the tensor if we change the order of indices in a cylic permutation.

What does cyclic permutation mean? In its simplest meaning, a cyclic permutation is one in which you can reorder the elements
without changing their relative locations.  In this case, let's consider the indices of the second tensor "mni".  If we repeat this
cycle we get "m n i m n i".  Any ordering of these elements that does not change the relative locations of the indices is cyclic, so
in practical terms, the following permutations are cyclic:
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mni, nim, imn
and do not change the value of the permuation tensor, in other words, 

(10)emni = enim = eimn

However, the following permutations are anti - cyclic :

inm, nmi, min
so that :

(11)einm = enmi = emin = -eimn

Remember that changing the order in the permutation tensor changes the sign of the value.

So, getting back to our original question, how do we handle a product like eijk emni?  We simply permute the second index until
the repeated index ("i" in this case) cycles into the first slot.  This means we write:

eijk emni = eijk enim = eijk eimn

Of course, you could have gone immediately to the final term, but I am showing you all the intermediate steps. Finally, our
product becomes :

(12)eijk emni = eijk eimn = d jm dkn - djn dkm

More Vector Proofs
Let' s use our new insights to prove some important vector identities.  

ü Example 1

In class, and in the text, we saw that the triple product gives us the volume of a parallelepiped formed by three vectors, A, B, and
C.We write this triple product as A ◊ HBâCL. Griffiths, on page 7 notes that:

(13)A ◊ HBâCL = B ◊ HCâAL = C ◊ HAâBL
Let' s see how to use vector identities to prove these equalities.  The first step is to write A·(BâC) in summation notation.  Notice
that we are going to take the cross product of a vector, and then take the dot product of A with the vector produced by crossing B
and C.  We can write this in summation form as:

(14)Ai Ieijk Bj CkM
Let' s look at (14) to make sure we understand what we have written. The term in parentheses is the expression for the ith

component of BâC.  The e symbol should alert you to look for a cross product; the two scalars following the e (here, B and C).
In (14), we are computing the ith component of the cross product since the two repeated indices are the j and k indices.  (Review
the last classnotes to be sure you see why this is the case.)  So if the term in parentheses is the ith component of the cross product,
multiplying it by the ith component of A does in fact represent the summation notation way of writing A·(BâC).  
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Now we move on to proving the equalities in (13).  Much of the power of using summation notation is that you convert vector
expressions into scalar expressions; and scalars are easily manipulated since scalar multiplication is commutative.  Using (14), we
realize that the order of multiplication of scalars is irrelevant, so we can rewrite (14) as:

(15)Bj Iejki Ck AiM
Why do we choose that order of operations (and also the order of indices for the permutation tensor)?  This expressions suggests
we are going to take the dot product of B with some new cross product. The cross product we have is expressed by  

(16)ejki Ck Ai

The e symbol alerts you that a cross product is being formed from the two vector components that follow; the order in which
those components follow must match the order of indices in the e term.  Also, in order that we not change the sign of our product,
we need to make sure that we are making a cyclic permutation, and those permutations are (ijk), (jki), and (kij).  So, what we
have in (15) is :

(17)Ai Ieijk Bj CkM = Bj Iejki Ck AiM = Bj HCäALj = B ÿ HCäAL
We can make one more cylic permutation of the expression in (14) and write :

(18)
Ai Ieijk Bj CkM = Ck Iekij Ai BjM = Ck HAäBLk = C ÿ HAäBL

and we have proven our identity.

ü Example 2

We now derive the infamous "BAC-CAB" rule!

This will be our first foray into expressions with multiple cross products, so we will get to use our full arsenal of techniques.  We
want to prove the following important vector identity:

(19)Aâ HBâ CL = HB ◊ AL C - C HA ◊ BL
Our first task is to convert the left hand side into summation notation.  Since there are two cross products, we will need to do this
in two steps.  First, the cross product of (BâC)  will produce a new vector, let's call it D, and this can be written as:

(20)D = BäC fl Di = eijk Bj Ck

This should be getting old hat; the ith component of D is given by the expression in (20).  Now, our final product,  AâD  produces
another vector G, and we can write:

(21)G = AäD fl Gm = emni An Di

We have to be very careful about subscipts and indices here; To compute the components of our final vector, G, we need to take
the appropriate cross product of A with D; this means that we need to write an expression for the components of G in terms of A
and D.  We use the index "i" for our D components, since we have just computed the "i" component of D, and it is these compo-
nents that will be crossed with A.  However, we must use new indicies for G and A since we are doing a separate summation
when we cross D with A.  

Notice again the pattern of subscripts; the mth component of G is produced from the expression emni An Di.  The e term indicates a
cross product of the two scalars that follow (A and D); the order of the subscripts in e matches the order of subscripts of the
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components (A and D).  The remaining subscript in the e term is the component of the vector that is produced, so it is correct that
the emni An Di term produces the mth component of G.

Knowing that Di  can be written as shown in (20), we substitute this expression for Di into (21) and get:

(22)Gm =  emni An Di = emni An Ieijk Bj CkM
Since all the terms in (22) are scalars, we can reorder them as we wish and write :

(23)Gm = emni An Ieijk Bj CkM = emni eijk An Bj Ck

And we have two e terms on the right.  We permute the first e term so that the "i" index is in the first slot and get :

(24)Gm = eimn eijk An Bj Ck

and now we use the e - d rule :

(25)Gm = Idjm dkn - dmk dnjM An Bj Ck = djm dkn An Bj Ck - dmk dnj An Bj Ck

Remember, the terms in these expressions are scalars and can be multiplied in any order.

Now, let' s consider the terms on the right in (25).  In the first set of terms,  djm dkn An Bj Ck, we realize that the expression

will be zero unless j=m and also k=n.  This means that the only nonzero terms in this expression are An Bm Cn.

For the second set of terms, dmk dnj An Bj Ck, the nonzero terms arise only if k=m and also j=n.  This means that the only

nonzero terms in this expression are An Bn Cm.  Combining these results and substituting back into (25) we have:

(26)Gm = An Bm Cn - An Bn Cm

Noting again that the terms in (26) can be multiplied in any order, we rearrange this to the form :

(27)Gm = Bm An Cn - Cm An Bn

And now we are almost done.  The product An Cn is simply the dot product A·C. Similarly, An Bn is the dot product A·B. This
allows us to write:

(28)Gm = Bm HA ÿ CL - Cm HA ÿ BL 
so when we sum over all coordinates, this becomes :

(29)G = Gm èm = Bm HA ÿ CL èm - Cm HA ÿ BL èm 

and FINALLY, 

(30)G = B HA ÿ CL - C HA ÿ BL
Q E D !!
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