
The vibration of continuous structures 

Continuous structures such as beams, rods, cables and plates can be modelled by discrete 
mass and stiffness parameters and analysed as multi-degree of freedom systems, but such 
a model is not sufficiently accurate for most purposes. Furthermore, mass and elasticity 
cannot always be separated in models of real systems. Thus mass and elasticity have to be 
considered as distributed or continuous parameters. 

For the analysis of structures with distributed mass and elasticity it is necessary to 
assume a homogeneous, isotropic material that follows Hooke’s law. 

Generally, free vibration is the sum of the principal modes. However, in the unlikely 
event of the elastic curve of the body in which motion is excited coinciding exactly with 
one of the principal modes, only that mode will be excited. In most continuous structures 
the rapid damping out of high-frequency modes often leads to the fundamental mode 
predominating. 

4.1 

Consider the longitudinal vibration of a thin uniform beam of cross-sectional area S, 
material density p, and modulus E under an axial force P, as shown in Fig. 4.1. 

The net force acting on the element is P + aP/ax . dx - P, and this is equal to the 
product of the mass of the element and its acceleration. 

From Fig. 4.1, 

LONGITUDINAL VIBRATION OF A THIN UNIFORM BEAM 

ap aZu 
-dx = p s d x -  ax at2 * 

NOW strain &/ax = P/SE, SO 
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Fig. 4.1. Longitudinal beam vibration. 

appx = sE(aZu/ax’). 

a2@tz = (E/p)(azu/axz), 

Thus 

or 

azU/ax2 = (i/c’)(a‘u/atz), where c = d ( ~ / p ) .  

This is the wave equation. The velocity of propagation of the displacement or stress wave 
in the bar is c. 

The wave equation 

azu 
~ ax2 = (+)($) 

can be solved by the method of separation of variables and assuming a solution of the 
form 

u(x, t )  = F(x)G(t). 

Substituting this solution into the wave equation gives 

a’F(x) 1 azc(t) 
ax2 c at’ 

G ( t )  = y- F(x) 7 

that is 

1 a2F(x) 1 1 a’c(t) ~ - _ _ ~ -  - 
F ( ~ )  ax2 c2 ~ ( t )  atz 

The LHS is a function of x only, and the RHS is a function o f t  only, so partial derivatives 
are no longer required. Each side must be a constant, - (w/c)‘ say. (This quantity is chosen 
for convenience of solution.) Then 

% + (f) F(x) = 0 
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and 

d2G(t) 

dt2 
+ oZG(t) = 0. 

Hence 

and 

G(t) = C sin ot + D cos ot. 
The constants A and B depend upon the boundary conditions, and C and D upon the initial 
conditions. The complete solution to the wave equation is therefore 

u = (Asin(:)x + Bcos(:)x)(csinot + D c o s o t  1 . 
Example 29 

Find the natural frequencies and mode shapes of longitudinal vibrations for a free-free 
beam with initial displacement zero. 

Since the beam has free ends, &/ax = 0 at x = 0 and x = 1. Now 

Hence 

( $ ) x = o = A ( t ) ( C s i n o t +  D c o s m ) = O ,  s o t h a t A = O  

and 

(g)x=, = (:)(-Bsin(:))(..i.m + D c o s o t  1 = 0. 

Thus sin(d/c) = 0, since B # 0, and therefore 

that is. 

o = rad/s, 
" I  
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where o = clwavelength. These are the natural frequencies. 
If the initial displacement is zero, D = 0 and 

where B = B x C. Hence the mode shape is determined. 

Example 30 

A uniform vertical rod of length 1 and cross-section S is fixed at the upper end and is 
loaded with a body of mass M on the other. Show that the natural frequencies of 
longitudinal vibration are determined by 

d d ( p / E )  tan d d ( p / E )  = Spl/M. 

At x = 0, u = 0, and at x = 1, F = SE (aulax). 

Also 

F = SE (aulax) = -M(a2ulat2). 

The general solution is 

u = (A sin(o/c)x + B cos(o/c)x)(C sin wp + D cos a). 
NOW, u,,, = 0, SO B = 0, 

thus 

u = (A sin(o/c)x)(C sin LLX + D cos wp), 
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(au/ax),=, = (A(O/c)  cos(d/c))(C sin m + D cos m) 

(a2u/atz), = , = (-Ao’ sin(ai/c))(C sin m + D COS m), 
and 

so 

F = SEA (dc) cos(d/c)(C sin ot + D cos m) 
= MAw2 sin(d/c)(C sin U# + D cos a). 

Hence (ol/c) tan(d/c) = SlE/Mc*, and 

old(p1E) tan wld(p/E) = Spl/M, since c2 = E/p. 

4.2 

The transverse or lateral vibration of a thin uniform beam is another vibration problem in 
which both elasticity and mass are distributed. Consider the moments and forces acting on 
the element of the beam shown in Fig. 4.2. The beam has a cross-sectional area A ,  flexural 
rigidity EI, material of density p and Q is the shear force. 

TRANSVERSE VIBRATION OF A THIN UNIFORM BEAM 

Fig. 4.2. Transverse beam vibration. 

Then for the element, neglecting rotary inertia and shear of the element, taking 
moments about 0 gives 

dx dx aQ dx aM 
M + Q -  + Q -  + -&- = M + -&, 

2 2 ax 2 ax 
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that is, 

Q = aM/ax. 

Summing forces in the y direction gives 

aQ a; 
ax atz 
-dx = p A d x - .  

Hence 

Now El is a constant for a prismatical beam, so 

a; a’M a4Y 
ax2 ax’ - 7. ax M = - E l -  and ~ - 

Thus 

This is the general equation for the transverse vibration of a uniform beam. 

beam varies harmonically with time, and can be written 
When a beam performs a normal mode of vibration the deflection at any point of the 

y = X (B, sin wt + B, cos wt), 

where X is a function of x which defines the beam shape of the normal mode of vibration. 
Hence 

d4X 

dx4 
~ = ($) W’X = A4X, 

where 

A4 = pAw2/El. This is the beam equation. 

The general solution to the beam equation is 

X = C,  cos ilx + C, sin ilx + C, cosh ilx + C, sinh Ax, 
where the constants C,,.,,., are determined from the boundary conditions. 

For example, consider the transverse vibration of a thin prismatical beam of length I, simply 
supported at each end. The deflection and bending moment are therefore zero at each end, so 
that the boundary conditions are X = 0 and d2X/dx2 = 0 at x = 0 and x = 1. 

Substituting these boundary conditions into the general solution above gives 

at x = 0, X = 0; thus 0 = C, + C,, 
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and 
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d2X 
at x = 0, ~ = 0; thus 0 = C, - C3; 

dx2 

that is, 

C, = C, = 0 and X = C, sin Ax + C, sinh Ax. 
Now 

at x = I ,  X = 0 so that 0 = C, sin Al + C, sinh 2, 

and 

d2X 
at x = 1, ~ = 0, so that 0 = C, sin Al- C, sinh Al; 

dx2 

that is, 

C, sin Al = C, sinh Al = 0. 

Since Al # 0, sinh Al # 0 

Also C, sin Al = 0. Since C, # 0 otherwise X = 0 for all x, then sin Al = 0. Hence 
X = C, sin ilx and the solutions to sin Al = 0 give the natural frequencies. These are 

and therefore C, = 0. 

w 2w 3w 
1 1 1  

A=O, - , - , -  )... 

so that 

A = 0, o = 0 is a trivial solution because the beam is at rest, so the lowest or first 
natural frequency is w, = (w/1)2d(EZ/Ap) rad/s, and the corresponding mode shape is 
X = C, sin m/k  this is the first mode; @ = (2~ /1 )~d(EZ/Ap)  rad/s is the second natural 
frequency, and the second mode is X = C, sin 2 x 4 ,  and so on. The mode shapes are 
drawn in Fig. 4.3. 

These sinusoidal vibrations can be superimposed so that any initial conditions can be 
represented. Other end conditions give frequency equations with the solution where the 
values of Q are given in Table 4.1. 

w = ?{(E) 1' rad/s, 
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1st mode shape, one half-wave: 

y = C, sin n - (B, sin o,t + B, cos m,t); W ,  = (;r{( E) rad/s. (;I 

2nd mode shape, two half-waves: 

y = C, sin 2n - (B, sin wt + B, cos at); o, = (yr{(s) radls. (1) 

3rd mode shape, three half-waves: 

y = C, sin 3n - (B, sin qt + B, cos qf); o, = (Ti’{( s) rad/s. (1) 

Fig. 4.3. Transverse beam vibration mode shapes and frequencies. 
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Table 4.1 

End conditions Frequency equation 1st 2nd 3rd 4th 5th 
mode mode mode mode mode 

Clamped-free cos 2 cosh Al = -1 3.52 22.4 61.7 21.0 199.9 
Pinned-pinned sin Al = 0 9.87 39.5 88.9 157.9 246.8 
Clamped-pinned tan Al = tanh Al 15.4 50.0 104.0 178.3 272.0 
Clamped- 
clamped or cos Al cosh ;U = 1 22.4 61.7 121.0 199.9 298.6 
Free-free 

The natural frequencies and mode shapes of a wide range of beams and structures are 
given in Formulas for Natural Frequency and Mode Shape by R. D. Blevins (Van 
Nostrand, 1979). 

4.2.1 The whirling of shafts 

An important application of the theory for transverse beam vibration is to the whirling of 
shafts. If the speed of rotation of a shaft is increased, certain speeds will be reached at 
which violent instability occurs. These are the critical speeds of whirling. Since the 
loading on the shaft is due to centrifugal effects the equation of motion is exactly the same 
as for transverse beam vibration. The centrifugal effects occur because it is impossible to 
make the centre of mass of any section coincide exactly with the axis of rotation, because 
of a lack of homogeneity in the material and other practical difficulties. 

Example 31 

A uniform steel shaft which is carried in long bearings at each end has an effective 
unsupported length of 3 m. Calculate the first two whirling speeds. 

Take Z/A = 0.1 x 
Since the shaft is supported in long bearings, it can be considered to be ‘built in’ at each 

m2, E = 200 GN/m2, and p = 8000 kg/m3. 

end so that, from Table 4.1, 

w = ?{( l2 z) rad/s, 

where a, = 22.4 and cr; = 61.7. For the shaft, 

so that the first two whirling speeds are: 

22.4 

9 
0 1  = ~ 50 = 124.4 rad/s, 

so 
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w, 124.4 

2 a  2 z  
f,=-=--- - 19.8 cyclels and N, = 1188 revlmin 

and 

61.7 
22.4 

N2 = 1188 = 3272rev/min. 

Rotating this shaft at speeds at or near to the above will excite severe resonance 
vi bration. 

4.2.2 Rotary inertia and shear effects 

When a beam is subjected to lateral vibration so that the depth of the beam is a significant 
proportion of the distance between two adjacent nodes, rotary inertia of beam elements 
and transverse shear deformation arising from the severe contortions of the beam during 
vibration make significant contributions to the lateral deflection. Therefore rotary inertia 
and shear effects must be taken into account in the analysis of high-frequency vibration of 
all beams, and in all analyses of deep beams. 

The moment equation can be modified to take into account rotary inertia by a term 
pl  a’y/(ax at‘), so that the beam equation becomes 

xy a; 
ax4 axat’ at2 

EI ~ - PI- -+ PA- = 0. 

Shear deformation effects can be included by adding a term 

E I ~  
kg ax2 at” 

~~ 

where k is a constant whose value depends upon the cross section of the beam. Generally, 
k is about 0.85. The beam equation then becomes 

a‘y Elp a4y 

ax kg ax2&’ at2 
E I 7 - p -  + PA - = 0. 

Solutions to these equations are available, which generally lead to a frequency a few 
percent more accurate than the solution to the simple beam equation. However, in most 
cases the modelling errors exceed this. In general, the correction due to shear is larger than 
the correction due to rotary inertia. 

4.2.3 The effect of axial loading 

Beams are often subjected to an axial load, and this can have a significant effect on the 
lateral vibration of the beam. If an axial tension T exists, which is assumed to be constant 
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for small-amplitude beam vibrations, the moment equation can be modified by including 
a term Z2I2y/2x2, so that the beam equation becomes 

a.lY aZy 3; 
ax4 ax2 at2 

El-- T p  + PA- = 0. 

Tension in a beam will increase its stiffness and therefore increase its natural frequencies; 
compression will reduce these quantities. 

Example 32 

Find the first three natural frequencies of a steel bar 3 cm in diameter, which is simply 
supported at each end, and has a length of 1.5 m. Take p = 7780 kg/m3 and E = 208 
GN/m’. 

For the bar, 

m/s’ = 38.8 m/s’. 
208 x IO9 x n(0.03)4/64 {(E) = {( n(0.03/2)’ 7780 

Thus 

n‘ 
w, = 38.8 = 170.2 rad/s and f ,  = 27.1 Hz. 

1.5‘ 

Hence 

f2 = 27.1 x 4 = 108.4 HZ 

and 

f3 = 27.1 x 9 = 243.8 Hz. 

If the beam is subjected to an axial tension T, the modified equation of motion leads to 
the following expression for the natural frequencies: 

For the case when T = 1000 N the correction to w‘ is w‘, where 

w‘ = (fir( n(0.0312)’ 7780 
) = 795 (rad/s)’ 

That is ,L = 4.5 Hz. Hencef, = 44.5’ + 27.1’) = 27.5 Hz. 

4.2.4 Transverse vibration of a beam with discrete bodies 

In those cases where it is required to find the lowest frequency of transverse vibration of 
a beam that carries discrete bodies, Dunkerley’s method may be used. This is a simple 
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analytical technique which enables a wide range of vibration problems to be solved using 
a hand calculator. Dunkerley ’s method uses the following equation: 

1 1  1 1 1 + - + - + - + ..., --- @:-e  p2 p: e 
where @, is the lowest natural frequency of a system and P, ,  P,, P3, ... are the frequencies 
of each body acting alone (see section 3.2.1.2). 

Example 33 

A steel shaft ( p  = 8000 kg/m3, E = 210 GN/m2) 0.055 m diameter, running in self- 
aligning bearings 1.25 m apart, carries a rotor of mass 70 kg, 0.4 m from one bearing. 
Estimate the lowest critical speed. 

For the shaft alone 

= 70.45 m/s2. ) 210 x lo9 x n(0.055)‘/64 {(E) = d( ~(0.055/2)’ 8000 

Thus P, = (&r 70.45 = 445 rad/s = 4249 rev/min. 

This is the lowest critical speed for the shaft without the rotor. For the rotor alone, 
neglecting the mass of the shaft, 

P2 = d(k/m) rad/s 

and 

k = 3EZ1/(xz(1 - x)’), 

wherex = 0.4 m and I = 1.25 m. 
Thus 

k = 3.06MN/m 

and 

P, = d((3.06 x 10“)/70) 

Now using Dunkerley’s method, 
= 209.1 rad/s = 1996 rev/min. 

l/N,’ = 114249’ + 1/1996’, hence N, = 1807 rev/min. 

4.2.5 Receptance analysis 

Many structures can be considered to consist of a number of beams fastened together. 
Thus if the receptances of each beam are known, the frequency equation of the structure 
can easily be found by carrying out a subsystem analysis (section 3.2.3). The required 
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receptances can be found by inserting the appropriate boundary conditions in the general 
solution to the beam equation. 

It will be appreciated that this method of analysis is ideal for computer solutions 
because of its repetitive nature. 

For example, consider a beam that is pinned at one end ( x  = 0) and free at the other end 
(x  = I ) .  This type of beam is not commonly used in practice, but it is useful for analysis 
purposes. With a harmonic moment of amplitude M applied to the pinned end, 

at x = 0, X = 0 (zero deflection) and 

d2X M 
dx2 EI 
~- - - (bending moment M), 

and at x = I ,  

d2X ~- - 0 (zero bending moment) 
dx2 

and 

d3X ~- - 0 (zero shear force). 
dx3 

Now, in general, 

X = C, cos Ax + C, sin Ax + C, cosh Ax + C, sinh Ax. 
Thus applying these boundary conditions, 

M 
0 = C, + C, and - = -CIA2 + C3A2 

EI 

Also 

0 = -CIA2 cos Al- C2A2 sin Al + C3A2 cosh Al + C,A2 sinh 2. 
and 

0 = CIA3 sin Al- C2A3 cos Al + C3A3 sinh Al + C4A3 cosh 2. 
By solving these four equations Cl,,3,4 can be found and substituted into the general 

solution. It is found that the receptance moment/slope at the pinned end is 

(1 + cos Al cosh 2) 
EIA (cos Al sinh Al - sin 2 cosh 2) 

and at the free end is 

2 cos Al cosh Al 
EIA (cos Al sinh 2 - sin 2 cosh 2) ' 
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The frequency equation is given by 

cos 2 sinh 2- sin 2 cosh Ai = 0, 

that is, tan 2 = tanh 2. 
Moment/deflection receptances can also be found. 
By inserting the appropriate boundary conditions into the general solution, the re- 

ceptance due to a harmonic moment applied at the free end, and harmonic forces applied 
to either end, can be deduced. Receptances for beams with all end conditions are tabulated 
in The Mechanics of Vibration by R. E. D. Bishop & D. C. Johnson (CUP, 1960/79), 
thereby greatly increasing the ease of applying this technique. 

Example 34 

A hinged beam structure is modelled by the array shown below: 

The hinges are pivots with torsional stiffness kT and their mass is negligible. All hinges 
and beams are the same. 

It is required to find the natural frequencies of free vibration of the array, so that the 
excitation of these frequencies, and therefore resonance, can be avoided. 

Since all the beams are identical, the receptance technique is relevant for finding the 
frequency equation. This is because the receptances of each subsystem are the same, 
which leads to some simplification in the analysis. 

There are two approaches: 

(i) 
(ii) 
This approach results in a smaller number of subsystems. 

could be either 

to split the array into subsystems comprising torsional springs and beams, 
to split the array into subsystems comprising spring-beam assemblies. 

Considering the first approach, and only the first element of the array, the subsystems 
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I= O’ 
-sin Al sinh Al -(cos Al sinh Al - sin Al cosh AZ) 

Transverse vibration of a thin uniform beam 143 

For (a) the frequency equation is all + PI, = 0, whereas for (b) the frequency equation 
is 

where a,, is the moment/slope receptance for A, PI, is the moment/slope receptance for B, 
PI2 is the moment/deflection receptance for B, is the force/deflection receptance for B, 
and so on. 

For (a), either calculating the beam receptances as above, or obtaining them from tables, 
the frequency equation is 

1 cos Al cosh Al + 1 - +  = 0, 
k, ElA(cos Al sinh Al - sin Al cosh 2) 

where 
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Fig. 4.4. Portal frame substructure analysis. 

divided into three substructures coupled by the conditions of compatibility and equili- 
brium, as shown in Fig. 4.4. 

Substructures A and C are cantilever beams undergoing transverse vibration, whereas B 
is a free-free beam undergoing transverse vibration. Beam B is assumed rigid in the 
horizontal direction, and the longitudinal deflection of beams A and C is assumed to be 
negligible. 

Because the horizontal member B has no coupling between its horizontal and flexural 
motion PI2 = PI4 = a3 = a4 = 0, so that the frequency equation becomes 

= 0. 

4.3 
ENERGY METHOD 

THE ANALYSIS OF CONTINUOUS STRUCTURES BY RAYLEIGH’S 

Rayleigh’s method, as described in section 2.1.4, gives the lowest natural frequency of 
transverse beam vibration as 
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A function of x representing y can be determined from the static deflected shape of the 
beam, or a suitable part sinusoid can be assumed, as shown in the following examples. 

Example 35 

A simply supported beam of length 1 and mass m2 carries a body of mass m, at its mid- 
point. Find the lowest natural frequency of transverse vibration. 

This example has been fully discussed above (Example 4, p. 25). However, the 
Dunkerley method can also be used. Here 

48 EI 2 EI n4 
p: = ~ and P, = - 

m , ~ 3  m 2 ~ 3  ’ 

m,13 m213 

Thus 

- + -  1 ~-~ 
m2 48 EI x4 EI’  

Hence 

2 El(:’’ + 
o = (1.o15m1 + - 2 -i’ 

which is very close to the value determined by the Rayleigh method. 

Example 36 

A pin-ended strut of length 1 has a vertical axial load P applied. Determine the frequency 
of free transverse vibration of the strut, and the maximum value of P for stability. The strut 
has a mass m and a second moment of area I ,  and is made from material with modulus of 
elasticity E. 
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The deflected shape can be expressed by 

X 
y = yosin a-, 

1 

since this function satisfies the boundary conditions of zero deflection and bending 
moment at x = 0 and x = 1. 

Now, 

V,, = I EI (3rd~ - Pz, 
2 

where 

EI z4 
p Yo ’ - 
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1 X 
= -1 2 yo2 ($ cos2 K- 1 dx 

Thus 

EI n4 P K' 
Yo ' 4 1 '  4 1  

Now, 

T,,,,, = - / y 2 d m  1 = -1 1 y 2 m  ~ d x  
2 2 

Thus 

2 (ps:;') 
w =  

and 

From section 2.1.4, for stability 

dV d2V 
- = O  and y > O ,  
dY0 dY0 

that is, 

It' 
l2 

yo = 0 and El - > P ;  
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yo = 0 is the equilibrium position about which vibration occurs, and P < El n2/12 is the 
necessary condition for stability. El d/12 is known as the Euler buckling load. 

4.4 TRANSVERSE VIBRATION OF THIN UNIFORM PLATES 

Plates are frequently used as structural elements so that it is sometimes necessary to 
analyse plate vibration. The analysis considered will be restricted to the vibration of thin 
uniform flat plates. Non-uniform plates that occur in structures, for example, those which 
are ribbed or bent, may best be analysed by the finite element technique, although exact 
theory does exist for certain curved plates and shells. 

The analysis of plate vibration represents a distinct increase in the complexity of 
vibration analysis, because it is necessary to consider vibration in two dimensions instead 
of the single-dimension analysis carried out hitherto. It is essentially therefore, an 
introduction to the analysis of the vibration of multi-dimensional structures. 

Consider a thin uniform plate of an elastic, homogeneous isotropic material of thickness 
h, as shown in Fig. 4.5. 

Fig. 4.5. Thin uniform plate. 

If u is the deflection of the plate at a point (x, y), then it is shown in Vibration Problems 
in Engineering by S .  Timoshenko (Van Nostrand, 1974), that the potential energy of 
bending of the plate is 

(:;yrl drdr 
q{($q + ($! + 2 v 7 7  + 2 ( l - " )  ~ 

a2v a2u 

2 ax ay 
where the flexural rigidity, 
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Eh3 
D =  

12(1 - v’) 

and v is Poisson’s Ratio. 
The kinetic energy of the vibrating plate is 

where ph is the mass per unit area of the plate. 

supported edges, at a natural frequency 4 v can be represented by 
In the case of a rectangular plate with sides of length a and b, and with simply 

X Y 
a b 

v = $ sin mn- sin nn -, 

where 4 is a function of time. 

Thus 
2 2  n‘ab 

8 
V = ~ D $’ ($ + 5) 

and 

ph ab .’ 
T = --$. 

2 4  

Since d(T + V)/dt = 0 in a conservative structure, 

ph ab n‘ab 
2 4  8 

244 + ~ 

-- 

that is, the equation of motion is 

Thus $ represents simple harmonic motion and 

$ = A sin i-o,,,,,r + B cos w,,t, 
where 
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Now, 

X Y 
a b 

v = I$ sin ma- sin na -, 

thus v = 0 when sin mnxla = 0 or sin nlly/b = 0, and hence the plate has nodal lines 
when vibrating in its normal modes. 

Typical nodal lines of the first six modes of vibration of a rectangular plate, simply 
supported on all edges, are shown in Fig. 4.6. 

Fig. 4.6. Transverse plate vibration mode shapes. 

An exact solution is only possible using this method if two opposite edges of the plate 
are simply supported: the other two edges can be free, hinged or clamped. If this is not the 
case, for example if the plate has all edges clamped, a series solution for u has to be 
adopted. 

For a simply supported square plate of side a( = b), the frequency of free vibration 
becomes 

f = a${(:) Hz, 

whereas for a square plate simply supported along two opposite edges and free on the 
others, 

f = 4 2m {(+) Hz, 
where a = 9.63 in the first mode (1, l), a = 16.1 in the second mode (1,2), and a = 36.7 
in the third mode (1, 3). 
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Thus the lowest, or fundamental, natural frequency of a simply supported/free square 
plate of side 1 and thickness d is 

E{( E d  ) = Z @ ) H z ,  
2 a t  12(1 - V Z )  pd 

if v = 0.3. 

simply supported at each end as 
The theory for beam vibration gives the fundamental natural frequency of a beam 

_'-- 2a ( ? )  1 {( E) Hz. 
bd 
12 

If the beam has a rectangular section b x d, I = ~ and A = bd. 

Thus 

that is, 

f = {(s) Hz. 

This is very close (within about 2%) to the frequency predicted by the plate theory, 
although of course beam theory cannot be used to predict all the higher modes of plate 
vibration, because it assumes that the beam cross section is not distorted. Beam theory 
becomes more accurate as the aspect ratio of the beam, or plate, increases. 

For a circular plate of radius a, clamped at its boundary, it has been shown that the 
natural frequencies of free vibration are given by 

where a is as given in Table 4.2. 
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Table 4.2 

Number of 
nodal circles 

Number of nodal diameters 
0 1 2 

~~ ~ 

10.21 2 1.26 34.88 
39.77 60.82 84.58 
89.1 120.08 153.81 

158.18 199.06 242.7 1 

The vibration of a wide range of plate shapes with various types of support is fully 
discussed in NASA publication SP-160 Vibration of Plates by A. W. Leissa. 

4.5 THE FINITE ELEMENT METHOD 

Many structures, such as a ship hull or engine crankcase, are too complicated to be 
analysed by classical techniques, so that an approximate method has to be used. It can be 
seen from the receptance analysis of complicated structures that breaking a dynamic 
structure down into a large number of substructures is a useful analytical technique, 
provided that sufficient computational facilities are available to solve the resulting 
equations. The finite element method of analysis extends this method to the consideration 
of continuous structures as a number of elements, connected to each other by conditions 
of compatibility and equilibrium. Complicated structures can thus be modelled as the 
aggregate of simpler structures. 

The principal advantage of the finite element method is its generality; it can be used to 
calculate the natural frequencies and mode shapes of any linear elastic system. However, 
it is a numerical technique that requires a fairly large computer, and care has to be taken 
over the sensitivity of the computer output to small changes in input. 

For beam type systems the finite element method is similar to the lumped mass method, 
because the system is considered to be a number of rigid mass elements of finite size 
connected by massless springs. The infinite number of degrees of freedom associated with 
a continuous system can thereby be reduced to a finite number of degrees of freedom, 
which can be examined individually. 

The finite element method therefore consists of dividing the dynamic system into a 
series of elements by imaginary lines, and connecting the elements only at the inter- 
sections of these lines. These intersections are called nodes. It is unfortunate that the word 
node has been widely accepted for these intersections; this meaning should not be 
confused with the zero vibration regions referred to in vibration analysis. The stresses and 
strains in each element are then defined in terns of the displacements and forces at the 
nodes, and the mass of the elements is lumped at the nodes. A series of equations is thus 
produced for the displacement of the nodes and hence the system. By solving these 
equations the stresses, strains, natural frequencies and mode shapes of the system can be 
determined. The accuracy of the finite element method is greatest in the lower modes, and 
increases as the number of elements in the model increases. The finite element method of 
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analysis is considered in The Finite Element Method by 0. C. Zienkiewicz (McGraw Hill, 
1977) and A First Course in Finite Element Analysis by Y. C. Pao (Allyn and Bacon, 
1986). 

4.6 
MATERIAL 

THE VIBRATION OF BEAMS FABRICATED FROM MORE THAN ONE 

Engineering structures are sometimes fabricated using composite materials. These appli- 
cations are usually where high strength and low weight are required as, for example, in 
aircraft, space vehicles and racing cars. Composite materials are produced by embedding 
high-strength fibres in the form of filaments or yarn in a plastic, metal or ceramic matrix. 
They are more expensive than conventional materials but their application or manufactur- 
ing methods often justify their use. 

The most common plastic materials used are polyester and epoxy resin, reinforced with 
glass. The glass may take the form of strands, fibres or woven fabrics. The desirable 
quality of glass fibres is their high tensile strength. Naturally the orientation and alignment 
or otherwise of the fibres can greatly affect the properties of the composite. Glass 
reinforced plastic (GRP) is used in such structures as boats, footbridges and car bodies. 
Boron fibres are more expensive than glass but because they are six times stiffer they are 
sometimes used in critical applications. 

Carbon fibres are expensive, but they combine increased stiffness with a very high 
tensile strength, so that composites of carbon fibre and resin can have the same tensile 
strength as steel but weigh only a quarter as much. Because of this carbon fibre 
composites now compete directly with aluminium in many aircraft structural applications. 
Cost precludes its large-scale use, but in the case of the A320 Airbus, for example, over 
850 kg of total weight is saved by using composite materials for control surfaces such as 
flaps, rudder, fin and elevators in addition to some fairings and structural parts. 

Analysis of the vibration of such structural components can be conveniently carried out 
by the finite element method (section 4.9, or more usefully by the modal analysis method 
(section 3.3). However, composite materials are usually anisotropic so the analysis can be 
difficult. Inherent damping is often high however, even though it may be hard to predict 
due to variations in such factors as manufacturing techniques and fibre/matrix wetting. 

Concrete is usually reinforced by steel rods, bars or mesh to contribute tensile strength. 
In reinforced concrete, the tensile strength of the steel supplements the compressive 
strength of the concrete to provide a structural member capable of withstanding high 
stresses of all kinds over large spans. It is a fairly cheap material and is widely used in the 
construction of bridges, buildings, boats, structural frameworks and roads. 

It is sometimes appropriate, therefore, to fabricate structural components such as 
beams, plates and shells from more than one material, either in whole or in part, to take 
advantage of the different and supplementary properties of the two materials. Composites 
are also sometimes incorporated into highly stressed parts of a structure by applying 
patches of a composite to critical areas. 

The vibration analysis of composite structures can be lengthy and difficult, but the 
fundamental frequency of vibration of a beam made from two materials can be determined 
using the energy principle, as follows. 
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Fig. 4.7 shows a cross section through a beam made from two materials 1 and 2 bonded 
at a common interface. Provided the bond is sufficiently good to prevent relative slip, a 
plane section before bending remains plane after bending so that the strain distribution is 
linear across the section, although the normal stress will change at the interface because of 
the difference in the elastic moduli of the two materials E, and E2. 

Fig. 4.7. Composite beam cross section. 

Now, from section 2.1.4.2 and Fig. 2.1 1, the strain & at a distance r from the neutral axis 
of a beam in bending is 

(R + r)dO-RdO r - -  - 
RdO R '  

Hence the strain at a distance rl from the neutral axis is 

d2Y 
dx2 

&I = rl -, 

and similarly 

d2y 
dx2 

~2 = r2 - .  

Hence, the corresponding stresses are 

d2Y o, = Elcl = Elrl ~ 

dx2 

and 

d2Y 
d x 2 .  

a2 = E2& = E2r2 - 

The strain energy stored in the two materials per unit volume is dV, + dV, 

where 
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and 

Integrating over the volume of a beam of length 1 gives 

I, = r: d ~ ,  and = J r: u2, Now I 
so 

I, and I2 can only be calculated when the location of the neutral axis of the composite 
cross section is known. This can be found using an equivalent cross section for one 
material. 

The mass per unit length of the composite is p,A, + p2A2, so that 

(yw)2 dx. PIA, + P2A2 
Tm, = ( 2 )L 

A shape function has therefore to be assumed before T,,,, can be calculated. 
Putting T,,, = V,,,,, gives the natural frequency 61. 

Example 37 

A simply supported beam of length 1 is fabricated from two materials M1 and M2. Find 
the fundamental natural frequency of the beam using Rayleigh’s method and the shape 
function 

y = P sin (7). 
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Putting T,, = V,, gives 

So that 

radls. 
EMI IMI + I M 2  a = -  n2i( P M l  AMI + p M 2  IM2 

I,, and I,, can be calculated once the position of the neutral axis has been found. 

two materials. 
This method of analysis can obviously be extended to beams fabricated from more than 


