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Abstract:

Generally speaking, physicists still experience that computing with paper and pencil is
in most cases simpler than computing on a Computer Algebra worksheet. On the other
hand, recent developments in the Maple system have implemented most of the
mathematical objects and mathematics used in theoretical physics computations, and
have dramatically approximated the notation used in the computer to the one used
with paper and pencil, diminishing the learning gap and computer-syntax distraction
fo a strict minimum.

In this talk, the Physics project at Maplesoft is presented and the resulting Physics
package is illustrated by tackling problems in classical and quantum mechanics, using
tensor and Dirac's Bra-Ket notation, general relativity, including the equivalence
problem, and classical field theory, deriving field equations using variational

principles.

... and why computer algebra?

We can concentrate more on the ideas instead of on the
algebraic manipulations

We can extend results with ease



We can explore the mathematics surrounding a problem

We can share results in a reproducible way

Representation issues that were preventing the use of
computer algebra in Physics

Notation and related mathematical methods that were missing:

coordinate free representations for vectors and vectorial

differential operators,

covariant tensors distinguished from contravariant tensors, sum

rule for tensor contracted (repeated) indices
functional differentiation, spacetime and covariant differential
operators
Bras, Kets, projectors and all related to Dirac's notation in

Quantum Mechanics

Inert representations of operations, mathematical functions,
and related typesetting were missing:

inert versus active representations for mathematical operations
hand-like style for entering computations, and computationally
active output with textbook-like notation

Key elements of the computational domain of theoretical
physics were missing:

product and differentiation handling commutative,
anticommutative and noncommutative variables and functions
ability to set custom-defined algebra rules (commutator,



anticommutator and bracket rules, etc.)
ability to distinguisn between generic, unitary and Hermitian
quantum operators

Classical Mechanics

*Inertia tensor for a triatomic molecule

Problem
Determine the Inertia tensor of a triatomic molecule that has the form of an isosceles triangle with
two masses m, in the extremes of the base and mass m, in the third vertex. The distance between the

two masses m, is equal to a, and the height of the triangle is equal to /.

Solution
> restart; with(Physics, KroneckerDelta) : with (Physics | Vectors ]) :

The general formula, where 7k is the position of each particule meassured in a reference system
with the origin at the "center of mass"

> InertiaTensor = Sum(m[k] (Norm (r_[k] )2 KroneckerDelta| i, j]- Component(r_[ k],
i) Component(r_[k],j) ),k=1.N)
N
. - 2 - -
InertiaTensor = / 1mk (HrkH 61‘,] — (rk)l_ (rk)/_) 4))
= .
To have a Matrix representation of this inertia tensor, create an indexing function

> [T == unapply(InertiaTensor, i, J)
N

L. -> 2 - -

IT = (i,)) |—>k=1mk(Hrk” 5~ (rk)i(rk)j) @)
In this problem there are 3 particles
> N:=3

N:=3 A3)

The matrix representation of the inerta tensor
> IT Matrix := Matrix(3, IT)
IT Matrix := “4)
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The vectors 7k (position from the Center of Mass) are related to R, (position in the arbitrarily

W

(98]

98]
1L

k=1

choosen system of references) and ;2) cp (position of the Center of Mass in the arbitrarily
choosen system) by
> position == r_[k]=R _[k]-R_[CM];
position = ;k = ;ék — EQ)CM )]
Where by definition the "center of mass" is
>R [CM]:= Sum(m[j]R [jl,j=1..N)/Sum(m[j],j=1. N);
3

R, =1L ° ° (6)

j=1
And that is all the formulation. It is now in the computer. We don't need to waste our brain
power keeping these formulas in our minds. Just specify the problem at hands

So, arbitrarily choose now a system of reference, for example with the origin at the middle of the
segment connecting the two atoms of equal mass. The position of each mass is then

>R [1]= - é;—j;

> ai

R, =- > @)
>R [2]=h k A

R, =hk ®)
> R [3]:= é;—j

> ai

Ry = = ®
Two masses are equal
> m[3]:=2-m[1]

my = 2m, (10)

> R [CM] := value(R_[CM])

1



mlaz' .
> +m2hk

R = 11
M 3m1+m2 (a1

The positions of the three particles viewed from the center of mass

> position )
m, ai n
L > +m, hk ,
:R —
"k 3m +m, (12)
> position $ k=1..N_ )
m,ai hl; mai hl;
-> ai 2 +le -> h/A( 2 +m2 -> ai (13)
r,=- — ry= - rs =
1 2 3m +m, 2 3m o +m, 3 2
m, ai .
) +m, hk
3m, +m,
The abstract IT Matrix at these values of the vectors 7k
> IT answer := simplify(eval(value(IT Matrix), [(13)]))
IT answer := (14)
_ ) ]
3h"m; m, m am,h
- - = 0 e
3m, +m, 6m, +2m,
2 2 2 2
8a mi+3m, (a" +4h )m1
0 12 4 0
m, +4m,
2
m am,h 0 m, a (8m1+3m2)
6m, +2m, 12m, +4m,

Try changing the origin of the arbitrarily choosen system of references, or the value of m ; in

(10) and re-execute the lines after that definition and you see the corresponding answer instantly.
Computer algebra allows for these simple recalculations without having to reformulate anything.
>

¥V Quantum mechanics

-

V' *The quantum operator components of | satisfy [Lj, Lk] =1 € k m L.

> restart; with(Physics ) : interface(imaginaryunit = 1) :
> Setup (spaceindices = lowercaselatin, metric = Euclidean, automaticsimplification = true)
The Euclidean metric in cartesian coordinates



Changing the signature of the tensor spacetime to: + + + +
[ automaticsimplification = true, metric= {(1,1) =1, (2,2)=1, (3,3) =1, (4,4) =1}, (15)

spaceindices = lowercaselatin |

Define L, » and p as tensors of the 3-D Euclidean space embedded in
> Define(L,r,p)
Defined objects with tensor properties

{La pa r, Yua Gua aua gw v’ la, b 8“7 N an B) W, V} (16)

Now set L, p, r as quantum operators and the related Commutator rules for the algebra in tensor
notation

> Setup (quantumoperators = {L,p, r},
{%Commutator (p[j], p[k]) =0,
Y%Commutator (r| jl, p[ k]) = i KroneckerDelta| j, k],
Y%Commutator (r[j], r[k]) =0})

[algebrarules = { Pply|_ = 0, FePy| = 1 8}.’ el = 0}, quantumoperators a7
= {Lpor} :
Verify how these algebra rules work:
> (%Commutator = Commutator) (r[ j|, p[k])
FoPy|_ = i 5].’ ) (18)
> (%Commutator = Commutator) (r[ j], r[k])
P Tyl = 0 (19)
> (%Commutator = Commutator) (p[j], p[k]);
PpPy|_ = 0 20)
The definition of Lj
> L[j] =LeviCivita[ j, k, m] r[k]p[m
L=¢ 4 nlis an

The rule to be verified:
> %Commutator (L[ j], L[k]) =1LeviCivita[ j, k, m | L[m ]

LoLy|_=ie L, 22)
Substitute now the operator ~ . by its tensor form in terms 7, and p in the commutator above
> Library:-SubstituteTensor ((21), (22))
ej’ o r, D, Ek, b c P = 1 em, b r, D, Ej’ km (23)
Simplify, all in one go, we expect an identity
> Simplify ((23))
(e ) (P ) @9

The same one step at a time, first expand the commutator on the left-hand side



> expand((23))

r r —r rp Y=1 r
Ea,j, m Eb, c,k( aPm’pPe bPe a‘lm) €a,b, m aPp Ej, k, m

> Simplify ((25))

>

(0= i) =1 ()

*Unitary Operators in Quantum Mechanics

(25)

(26)

*Eigenvalues of an unitary operator and exponential of Hermitian operators

» Show that the eigenvalues of an unitary operator are all on the unit circle, their modulus is 1.

* Show that an operator e Mg unitary provided that H is Hermitian (H = HT) and A is any

real parameter.

> restart, with(Physics) : interface(imaginaryunit =1i) :
> Setup (unitaryoperators = {U})
[ unitaryoperators = {U} ]

If | Ue > is a normalized eigenvector of U with eigenvalue €
> U-Ket(U,e) =U-+Ket(U, ¢)

U1%) =E] )
> Dagger((28))

(G| U=e (4]

€ €
So, to show that the eigenvalues have modulus equal to 1, multiplying sides by sides
> (29).(28)
2
1=lg

AH

To show that, when H is Hermitian, then = e M s unitary,

> Setup (quantumoperators = {V'}, hermitianoperators = {H?}, realobjects = {\})
| hermitianoperators = { H}, quantumoperators = {H, U, V'}, realobjects = {\.}]

> V=exp(i-A-H)

e el M

> Dagger((32))
i i

Again multiply sides by sides
> 32) . (33

yvt=1
> (33) . 32

vty=

Therefore, V' is unitary

@7

(28)

(29)

(30)

(31

(32)

(33)

(34)

(35)



*Properties of unitary operators

Consider two set of kets | a, > and | b, >, each of them constituting a complete orthonormal

basis of the same space.

*Verify that U = Z | b, > < a, | , maps one basis to the other, i.e.: | b, > = U| a, >
k=0

> restart; with(Physics) :

Tell the system that | a, > and ‘ b, >, are complete orthonormal basis

> Setup (quantumoperators = {U},
bracketrules = {%oBracket(Bra(a, m), Ket(a, n)) = KroneckerDelta[m, n],
%Bracket(Bra(b, m), Ket(b, n)) = KroneckerDelta[m, n]})

[bracketrules = { a la )= Sm , (b | b \= Sm }, quantumoperators = {U }]

n n m n n

8

> U=/, Ket(b, k) Bra(a, k)
k=0

k=0
Apply this operatorial equation to ‘ a, >

> '%. Ket(a,m)'

> %

*Show that U = b S unit
ow tha kz:o| k><ak|zsunzary

Recalling the expansion of the operator U
> (37

> Dagger((37))

Again multiply sides by sides
> '41) . 37

(36)

37

(38)

(39)

(40)

(41)

42)



Ut = bl-|U=),b
%) k|] [ = | bc) <ak|]
> %
Ut u=
k[:0|“k1> (|

> (37) . @1

T
vu _k1:0|bk1> <bk1|

42)

43)

(44)

and since ‘ a, > and | b, > form two complete basis of the same space, the right-hand sides

are equal to the identity operator [, and so U is unitary.
>

V' *Show that the matrix elements of U in the | a, > and | b, > basis are equal

Recalling the expansion of the operator U
> (37)

[ee]

U= b
2 [0} (9]

Compute now the matrix elements of U in the | a, > and | b, > basis
> 'Bra(a,n) .(37) .Ket(a,m)'

(]

[ee]

U= 20 () )

k=0

> %

(@[ Ul a)=(a|0n)
Likewise
> Bra(b,n).(37).Ket(b, m)

(Ou | UL by ) = (| 00)
>

V Show that A and A =U A U' have the same spectrum (eigenvalues)

> Setup (redo, quantumoperators = { A, A}, unitaryoperators = {U})
[ quantumoperators = { A, A, U}, unitaryoperators = { U} ]

> UA Dagger(U)=A
vaUt =7
By construction the eigenkets of A are ‘ A > =U | AOC >
o

> U.Ket(4,0) =Ket(. A, o)
U.

Aa>:‘j/a>

45)

(46)

47)

(48)

(49)

(30)

(1)



> (50) - (51) T
VAU (U+]4,))=A| A, (52)

The left-hand side can be rewritten performing the product
> Ihs((52)) = eval(lhs ((52)), *'="")

+ _
UAUT (U] 4,)) =0 (Us[4,)) &)
> subs ((53), (52))
«(0°]4,)) =] 4, =
> subs((51), (54))
o ‘ ﬂa > = /7‘ ﬂa > (59)

>

In conclusion, after an unitary transformation, an eigenvector of the initial operator is an
eigenvector of the new operator with the same eigenvalue.

V Schrodinger equation and unitary transform

Consider a ket ‘ v, > that solves the time-dependant Schrodinger equation:

.0
lha |\|ft>=H(t) |\|It>
and consider

[0)= V@ [}
where U(¢) is a unitary operator.

Does | o, > evolves according a Schrédinger equation

0
LA [0) =70 [ 6)

and if yes, which is the expression of #'(#)?

V Solution
> restart; with(Physics) : interface(imaginaryunit =1i) :
> Setup (automaticsimplification = true, mathematicalnotation = true, quantumoperators
= {H'}, hermitianoperators = { H'}, unitaryoperators = { U}, realobjects = {t,

7})

[ automaticsimplification = true, hermitianoperators = { I}, mathematicalnotation (56)
= true, quantumoperators = {#, H, U}, realobjects = {h, t}, unitaryoperators
={U}]

> CompactDisplay( (U, H, #) (t))
U(t) will now be displayed as U

H (t) will now be displayed as H



#t (t) will now be displayed as #H
> Ket(,t) = U(t)-Ket(y, t)
[0)=U]w.)
Compute now the evolution of | 0, >
> i-%-diff ((58), 1)
ih|¢t>t=ih (Ut|wt> + U|\|1t>t)
Simplify this equation taking into account Schrédinger's equation for  :

.0
> 7 ) Ket(, t) = H(t) Ket(, t)

v ) =1

0
> simpliﬁ/((59), {(60)}, {E Ket(‘% t) D
ih’¢[>[=ihUt‘\|f[> +UH‘\|;[>

Now, from
> (58)

> U(t)" - (rhs = Ihs) ((58))

> simplify((63))
v, ) =U"]4,)
Inserting this result in (61)
> subs ((64), (61))
ih|¢t>t=ihUt (U*‘|¢t>) + UH(UT‘q)t>)

the #€amiltonian for | 0, > is given by the coefficient of | o, > on the right-hand side
> Jt(t) = Coefficients (rhs ((65)), Ket(®, ) )
#=inU U +unU
So | 0, > satisfies a Schrodinger equation and as one can expect, # is Hermitian
> Dagger((66)) — (66)
wt—#=-invU +U vH-inU UN—UvHU
Recalling that U (¢) satisfies
> U@)-U@l) =U0@1) - U@1t)
vut=1
> diff ((68), 1)

(57)

(38)

(39)

(60)

(61)

(62)

(63)

(64)

(65)

(66)

(67)

(63)



v Uut+uut =0 (69)
> subs ((69), (67))

at—a=-inUU + U UH-inU U —UHU (70)
In the time independent case, 1.e. U(t) = U, # reduced to:
U=U
H (71)
> subs(U(t) = U, (66))
#=inU U +uHU (72)
> %
H=UHU' (73)
>

V' Translation operators using Dirac notation
—iaP
%

In this section, we focus on the operator 7' =

v Settings

> restart; with(Physics) : interface(imaginaryunit = i) :
> Setup(realobjects = {a, x, h,m,x 1%, }, unitaryoperators = { T}, hermitianoperators
= {l, X, P}, quantumcontinuousbasis = { X, P})

[hermitianoperators = {l, P, X'}, quantumcontinuousbasis = { P, X }, realobjects (74)

= {h, a,m,x,x,,x, }, unitaryoperators = { T}]

~

Bracket(Bra(P, p), Ket(y) ) =y (p), Bracket(Bra (X, x),
1

> Setup [bracketrules =

Ket(y)) = y(x), Bracket(Bra(X, x), Ket(P,p)) = (2:7-%) 2 -exp(lﬁ-x-p)

|

ixp
N h
bracketrules = Pp V) =y(p), (X |V)=y(x), (X Pp :@ (75)
2\ mh
> Assume(h > 0)
{h::(0, © ]} (76)

Useful closure relations
> 1 = Projector (Ket(X, x))

P=| X)) (X, |dx (77



To have equivalent projectors with different integration variables, we use [ as the identity
operator: -1 =1, I]1 =1 :

2
> [[1]= Projector(Ket(P, p)), [[2] = Projector (Ket(P, q) )
W ) (Bl ] [P (T (78)
>
i ar
V' The Action (translation) of the operator T =e¢ " on a ket

Considering a general ket | y ), introduce a closure relation
> Ket(y) = I Ket(y)

) =1 1) (79)
> subs((78), %)
|P><Pp|p]|w> (80)

> Bra(X,x) . %

) 1 ~
J2 e " y(p)
y(x) = 5 p (81)

Which gives after a variable changex=y — a

> PDEtools:-dchange(x =y — a, %, {y}, known =) : subs (y = x, %)
ix—a)p

S 1 —_— ~
V2 —e b v
Y(x—a)= 2 p (82)
L afF
Let's now evaluate the action ofe  * on | ) in the | X, x ) basis
> (80)
|w>=[_ 1PY (P pj|w> (83)

> Bra(X,x). e r%

[+

Comparing the above with (82)
> % - (82)

—iaP

e h

p (84)

B — Zipla-x
> J2 o © " v(p)
V= 2

- 00




—ialPlP Th
<XX e ! w>—w(x—a)= 5 p =
" 1 i(x;a)p -
2 — e
J2 — v (p)
2 p

- 00

> simplify ((85))

> isolate( %, y(x — a))

>
V' Action of T , on an operator V(X)

Let's consider an operator J'(.X), that can be written as a formal power series:

Vix)= Zv S
n=0"
[ts matrix elements are:
> (%Bracket = Bracket) (Bra (X, x,), V(X), Ket(X, xz) )

Xxl V(X) sz =V(x,) S(xz—xl)

Using the closure relation
> (77)

oo

=] |y (]

V(X) can also be represented in the | X, x ) basis as
> V(X) - (T7)

V(X)= V(x)|Xx><Xx‘ X
Let's now introduce two closure relations to evaluate V' (.X') in the momentum basis | P )
> [Ket(X, xX)= Zil ‘Ket(X,x), Bra(X,x)=Bra(X,x) -ﬁz]

150 75 ) (5= (A

> subs (%, (90))

[e¢]

V)= | V) (X)) d

-

Recalling

(85)

(86)

87)

(88)

(89)

90)

o1

92)



> (78)

[ee] oo

AL AL ©3)

> subs (%, %% )

O I AR AT R AR A A RT AT EaE
> combine((94))
V(X) = VOVTE ) (O 1125 ) (Al | P ) (Fg [ da dp ©3)
> eval(%, ¥ ="")
o0 —ix(p —q)
== e ' |P) (P
V(X) = S q dp dx (96)
Apply now the translation operator 7
> T[a]=exp(—%-a-P)
—iaP
T =e " 97)
> %. (96) . % .
) —1(p —¢q)(a X
@ o V(x)|P,) (P,|e g
T
T V(X)T,"= n = ‘fznh g dp dx (98)

- 00

Making a variable change x =y — a
> PDEtools:-dchange(x=y — a, %, {y}, known="V) : subs (y =x, %)
% —ix(p —q)
@ o0 Vix—a)|P,) (P, |e g

T_
r vix\)r'= X 99
SO ] S h g dp 99

— 0

Evaluate the matrix element of this result and compute the integral
> Bra(X, x]) % Ket(X, x2)

o i(—x—l—x])p-i-i(x—xz)q
o Y . h

<X T V(X)TT’X >— Vx—a)e g (100)

X a a 2

1 2 -0 /-0 4 W

p dx
> value(%)

i _
<XI ‘ T V(X)T, ‘sz > =V(x; —a)d(x; —x,) (101)



>
V' *Quantization of the energy of a particle in a magnetic field

Show that the energy of a particle of charge ¢ and mass m in a constant magnetic field B oriented
along the z axis can be written as

H=7® (aTa-l- i]
¢ 2

B
where «'and  are creation and anihilation operators and ®_ = g2
m
>
V Solution
The classical Hamiltonian is given by
- 2
p—
c

~—
—
N
~—
—
<
~—
~
[E——
|
Il
~—
—
N
~—
—
N
~—
~.
[E——
Il
=
—
—
<
~—
—
<
~—
~
—
|
Il
[e)

> restart, with(Physics ) : with(Vectors) : interface(imaginaryunit =1i) :
> Setup(hermitianoperators = {A, H, 11, 11, p,Z, X, V, z}, quantumoperators = {a},

realobjects = {h, B,e,m,q, O)C});
[hermitianoperators = {A, H, 11, 11, p, ;, X, V, Z}, quantumoperators = {A, H, LT a,  (102)

>

D> Dy X, Vs z}, realobjects = {h, B, ;,}, k, 0, ;:, f), 0,c,m,0,q,7,p,0,x,,z, (J)C}]

Using
> M=p — 4 (xy)
- - A X,V
o7 _ 94(%)) (103)
c
The Hamiltonian can be written as
—2
I1
> H= ——
2 m
ﬁz
H=—— (104)



> Setup({ xp.| = ih, X, P, =0, [y,x|_=0, »P, =0, »p | = ih, PP,
=0
})
[algebrarules = { xp.| = ih, x, p,| = 0, v,x|_=0, »p. | = 0, [y, p, (105)

it |p.r.]_=0} ;
In Coulomb's gauge, the following vector potential gives the magnetic field of the problem,
B=Bk
By B-x

> A (vy)=- i+
A(x, ) = —;B Pyt ; Bjx (106)
> CompactDisplay(A_(x,y))
Z(x, ) will now be displayed as Z 107)
Indeed we have
> Divergence((106))
Ve d=0 (108)
> Curl((106))
Vx A=Bk (109)

Derive now the commutation rule for [l‘l\,, l_lv]

> ﬁ =I[x]- i+ I[y] _J;

=i I+, 11 (110)
> p=plx]_i+tply] L. )
p=ip . +ijp, (111)
> (103)
- S A
[M=p— — (112)
c
> subs ((106), (110), (111), %)
X ) ) ) q(—Bzy-i—B]v)
i+ =ip +jp — ; (113)
> Component((113), 1)
By
m=p + 122 (114)
X X 2c¢
> Component((113), 2)
_ qBx
,=p,— 4= (115)

> Commutator ((114), (115))
(116)



m,m)_-
X V1= C
> Setup ((116))
algebrarules = { xp.| = 1h, [x, P,]_= 0, [v,x|_=0,[y, p.] = 0, [y, P,
. _1gBhn _
[—lh, m.m) =~ pp) - 0}

Time to bring in annihilation and creation operators

R

J27qB " 7
J2 e (T, +111))
o 2\ hqgB
> (118)
. Ve (i)
S = :

2\ hqgB

Verity the normalization of this definition
> Commutator ((118), (119))

[a, al ]_ =1
> Setup ((120))
algebrarules = { a,a |_ =1, [x, p.| = 1h, [x, p,| = 0, [v,x|_=0,]y, P,
. 1gBh
yp, | =ih U I ===, [p,p | =0
To express the Hamiltonian in terms of «, ol
> (104)
—2
IT
H=—
m

> subs ((110), %)

H:(hy+}nﬁz

2m
> {(118), (119)}
Vfi_vfz_<IIY4—ilTv) : JTZ_V[E_(TIX——iITV)
B 2J7qB v 2J7qB

a

> solve(%, {Hx, Hy})

(116)

(117)

(118)

(119)

(120)

(121)

(122)

(123)

(124)

(125)



JhgB (aT+a)\/7 = %\/m((ﬁ—a)ﬁ

Il = T (125)
- N V /e
> subs ((125), (123))
. n 2
ihqB (aT—I-a)\/? n ijhqB (aT—a)\/?
. 2 \/? 2 \/? (126)
2m
> simplify (expand ((126)))
_ i
- hgB(-1+2ad") 127)
2mec
> Library:-SortProducts ((127), [ Dagger(a), a ], usecommutator)
o
= hqB(1+2a a) (128)

2mec

B
This is the Hamiltonian of an harmonic oscillator with frequency ©_ = 92 The possible values
m

1 e
for the energy are known: E=7% @, (n + 5 j , Where n is a positive integer.

>

¥ Classical Field Theory
V The field equations for the » &' model

The Lagrangian of the A <I)4 model, the corresponding Action, and the field equations:
> restart, with(Physics) :
> Coordinates (cartesian)
Default differentiation variables for d , D _and dAlembertian are: {X= (x,y,z,t)}

Systems of spacetime Coordinates are: {X= (x,y,z,t)}

{X} (129)
> CompactDisplay(®(X) )
DO(x, y, z, t) will now be displayed as ® (130)
2
1 SR R
> L= d_u(CID(X)) 5 P +(4 D (X) )
o () IH(D) 2.2 4
) A O
_ M _
L: 7 > + 1 (131)

x dy dz dt (132)



> (%Fundiff= Fundiff) (S, ®)
[j w Lo [au(d)) 8“(@) m2q)2 7\‘(1)4]
4

()

-0 Y -0 Y —-00

— o (-0 A+ m?)
> convert( %, diff’)
[ q’j -0 Y—-00 Y=-00

2
+o +O  —0 —0 (-0 A+’

()
X)~mu (X)“ m- P 7\. (0]

xdydzdi=® (134)

¥V *Maxwell equations departing from the 4-dimensional Action for
Electrodynamics

Maxwell equations result from equating to zero the functional derivative o the Action with respect to
the 4-D potential Au

> restart, with(Physics) :

> Coordinates (X = Cartesian)
Default differentiation variables for d , D _and dAlembertian are: {X= (x,y,z,t)}

Systems of spacetime Coordinates are: {X= (x,y,z,t)}
{X} (135)
The 4D electromagnetic potential

> Define(A[mu](X))
Defined objects with tensor properties

A
{ Y O X au, 8y v O v € B V} (136)
> CompactDisplay(A(X) )
A(x, y, z, t) will now be displayed as A 137)
The electromagnetic field tensor F v
> F[mu,nu]:=d [mu](4[n ]( ))-d_[nu](A[mu](X));
= 8,(4) 75,4, a3
The functional derivative of the corresponding Action
> 'Fundiff' (Intc(F[mu, nu]*2, X), A[rtho]) =0
8 o8] [e¢] o8] [e¢] 2 B
(SA J RN <6H<Av) GV(A“)) xdydzde=0 (139)
p

> (139)
(140)



(2 au(av(AV)) —20(4,) ) g P+ (—2 O(4,) +2 au(aV(A“) ) ) g"P=0 (140
Simplify the contracted spacetime indices
> Simplify((140))
-40(4%) +40%(3P(4,))=0 (141)

The system of differential equations behind this formula in standard Maple notation:
> Library:-ToContravariant((141))

4gujvau(ap(AV))—4D(Ap)=o (142)
> convert(Library:-TensorComponents ((142)), diff)
[—4 (Az)x’y—4 <A3>x,z —4 <A4)t’x+4 (A1>y’y+4 (Al)“ —4 (Al)mzo, (143)
-4 (Al)x’y—4 <A3)y’z —4 <A4)t’y+4 (Az)x,x+4 (AZ)Z’Z —4 (Az)m:O,
4 (Al)x7z—4 (Az)y7z—4 (A4)t’z +4 (A3)“+4 (A3)W—4 (A3)m=0,
4 (Al>t7x+4 (Az)t,y+4 (A3)t,z +4 (A4)w+4 (A4)y,y+4 (A“)Z =0,

>

*The Gross-Pitaevskii field equations for a quantum system of
identical particles

Problem: derive the field equation describing the ground state of a quantum system of identical
particles (bosons), that is, the Gross-Pitaevskii equation (GPE). This equation is useful to describe
Bose-Einstein condensates (BEC).

Solution
Two steps:

* Construct the Lagrangian for the system, and with it write the action functional

* Minimize the action by equating to zero its functional derivative with respect to the boson
field.

> restart; with(Physics ) : with(Physics [ Vectors ]) :
> interface(imaginaryunit=1i) :
> macro(Psi=psi(x,y,z,1)):
> CompactDisplay( (v, V) (x,y,2,t))
Y (x,y, z, t) will now be displayed as

V(x,y, z, t) will now be displayed as V (144)



The energy density £ for a quantum system of identical boson particles is (see [3])
2 G
> = ;‘— Norm (%Gradient(Psi))* + V(x, y, z, t) abs (Psi)* + > abs (Psi)*;

m
2 4
| NAY | 2 Gy
Ew=——"" — 14
5, TV (145)
G uf*
y(x, ),z t)1s acomplex field, V' (x, y, z, t) an external potential, the term 2\|’ is the atom-
atom interaction.
> Setup (realobjects = {t, m, 1, G, V (x,y, z, t) }, automaticsimplification = true) :
The Lagrangian density L in terms of the Energy E according to standard formulas
> L= (%) (conjugate(Psi) diff (Psi, t) — Psidiff (conjugate(Psi), t))-E
) — 2 4 . — 2
iy, m =12 [Vy|T+ (-Gl iy w2V ) m
L= (146)
2m
Construct the action and equate to zero the functional derivative
> 'Fundiff' (Intc(L, x,y, z, t), psi) =0
6 [e¢] [ ] [e¢]
— (147)
8 W -0 Y- Y -0
. — 2 4 . — 2
iy, m = [VylT 4 (-Gl iy =27 ) m
X dy dz df
2m
=0
> (147)
26y m=2ihym+ 2y +y R +Ry _ —2Vym
- L ’ =0 (148)
2m
Make the Laplacian explicit
> (Laplacian = %Laplacian) (Psi)
— 2
V.. Ty, Ty =y (149)
> simplify(conjugate((148)), {(149)})
2ihy,m+ 12 VY —=2my (Gyy+7)
=0 (150)
2m
The standard form of the Gross—Pitaevskii equation:
> i hisolate((150), diff (Psi, t))
-2 Vy + 2 Gy V
iy, = v+ n;l;( vy +7V) (151)

> collect(convert(expand((151)), abs), psi)



hZ ZW
2m

iny,= (Gl +7) y- (152)

* For a continuation of this computation deriving a continuity equation for a system of identical
particles, see the Mapleprimes post "Quantum Mechanics using Computer Algebra' .

* For the Bogoliubov spectrum and dispersion relations of this problem above see the
Mapleprimes post "Quantum Mechanics I1".

* For a derivation of the Landau criterion for superfluidity in a system of identical particles see
the Mapleprimes post "Superfluidity in Quantum Mechanics"

>

General Relativity

Exact Solutions to Einstein's Equations ¢ A+ G =8=nT
U, v

W, v W, v

S

Main reference: - Stephani, H., Kramer, D., MacCallum, M., Hoenselaers, C. Herlt, E. Exact
Solutions of Einstein's Field Equations, Cambridge Monographs on Mathematical Physics,
second edition. Cambridge University Press, 2003.

The authors reviewed more than 4,000 papers containing solutions to Einstein’s equations in the
literature and organized the material into chapters according to the physical properties of these
solutions.

These solutions are digitized within Maple since 2016, so that it is now possible to actually
compute with them.

Examples
Load Physics, set the metric to be Schwarzschild's solution (and everything else automatically)
in one go
> restart, with(Physics) :
> g_[sc]
Systems of spacetime Coordinates are: {X= (r, 0, 0, t) }
Default differentiation variables for d_, D_ and dAlembertian are: {X= (r, 0, ¢, 1) }
The Schwarzschild metric in coordinates [r, 0, 0, t]

Parameters: [m ]

(153)



—r—:2m 0 0
0 - 0 0
fuv 0 0 -2sin(8)° 0 (159
0 0 0 r—2m
r

And that is all we do.

The tensor components of the general relativity tensors related to this solution get derived
automatically from their definition

> Christoffel| definition ]

Oy (8au) | %ulEav)  9uluv)
AN u\ "o,V - o\ M,V
1—‘oc,u,v_ 2 + 2 2 (154)

> Riemann|definition |

A A A v A )
Ra’[-))au’v_ga’x (au(r B’V) _av(r B’H) +F U’Hr B’V_r Uavr B’H’) (155)

For example, the Riemann invariants using the standard formulas by Carminati and Mcl .enaghan
> Riemann|invariants |

r=0,r1=0,r2=0,r3=0,w= , W, = ,m. =0, m

0 | o =0,m3=O,m4=0, (156)

1 2

m5=O

The related Weyl scalars in the context of the Newman-Penrose formalism
> Weyl| scalarsdefinition |
= _ H,V,Q,B = _ uavva:B =
v, C lu m, loc me, v, C lu n, lOC me, v, (157)
W, v, o, B — _ _v,o P — _ _v,op — —
C lM m,m ng v, C IH n,m ng v, C nom n, mB
> Weyl|scalars |

m
Y, =0y, =0,y,=-—,y,=0,y,=0 (158)
r
The Killing vectors

> Define (K, quiet) :
> KillingVectors (K)

0, cos(0), - sin(0) | gw (159)

M w_ , cos () u_
K"=10,0,0,1], K [O, sin(¢), an(6) ,Ol,K

=10,0, 1,0]]

These are the 2x2 matrix components of the Christoffel symbols of the second kind with the



first index contravariant with value 1
> Christoffel[ ~1, alpha, beta, matrix|

m
r(-r+2m) 0 0 0
X 0 -r+2m 0 0
T =
o B 0 0 (-r+2m)sin(8)’ 0
2
-2
0 0 0 2t
r

One can query the database, directly from the spacetime metrics command (g_).

(160)

For example, these are the solutions (metrics) to Einstein's equations that appear in the book and

related to Levi-Civita, the Italian mathematician
> g [civi]

[12, 16, 1]= ["Authors" = ["Bertotti (1959)", "Kramer (1978)", "Levi-Civita (1917)",
"Robinson (1959)" ], "PrimaryDescription" = "EinsteinMaxwell",

"SecondaryDescription" = ["Homogeneous" | ]

[12, 18, 1]= ["Authors" = ["Bertotti (1959)", "Kramer (1978)", "Levi-Civita (1917)",
"Robinson (1959)" ], "PrimaryDescription" = "EinsteinMaxwell",

"SecondaryDescription" = ["Homogeneous" | ]

[12, 19, 1]= ["Authors" = ["Bertotti (1959)", "Kramer (1978)", "Levi-Civita (1917)",
"Robinson (1959)" ], "PrimaryDescription" = "EinsteinMaxwell",

"SecondaryDescription" = ["Homogeneous" |, "Comments" = [" lambda=_ zeta"]]

[22,7,1]= ["Authors" = ["Levi-Civita (1917), Frehland (1971)" ],
"PrimaryDescription" = "Vacuum", "SecondaryDescription"
= ["Cylindrically-Symmetric" |, "Comments"
= ["Locally static, Weyl class m=0,1 - flat, m=1/2, 2, -1 - PetrovType D" |]
Warning, found more than one match for the keyword 'civi’, as seen above. Please
refine your 'keyword’ or re-enter the metric 'g_[...]' with the list of three numbers
identifying the metric, for example as in g _[12, 16, 1] or Setup(metric = 12, 16,
1)

(161)

These solutions can be set in one go from the metrics command, just by indicating the number

with which it appears in the "Exact Solutions to Einstein's Equations" book.



For example, set one of these solutions and everything related in one go
> g [[28,74,1]]
Systems of spacetime Coordinates are: {X= (u,n,r,y)}

Default differentiation variables for d_, D _and dAlembertian are: {X= (u,n,r,y) }
The Frolov and Khlebnikov (1975) metric in coordinates [u, n,7r, y]
Parameters: [ k0, m(u), b, d]

Comments: With m(u) = constant, the metric is Ricci flat and becomes 28.24 in Stephani.

Resetting the signature of spacetime from "- - - +"to - + + + "in order to match the
signature in the database of metrics:
v (162)
2 3
2m(u)3 —6m(u)2nr—r2 (—6T] +b> m(u) + 7 (—211 -I—bn-l—d)
rm(u )2 ’
1”2
- —1,0
m (u) b b b
1”2 }"2
- b 3 b 03 0 b
mu) " on’ 4 bn+d
—1,0,0,0],
0,0,0,72 (-2n +bn+d)
The amount of solutions/cases found in the book and digitized in Maple during 2015
> nops (DifferentialGeometry:-Library:-Retrieve ("Stephani", 1))
991 (163)

Computational challenge: load again Schwarzschild's solution, rewrite Einstein's
equations in terms of the metric v and show that all the components of the EnergyMomentum

tensor Tu Jare equal to zero (Schwarzschild's solution in vaccum)

> g [sc]
Systems of spacetime Coordinates are: {X= (t,7,0,0)}
Default differentiation variables for d_, D_and dAlembertian are: {X= (t,7,0,9) }
The Schwarzschild metric in coordinates [t, r, 0, (1)]

Parameters: [m |



0 0 0
r
r
- 0 0
gu,vz 0 -r+2m (164)
0 0 0
0 0 0 +*sin(0)
> EnergyMomentum | definition |
G
T =K% 165
s (165)
where
> Einstein| definition |
R S e’ 166
v v 2 (166)

Rewrite the right-hand side in terms of the metric v

> lhs (%) = convert(rhs (%), g_, evaluatetrace)
B, A _
_ aﬁ(g ) (aV(g%H) i au(ghv> ak(gu,v)>

Gu’V > 167)
B, A _
L8 Cal0(E)) T %(%(Eny)) ~ (%))
2
B, A B. A
B 9,("") 9,(%.5) _ 8 9(%(80))
2 2
s _ B, A
£ (0(Buo) T (%) ~ (%)) 8 T0(8a) 1
* 4 7
. _ B, A
€77 (%u(%.0) +O(80) T (%)) 8T ((8en) TO(0)
_ax(gK,V)))
> TensorArray(rhs((167)), simplifier = simplify)
(000 0|
0000
0000 (168)
10000 |




¥ *"Physical Review D" 87, 044053 (2013)

Given the spacetime metric,

M) 0 0

0o - 0 0

Yl 0 0 2sin(0)) o
0 0 0 ')

a) Compute the Ricci and Weyl scalars
b) Compute the trace of
zP-oRrRP+o Db+ TP
o o o o

where @ = ®(r) is some function of the radial coordinate, RaB is the Ricci tensor, 2 is the
o

covariant derivative operator and 7’ aB is the stress-energy tensor

g 0 0 0
0 81 1 0 0
T, o= ,
’ 0 0 8+sin(8) n 0
0 0 0 8" e

¢) Compute the components of WaB = the traceless part of ZmB of item b)

d) Compute an exact solution to the nonlinear system of differential equations conformed by the

components of WaB obtained in c)

Background: paper from February/2013, "Withholding Potentials, Absence of Ghosts and
Relationship between Minimal Dilatonic Gravity and f(R) Theories", by P. Fiziev.

V' a) The Ricci and Weyl scalars
> restart; with(Physics) :

Set the coordinates

> Setup (coordinates = spherical, automaticsimplification = true)
* Partial match of 'coordinates' against keyword 'coordinatesystems’

Default differentiation variables for d_, D_ and dAlembertian are: {X= (r, 0, ¢, 1) }

Systems of spacetime Coordinates are: {X= (r, 0, 0,t)}
(169



[ automaticsimplification = true, coordinatesystems = {X} |

The square of the line element and the metric
> ds’ = exp (nu(r) )dt2 -exp (lambda(r) )dr2 — % dtheta® -1 sin(theta)zalphi2
ds® = - @ + &0 af — i (d¢ sin(0) + d6?)
> CompactDisplay( ds* )
A () will now be displayed as A

v (r) will now be displayed as v

> Setup(metric = ds*) g [ ]

WYl 0 0 -sin(6)” 0

> with(Tetrads)
Setting lowercaselatin_ah letters to represent tetrad indices

) .
Defined as tetrad tensors (see ?Physics,tetrads), ea’ " na’ b Y b & ka’ b e

Defined as spacetime tensors representing the NP null vectors of the tetrad formalism
(see ?Physics, tetrads), IM’ nu, mu, ﬁu

[IsTetrad, NullTetrad, OrthonormalTetrad, PetrovType, SegreType, TransformTetrad,
e ,eta ,gamma ,l ,lambda ,m ,mb ,n ]

> Petrovlype( )
HD"

> e [nullvectors |
A A v
2

\%
[ = \/762 OOﬁez ,nz_\/?e
2 2

| W

0 llggll %é.Jif-rshn(e) 0

,m
u 2 2
> Ricci| scalarsdefinition |
R“’VlulV R”’Vlumv R“’VmumV
Pp=-"% Py P Py =
R“’V(ln-l—m%) R*"V'm n R%Yn n R"
B wov V) o - BV g = movo o Tw
4 12 2 22 2 ’ 24

> Ricci[scalars |

(169)

(170)

(171)

(172)

(173)

(174)

(175)

(176)



e (A +V,)
4r

2 _
—4—|—(—V P v At —2v ,1/2—|—4)e7L
r r r r, v

, @, =0,2,,=0,D,,

16 1°

e"“(x +v,)
) 4r A

, P, =

12

0, D

22

et (2vr,rr2+vr2r2+ <—r27hr+4r)vr—47urr—4e7”+4)

> Weyl| scalarsdefinition ]
_ _nv,o P _
v, C lumV l(x me, v,

W, v, OL,B T — _
C lumV m ng, v,

> Weyl[scalars |

48 1°

Y, =0, v, =0,y
et (2\) rz—l—vzrz—l- (—rzk —2r)v +2A r—4e7“—|—4)
r,r r r r r
= 2 ) W3 = 03
24 r
v, =0
>
V' b) The trace of ZO(B=CI>R0(B + 2 DB+ TO(B
o
The indicated stress-energy tensor
> T[alpha, beta] = 8-Pi-Matrix(4, (exp(lambda(r)), ”, rzsin(theta)z,
epsilon exp (nu(r))), shape = diagonal )
gnet 0 0 0
0 8ms 0 0
T, 5= ,
’ 0 0 8m+ sin(0) 0
0 0 0 8mee’
> Define((180))
Defined objects with tensor properties
{@“5 Yu, GH, Ru’ v’ RM’ v, o, Ba TO(, Ba CH, v, o, B, Xu, aua ea’ “3 na’ b? gu’ v’ ia, b, ¢ IMJ }\‘a’ b, ¢
m.,m,n,I[ ,G .8 e }
L T N A A R A TR A vy TR

Solve item b) in one go, that is the trace of Z, by defining the tensorial equation

177

(178)

(179)

(180)

(181)



ZP-®RP+D DBd+ T P then taking its trace
o o p o

> CompactDisplay(Phi(r))
O (r) will now be displayed as ®

> Z[mu, nu] = Phi(r) Ricciimu,nu] +'D_[mu](D_[nu](Phi(r)))"'+ 7T[mu, nu]

Z =®R +Q)GD(®))+T
K, v Y v \Y% u, v

> Define((183))
Deﬁned objects with tensor properties

7] , R X,Z ,0,e
{ Yu’ W uv u,v,a,B o, §’ uvocB LT u’(a,u’na,b’gu

m,m,n,I €
kaab,c” O TH N T TR VA Gu,V’ SH,V’ oc,B,u,v}

The answer to a), that is the trace of ZM v

> Z[mu, mu |

ZP-
u

> SumOverRepeatedIndices ((185))

412 (—e_vr(—ZCDVr rtv (<D7»rr—cbvrr+2r<l)r—4¢>))e_)“+v
) :

+(2ﬂvn;b—4ﬂ®nf+ﬂ¢vf—ré(%r—4)w+(2ﬂ®r

—8¢H)Kr—32nfex—8r®f+8®)d%+32gewner2—64nﬂ

—8@)
>

V' ¢) The components of W(XB = the traceless part of ZaB

Define a tensor Wu y with the traceless part of Zu y
Z| alpha, alpha]

> W[mu,nu]=Z[mu,nu]| — 4 mu, nu |
Z o
wo o=z — - Sy
uv wv 4

> Define((187))
Defined objects with tensor properties

D , R T /4 C ,Z ,0,e
{ Yu, l-l l-l V “-, v, o, B’ o, B: “” V’ , o, B H H V ].l’ 6(1, I-L, na’ b’ g

Ya b, e Zu’ }bas b M M e Fu, v, o Gu, v’ Su, v B v}

Veritfy that W is traceless
> W[mu, mu]

V, a’ b7 c’ Z“,,

(182)

(183)

(184)

(185)

(186)

(187)

(188)

74 N



u
W (189)

> SumOverRepeatedIndices ((189), simplifier = simplify)
0 (190)

The nonzero components for the traceless WHV are then

> W[mu,~nu, nonzero |

1
wYl=1(1,1)=

((-67 @, +2rv A<I>+r2d)v2—r(cl>7n‘r—rfb 191)
u 87”2 r,r r, 7 r 7 r

+4®) v, + <3r2(1>r—4d>r)7ur+4rq>r—4d)) e +4®+ (-16¢

—16)nr2),(2,2)= . ((2r2<1>r3r—2r2vr’rq>+ (P, =2,

8r

—4r>d)r—(I>(vrzrz—vrkrr2—4))e_7”—4d)+ (-16e—16)mr"), (3.

3)= 81,,2 (2F®, =27y, @+ (Pv,—rr —dr)o,

_q)(Vrzrz_vrxrrz—ﬂ)e*"—4c1>+ (-16e—16)T "), (4,4)

1
- 2((2r2d) +272y q>+r2q>v2—r(q>xr+3rq>—4q>)v
8]/' r,r r,r r r r r

+ (PO 4D A £Ar® —4D) e +4D+ (48€—|—48)nr2)}

>

V' d) An exact solution for the nonlinear system of differential equations
conformed by the components of WaB

Create an ODE system with the nonzero components of Wuv

> odesystem = map(u — rhs(u) =0, rhs((191)))
11 2 2 2 >
oeyon = | 5 2 ((2F®  —27v, @+ (Pv —rr —dr)o (192)

2

—(I)(vr rz—vrxrr2—4))e*"—4cp+ (—166—16)Tcr2)=0,



(-7, +27y, @+ OV —r (@ r—r®, +4D)y,

8r
+(37® —4®r)) +4rd —40) e +4D+ (<16 16) 77 )

2
2((2r2d) 122y D+ Dy —r (@A r+37r D —4D) v
8]" r,r r,r r r r r

+ (D +4Dr) A +4rd —4D) e 44D+ (48e+48) T ) =0}
Run a differential elimination process towards identifying singular cases, frequently simpler to

solve: there are three cases
> cases = [PDEtools:—casesplit(odesys romp caseplot)] :

========= Pjyots Legend =========
pl=-r CI)V +20

p2=r @ (vr=2)o, —(Av @+ (- v +2r) e+ (v

—2)) (ro, —20)

p3=®+ (12e+12) " n
P 2 2 2 2 4
p4d=-12r E—I—nr (et1)|® +20 +28nr" (e+1)D+3271 r (€

+1)°



Rif Case Tree

Check the length of each of these three cases:
> map (length, cases)
[5399, 1661, 405 ]
So the third one, a singular case, is of reasonably small size ...
> sys[3] := op(l, cases[3])

G 4nt(e+1
SYS, = lex- nrée ),KFZO,V,,,A

4

2
e+ ) v +2r7 (et 1) v AP+ (detd)nr

2/ (e + 1)
Compute an exact solution for it
> constraint, subsystem = selectremove(has, sys|3 ], exp)

constraint, subsystem = |e

2
g 4n (et
ho AR e )],x%zav

()

(193)
(194)
D - 20
r r
195)



2
e+ ) v +2r n(e+ ) v+ P+ (det+d)ns’ > P

2r w(et+ 1) r
> SOZsubsys rom = dsolve(subsystem, explicit)
ol = |®=_CIr, v=
subsystem —
. 1 In (32e+32)n+4 ClI
2
T(et+ 1) J@Be+8)m+ CI
m(e+1)r YEEFD o2 3

tet+t1) +in(r) (VBe+r8)n+ I —2Jm(e+1)) |,a= 2

Specialize one of these constants using the constraint

-_C2

> eval ( constraint, SOlsu bsystem )
e__cg: ~ 4n (E+ 1)
_ClI
> solve((197), ClI)
4w (e+ 1)
o -
The exact solution then is
> solution = subs((198), SOlsubsys tem)
2
4 1
solution == |®= - T (E_+CZ ) , V=
o -
1 32¢-“ — 16
- In 5
T (e+1) ne+1)(2e-2 1)
\/4_/ )
-2 |, Jr(e+1) 22— 3
1 (2e-“—1
n@+n+mu%YI/n&+)(e ) _, T (e+ 1)

€

2

(196)

(197)

(198)

(199)



Verifying this result
> odetest(solution, odesys tem)
{0} (200)

>

The Equivalence problem between two metrics

From the "What is new in Physics in Maple 2016" page:

In the Maple PDEtools package, you have the mathematical tools - including a complete
symmetry approach - to work with the underlying [Einstein’s] partial differential equations. [By
combining that functionality with the one in the Physics and Physics:-Tetrads package] you can
also formulate and, depending on the metrics also resolve, the equivalence problem, that is: to
answer whether or not, given two metrics, they can be obtained from each other by a
transformation of coordinates, as well as compute the transformation.

Example from: A. Karlhede, ""A Review of the Geometrical Equivalence of
Metrics in General Relativity', General Relativity and Gravitation, Vol. 12,
No. 9, 1980

> restart,
with (Physics ) : with(Tetrads) : Setup (auto = true, tetradmetric = null, signature
=)
Setting lowercaselatin_ah letters to represent tetrad indices

. 5 . ,
Defined as tetrad tensors (see ?Physics,tetrads), ca’ R N,y Yo b o ka, b e

Defined as spacetime tensors representing the NP null vectors of the tetrad formalism

(see ?Physics,tetrads),l ,n ,m ,m
wow

* Partial match of 'auto' against keyword 'automaticsimplification’
[ automaticsimplification = true, signature = + - - -, tetradmetric= {(1,2) =1, (3,4) (201)

- —1y]
To formulate the problem, set first some symbols to represent the changed metric, changed mass
and changed coordinates - no mathematics at this point
> mt, t, rt, thetat, phit :== m, t, 1, 3, @
mt, tt, rt, thetat, phit := m, t, 1, 3, @ (202)

Set now a new coordinates system, call it Y, involving the new coordinates (in the paper they
are represented with a tilde on top of the letters)



> Coordinates (Y = [tt, rt, thetat, phit])
Default differentiation variables for d , D and dAlembertian are: {Y = (1, 1,9, @)}

Systems of spacetime Coordinates are: {Y = (1, 1,9, )}
{Y} (203)

According to eq.(7.6) of the paper, the line element of Schwarzschild solution in isotropic
spherical coordinates is given by

[1 ] : ) /
2
2 rt 3

> ds” =
|4+
( 2rlj

+ £ sin(thetat)*-d_(phit)*)
2 (-2r+ m)2 6(1‘)2

4
mt ) 2 2 2
> j (d_(rt)” + ri°d_(thetat)

ds 5 (204)
(2r+ m)
e+ m)t (0(0) + 29(9)° + 2sin(9)’ d(e)°)
16 14
Set this to be the metric
> Setup(metric=ds2) :
>g[]
- ad 2
(-2r+ m)2 0 0 0
(2r+ m)
0 (2t rn)4 0 0
16 * 205)
g =
a 0 0 2+ m)4 0
16 1
0 0 0 (24 121)4 sin(S)2
16 12

In connection with the transformation used further below, compute now the Petrov type and the
Weyl scalars for this metric, just to have an idea of what is behind this metric.

> PetrovIype( )

HDH (206)
> Weyl[scalars |
64 13 m
Vv, =0y, =0y, =-—,y,=0,y,=0 (207)
(2 r+ m)

We see that the Weyl scalars are already in canonical form, only ¥, # 0 and the important
thing: it depends on only one coordinate, r .

We want to see if this metric (205) is equivalent to Schwarzschild metric in standard spherical
coordinates



> g [sc]
Systems of spacetime Coordinates are: {XZ (t, 70,0),Y= (119, 0) }

Warning, changing the differentiation variables used to compute the Christoffel
symbols from [t, ¢, 9, ¢ ]to [t, r, 0, ¢] while the spacetime metric depends on |,
9, m]
Default differentiation variables for d_, D _and dAlembertian are: {X= (t,7,0,¢)}
The Schwarzschild metric in coordinates [z‘, r, 0, (j)]

Parameters: [m ]

=2
y—zm 0 0 0
r
r
0 — 0 0
& v™ -r+2m (208)
0 0 . 0
0 0 0 -r*sin(0)°

The equivalence we want to resolve is regarding an arbitrary relationship 11(m ) between the
masses used in (205) and (208) and a generic change of variables from Xto ¥

= {0=@(Y),r=R(Y), 1= ( Y),0=0(Y)}
TR = {q) DY), r=R(Y),t=T(Y),0=0(Y)} (209)
> CompactDisplay(TR)
O (t, 1, 9, @) will now be displayed as ©
R(t, 1, 9, @) will now be displayed as R
T(t, 1,9, @) will now be displayed as T
O(t, 1,9, @) will now be displayed as © (210)

Using a differential equation mindset, the formulation of the equivalence between (208) and
(205) under the transformation (209) is actually simple: change variables in (208), using (209)
and the Physics:-TransformCoordinates command (this is the command that changes variables in
tensorial expressions), then equate the result to (205), then try to solve the problem for the

unknowns m(m), ®(Y),R(Y), ©(Y) and T(Y).

We note at this point, however, that the Weyl scalars for Schwarzschild metric in this standard
form (208) are also in canonical form of Petrov type D and also depend on only one variable,

> PetrovIlype( )
HD" (211)

> Weyl[scalars ]
m
Vo= 0¥, = 0w, = =75 W, = 0.y, =0 (212)

The fact that the Weyl scalars in both cases ((207) and (212)) are in canonical form (only
¥, # 0) and in both cases this scalar depends on only one coordinate is already an indicator



that the transformation involved changes only one variable in terms of the other one. So one
could just search for a transformation of the form » = R( 1) and resolve the problem instantly.

> TransformCoordinates (r = R(rt),g [mu,nu])

m%ufm . . .
R’ R(r)
0 Ry +2m 0 (213)
0 0 -R(r)* 0
0 0 0  -R(r)*sin(9)?

> convert(rhs((205)) = (213), setofequations )

(2t m)? Ry —2m  (2r+m* _ RZR(1)
(O > (2t + m)? R(r) 16 1* “R(r)+2m’ (214)
(2r+ m)4 (2r+ m)4 sin(S)2 :
{1612: —R(r)z, - 16 1‘2 = —R(I‘)z Sll’l(S)2 ,
> pdsolve((214), [R, mt])
. 2 h a2
{rIIZm,R(r)ZW],{mZ—m,R(r)Z—(mé‘fl) (215)

To make the problem slightly more general, consider instead a generic transformation for 7 in
terms of all of Y= (¢, 1, &, ¢), and also allow the time to change, so we search for two
transformation functions resolving the equivalence
> tr = select(has, TR, [r, t])
tr:={r=Rt=T} (216)
> CompactDisplay((216))
R(t, 1,9, @) will now be displayed as R

T(t, v, 9, @) will now be displayed as T 217)

Transform the coordinates in the metric

> TransformCoordinates (tr, g [mu, nu])
R g 2 2 R ’ 2
—4(—2 +m) TS +R R —4(—2—1—174) T.T,+R.R R
R(-R+2m) ’ R(-R+2m) ’

218)

2 2

_ R 2 R 2
—4pz+m)%ﬂ+%&R-4pz+m)%ﬂ+%&R

R(-R+2m) ’ R(-R+2m) P

R 2 2 R 22 2 2
4(—2+m)nn+&ﬂm —4ﬂ2+wqf}+&R

R(-R+2m) ’ R(-R+2m) ’




2

R 2
4(~5+m)zgn+&mge 4(

2
j%ﬂ+%&R

R(-R+2m) ’
2

R
'4ﬂ—+MJ%E+&&ﬁ 4(

2

R(-R+2m)

2
)@n+%&R

R(-R+2m) :

2 2 -4

R(-R+2m)

R 2

R R—2m ’
2

R 2
-4 (——+mj T(PTt—i-R(PRtR —4(

2

R(-R+2m)

2
j%ﬂ+%&R

R(-R+2m) ’
2

R 2
4(~5+m)75Q+RMgR

R(-R+2m)

R(-R+2m) "R(-R+2m

2

2 2
+nq Qﬁ+2[fi—+(mq9y+nR(

1
> subs (mtz — (205)]
mft

1 2
(-21”4- —2)
m 0,0, 0

M,V: 1 2 b b b 2
(2 r+ —j

m?

1y '
(2 r+ —ZJ
n
o 00

0, -

1 4
(2 r+ WJ sin(%)2

16 12

0,0,0, -

> convert(rhs((219)) = (218) , setofequations )

)(cos(%);—l)] sz

Change also the relationship between the masses so that m(m) # m, for instance:

(219)



2
R > R 2
—403~Hﬂ T.T,+R,RR 4(~5+m)7¢n+%RJ
0= 0=

2

R(-R+2m) ’

R 2 5
—4«?+mj%ﬂ+%&R

0
R(-R+2m) ’

2
R 2
4(~5+mj]b%+Rng
R(-R+2m)

,0

2
R(-R+2m)

1 \? R : |
24— 4| - +m| TP+R'R 2+ —
mz 2 t t

R 2
4(~—+m]]3Q+RMQ# 4(
70_

R(-R+2m) 0 220)

2

R 2
——+m]%ﬂ+%&R

R(-R+2m) ’

4

m2

1 \2
2r+ —
2+ )

R 2 2 .2
—4(—§-+mj T2 +RR (2r+-——

R(-R+2m)

16 *

R(-R+2m) -

1 4 . 2
- R92R e (2r+?) sin(9)

R—2m ) 16 12

ne

1
__RVR+2m)L4(

2 2
“§+wq Qf+2(%%4ﬂam&)+UR(—£4ﬂd(mﬂm

]

This problem, shown in Karlhede's paper as the example of the approach he summarized, is
solvable using only differential elimination, in no time, obaining the same solution shown in the

paper with equation number (7.10)
> PDEtools:-casesplit((220), R, T, mt])
(m—2 1)

®

R=-"—f = T,=—1.T,=0.T;=0,T,=

1
P &where [m # 0],  (221)



2

' (m—2r) 1
R:_T,thl,Tr:O,ngo,Tq):O,rnz:—; &where [m # 0],
[ 2+ m)° 1
R= (r4rm)’Tr: —1,T,=0,Ty=0, T(P:O’ m? = - l&where [m=# 0],
21+ m)’ !
R:(r4rm)’Tt:17Tr:0’T9:0’T<P:0’mz:ml& here [m # 0]
> pdsolve((221)[1], [R, T, mt])
1 (m—21)* 1
m= - R=-—"—— "= T=-t+ _C2{ {m= R= (222)
m 41 J-m
2
-2
_U,T:_H Cl
4r -

The fact that the time # appears defined in terms of the transformed time T(Y) = -t + CI
involving an arbitrary constant is expected: the time does not enter the metric, it only enters
through derivatives of T(Y) entering the Jacobian of the transformation used to change variables
in tensorial expressions (the metric) in (218).

Summary: the approach shown above, based on formulating the problem for the transformation
functions of the equivalence and solving for them the differential equations using the commands
in PDEtools, after restricting the generality of the transformation functions by looking at the
form of the Weyl scalars, works well for other cases too, specially now that, in Maple 2016, the
Weyl scalars can be expressed also in canonical form in one go (see previous Mapleprimes post
on "Tetrads and Wevl scalars in canonical form"). Also important: in Maple 2016 it is present
the functionality necessary to implement the approach of section 9.2 of the Exact solutions book
as well.

>

V' *Equivalence for Schwarzschild metric (spherical and Krustal coordinates)

This problem is interesting because:

a) It is well known in the literature

b) It involves departing from a metric expressed in "mixed coordinates"

¢) When writting the metric entirely in Krustal coordinates, the dependence involves special
functions (LambertW)

V' Formulation of the problem (remove mixed coordinates)
> restart,
> with (Physics) : with(Tetrads) : Setup (auto = true);
Setting lowercaselatin_ah letters to represent tetrad indices

5 .
Defined as tetrad tensors (see ?Physics, tetrads), ea’ . N o Yo b, o Ka’ b e

Defined as spacetime tensors representing the NP null vectors of the tetrad formalism

(see ?Physics,tetrads ), ,n ,m ,m
L T T



* Partial match of 'auto’ against keyword 'automaticsimplification’
[ automaticsimplification = true | (223)
The departure point, Schwarzschild metric in spherical coordinates

> g [sc]
Systems of spacetime Coordinates are: {X= (r,0, 0, 1) }

Default differentiation variables for d_, D_ and dAlembertian are: {X= (r, 0, ¢,1) }

The Schwarzschild metric in coordinates [r, 0, 0, t]

Parameters: [m ]

r
— 0 0 0
-r+2m
0 . 0 0
g = (224)
by 0 0 -~sin(6)° 0
0 0 0 r—2m
r

Introduce now Krustal coordinates following the literature (see wikipedia) and the
corresponding line element involving "mixed" coordinates

> Coordinates (K = [u, 9, ¢, v])
Systems of spacetime Coordinates are: {K= (u, 9, 0, v),X=(r,6,0,1) }

{K.X) (225)
Lo 1600 me 2" (3(w) = (1= cos(9)?) (3(0))* + (3(8))*) 7
r
PE 16 0(v) m’ e_Tm d(u) — ((1— cos(8)2) (9((;))2 + 6(9)2) - 226)

r

The mixing of variables is visible: in the line element above is in Krustal coordinates but you
also see r , which belongs to the X (not K) coordinates.

For the purpose of formulating problem free of this mixing of coordinates, set the metric now
to be (226)
> Setup (diff = [ K], metric = (226), quiet) :

>g ]

(227)



2 2m
0 0 0 8m e
r
0 - 0 0
g v~ .
H 0 0 -7 sin(9) 0
2 2m
8m- e 0 0 0
r

(227)

To remove the mix of coordinates, introduce a transformation with unknown transformation
functions { f; &}, change variables, and resolve for the transformation functions { f; g} (this

in itself is resolving a form of equivalence problem).
> w,= {u=f(r,t),v="h(r,1)}
trp= {u=f(r,t),v="h(r,t)}
> CompactDisplay(tro)
f(r, t) will now be displayed as f
h(r, t) will now be displayed as h

> TransformCoordinates (tr o &_[mu, nu | )

16fh m>e > &fezm(hﬁ+f@)
r 14 0 0 r r
r r
0 N 0 0
0 0 -~sin(e)’ 0
. I
8m*e " (h S+ [ h,) 16/ h,m*e *"
r r 0 O
r r

Equate to (224) and solve
> convert((230) = rhs ((224)), setofequations )

gm’e 2" (h f+[ h
0=0, - = —rz, - sin(6)2= -7 sin(e)z, ( r t) =0,
r
Ldﬁ@nfezm , 16fhm’e 2" 5.
| r -rt2m’ r o
> pdsolve((231))
r+t

ot 4m
f= Cl+ 2T ametme tm po & NIT2m o

(228)

(229)

(230)

(231)

(232)



7

_t 4 m
— Clt 27T ametm et poNrT2me + 3

Without loss of generality, set [ C/ =0, C2=1, C3=0]
> tr := combine(subs([_CI=0, C2=1, C3=0],eval((228),(232)[1])))

r—t r+t
tr = {uzw/r—2me4m,v=—e4m \/r—2m} (233)

Check it out:
> e []
-
2 2m
0 0 0 8m~ e
-
0 -7 0 0 234
g =
v 0 0 -2 sin(9)? 0
2 2m
Em” e 0 0 0
r
> TransformCoordinates (tr, g [mu,nu], [X], [K])
r
—) 0 0 0
-r+2m
0 - 0 0
5 5 (235)
0 0 -7 sin(0) 0
-2
0 0 0 r—am
r

Here is where things become computationally challenguing: compute the inverse of the
transformation (233)

> itr == simplify (normal(solve((233), {r, t}), expanded) )

Warning, solve may be ignoring assumptions on the input
variables.

-1
itr = [r=2(W[—”Ve ]+1]m,t=2ln(—vjm} (236)

2m u

This itr involves the LambertW function. Set now the metric to be the standard
Schwarzschild's metric in spherical coordinates (224) and compute use itr to get he form of
the metric entirely in Krustal coordinates - no more mixings

> g [sc]
Warning, changing the differentiation variables used to compute the Christoffel

symbols from [u, 3, ¢, v]to [r, 0, ¢,

t| while the spacetime metric depends on [, m, r]



Default differentiation variables for d_, D _and dAlembertian are: {X= (r, 0, 0, ) }

The Schwarzschild metric in coordinates [r, 0, 0, t]

Parameters: [m ]

.
—5 0 0 0
0 - 0 0
fuv 0 0 -Zsin(0)’ 0
0 0 0 r—am
r

So this is Schwarzschild's solution all in Krustal coordinates
> TransformCoordinates (itr,g_[mu,nu], [K], [X])

—1
8W[_uve sz
m

0,0,0, -

)
2m 0.0,0

- —1 b b b
(W[_uve j—l—ljuv
2m

237)

(238)

This metric involves the LambertW function in a non-simplifiable form (to avoid that is the

reason for people to use the mixed coordinates version (227)).
>

V Solving the Equivalence

We now have the two forms: (235) in spherical and (238) in Krustal coordinates, so we can

formulate the equivalence problem from one coordinate system to the other one.

The transformation to be resolved does not need to involve ¢ because neither ¢ nor ¢ enter

either of the two metrics.

The transformation does not need to involve 0 or & because they enter the metrics in exactly

the same position and with the same dependence.
In addition the Weyl scalars of both metrics are in canonical form and the only scalar



different from zero, that is W 5 does not depend on any of {¢, 0, ¢, 9 })

So we look for a generic transformation from spherical to Krustal of the form
> {r=R(K),t=T(K)}
{r=R(K),1=T(K)} (239)

> CompactDisplay((239))
R(u, 8, ¢, v) will now be displayed as R

T(u, 9, @, v) will now be displayed as T (240)

The metric set in this moment is in spherical coordinates, (237), so change using (239) and
equate to (238) in Krustal coordinates

> convert(TransformCoordinates ((239), g [mu, nu], [K], [X]) = (238),

setofequations)
R ’ R 2
—4(—+m) T>+R*R —4(—+m) T?+R*R
2 u u ~0o 2 v v

(-R+2m)R oo (-R+2m)R =0, (241)
) 2
! _ R 2 2 RL R
A Ren) rp e B
uve !
—l—mj (cos(9) +1)R (cos(9) — 1) =—4(W(— T )
R 2
2 —4T(—+m) T +R R R
+ 1| m*sin(9) 2 =
’ (-R+2m)R
-1 2
sw-2 V2 ar (- By srRr R
2m v 2 ~0
-1 ’ -R+2m)R ’
(W[_uve j—l—ljuv ( )
2
R 2
4T (—{—m) Ty+ R RyR
v 2
(-R+2m)R =0,



R
—4T(P[—2 +mJ T +R,R R
=0
(-R+2m)R ’
R 2 5
=0
(-R+2m)R ’
2
R 2
_4T9(—2+mj Tu+R8RuR RSZR ,
(-R+2m)R 7 R—2m
2 _ 2
T.” (R—2m 1
Ll Y 7 (AL PR I R
R 2 m

Again, this is a nonlinear, non-rational PDE system in two unknowns depending on two
independent variables (see (239)). You can now either call pdsolve on (241), solving the
problem in one step, or first split into cases without solving any differential equation, just
doing differential elimination, to see the cases
> PDEtools:-casesplit((241))

2m 2m

T = T—OT—OT——,R=2[ (
u u Y

uve

J J m } &where (242)

2m
[],[T: TT_OT OTVZTR 2(W(— 2 m )—Fljm}
&where [ ]

So by only using differential elimination we removed all nonlinearities. This problem is
actually easy for the differential equation routines

> pdsolve((241))

—1
[R=z (W( ”;fn ) + 1) m, T=-2mIn(u) + 2 mIn(v) +_c1], {R (243)

uve !
=2 (W(— m )+1)m,T=2m1n(u)—2mln(v)+_Cl}

So the transformation of coordinates resolving the equivalence between (235) and (238) is
> eval((239), (243)[1])

uve !
[r=2 [W(— m J + IJ m,t=-2mln(u) +2mln(v) +_C1] (244)

Check it transforming (235) fully written in spherical coordinates into (238) fully written in
Krustal coordinates

>g[]



.
-r+2m 0
0 - 0
g -
bV 0 0 -~sin(8)’
0 0 0

> TransformCoordinates ((244), g [mu,nu], [K], [X])
—1
g W( _uve J .
m

2
anaoa_ —1 B
(W(_uve )-I—l)uv
2m
uve ! 2
0,—4(W(— )+1) m>,0,0|,
2m

>
¥ *On the 3+1 split of the 4D Einstein equations

Consider the Lemaitre-Tolman-Bondi metric.

2
(E R(z,r)) 0 0
1+2E(r)
v 0 R(t,r)? 0
0 0  R(tr) sin(0)
0 0 0

(245)

(246)



a) Show that the relation between the matter density p, (¢, r), the vaccum energy p A\~ constant and

0 2
R(t,7) ( (— R(t, r)) — 2E(r)]
o ot )
the the gravitational mass M (r) = 7 of a comoving sphere of
radius r is given by (see wikipedia)
M,

Pyt P = 5
MOTA 4R R

b) Show that the 4D Einstein equations and their 3 + 1 split in terms of the extrinsic curvature are
the same equations

V Solution

Formulation of the problem

Load the ThreePlusOne Physics package and the Lemaitre-Tolman-Bondi metric, that in the
Maple database of solutions to Einstein's equations can be retrieved directly using a portion of
the word Tolman as an index to the metric g__

> restart, with(Physics) : with(ThreePlusOne)
Setting lowercaselatin_is letters to represent space indices

Defined as 4D, spacetime tensors that are purely spatial (see ? Physics, ThreePlusOne),

yu, v’ mp’ Fu, v, o Ru, v’ Ru, v, o, B’ Bu’ " tu’ Ku, v

Changing the signature of spacetime from (- -- +) to (+ + + -) in order to match
the signature customarily used in the ADM formalism

[ADMEquations, Christoffel3, D3, ExtrinsicCurvature, Lapse, Ricci3, Riemann3, (247)
Shift, TimeVector, UnitNormalVector, gamma3_]

> 8 to1
Systems of spacetime Coordinates are: {X= (r, 0, 0,1) }
Default differentiation variables for d_, D_ and dAlembertian are: {X= (r, 0, ¢, 1) }

The Tolman metric in coordinates [r, 0, 0, t]
Parameters: [R(t,r), E(r) ]

0 2
(ar R(t,r)) ) ) 0
1 +2E(r)
v 0 R(t, r)? 0 0 (248)
0 0 R(tr)’sin(8)> 0
0 0 —1

> CompactDisplay((248))
E(r) will now be displayed as E



R(t, r) will now be displayed as R (249)

The EnergyMomentum tensor is related to Einstein's tensor by

> EnergyMomentum | definition |

T = Cuv (250)
M.V 8m
and for this metric it is defined as
> EnergyMomentumNmu’ Vo T Py(tr) KroneckerDeltaNmu’ 0 Kronec/’(erDeltaV N

—P, KroneckerDeltaNmu’ y

u

_ nod
TV——pM(t,r)84 & —

u
Py 8V (251)
where p, (7 r) is the matter density, utt = 5:; is the 4-velocity of the matter that is comoving and
we keep the vacuum energy p A~ constant for illustration purposes only, and

> CompactDisplay((251))
P, (% 1) will now be displayed as p, , (252)

> Define((251))
Defined objects with tensor properties

D.,D R R R C X,0 LT 253
{ Ll’ “, YM: GM’ i, v’ i, v’ WV, o, Ba B“: TR Ba M’ M’ g“’ v’ 'Yu’ v’ ’Yl,.]’ I, v, o ( )

r ,G ,T ,0 ¢ , R ,t, K . n
wv,ol Ty oWy oWy oo, By .o By

a) The relationship between the matter density p, (t, r), the vaccum energy p 4 = constant

and the the gravitational mass M (r)

Take now the compoments of the 4D form of Einstein's equations (250) and derive an
expression for p, (7, r) as a function of R(¢, ), E(r)

> EQ4 = TensorArray((250))
pR’ R? (th +2RR,,~2E)

EQ4 = || - = - ,0=0,0=0,0=0]|, (254)
1 +2E 8R* (1+2E)m
R(RR +R R+R R —E
0=0, -p R = (t i rott Lt r),OZO,OZO,
A S8R T
0=0,0=0, -p R sin(6)" =
2
Rsin(0)" (RR +R . R+R R —E
_ ( t r,t r,t,t t,t r r),OZO,

8an



R’R +2RR R—2ER—2RE
t ot r r

0=0,0=0,0=0,p, +p, = p
T
,

Introduce M (r), the gravitational mass of a sphere at radius » (see wikipedia for definitions)

2
> M(r)= —% [— (% R(t,r)) +2E(r)]R(t,r)
R2
M(r)=- Tf +EJR (255)

The relationship we are looking for is in EQ4 so simplify the expression obtained for

4,4
P, T P, introducing M (r) and eliminating £(r) (see simplify. siderclations)

> simpliﬁ/(EQ44’4, {(255)}, {E(’”)})

M

r

PytP, = (256)

4R°R 1
r

b) Show that the 4D Einstein equations and their 3 + 1 split in terms of the extrinsic
curvature are one and same system

Start from the active form of the ADM equations
> eq = ADMEquations (inert = false)
2
(2RFRZ—|—RRM) 0B 4(RrE—|-ErR)

~-K K"
er R o, B RVRZ

eq = =l6mn_n TP (257)

B

T2R (R0 (r)+R O ())+0 (R)R +R(R 3 (r)

I",V,l T

(2 R R + RRr,z) (Rr’ . d

T

(1) + R, 0 (1))

+R,0(0))+ 5

r,t,t T

R™R
.

_ B 1
= 8157“ n Tﬁ,r

T

+

9

(2R R +RR_)9 (R) ]

R R
r

(2R R +RR
rot r,
R R

t) Ku,v

¢’ D (K ) HK @u(ﬂ) +K @V(t‘) = -



T K A
_2Ku,rKv+Ru,v_8n[7u v, Tx,x

A KO
v, (v T

TR

o, B

na nB)

2

+KH,T@\/(BT)]’
[tr @‘c(yﬂ»\’) +'YT,V @p(tt) +yMaT@v(tT) B _2KHaV + BT@T(YM,V)

P12, (87 (8]

The expression forp, + p A in terms of M (r) is obtained now from egq,

> eql

(2RrRt +RRr,z)

2

R’R

—K

o, B

> SumOverRepeatedIndices (eq1 )

2(R2R +2RR R—2ER—-2R E)
t r t r,t r r

K —

o, B

4 (RrE—i—ErR)

R R
r

R R
r

> isolate<(259), P, (67) + pA)
R’R +2RR R—2ER—2RE

> simplify((260), {(255)}, {E(r)})

B

161 (pM—i- pA)

PytP,=

SR R n
r

The second equation, eq,, is identically satisfied

> eq,

T 1

QB(KHB) —y - TR (2(R,,0.(r) +R 0 ()R +2R (R 0 (r)

+R () FO(R)VR +R(R O (r)+R_ 0(1))

+

(2R R+ RR_) (R 0

T

(1) + R, 0 (1))

(2R.R,+RR )4

—16nn n T"
ol

T

+ ﬂT@T(KM) +K_ @“(BT)

B

(R)

R

2

7

R

+

R R
r

(258)

(259)

(260)

(261)

(262)



B 1
= - T
8T 'y“ n b1
> T ensorArray(eqz, simplifier = simpliﬁ/)
[ozo 0=0 0=0 ozo] (263)
The fourth equation, eq ,, is also identically satisfied (basically, this is the definition of the
ExtrinsicCurvature)
> eq 4

T T T\ _ T

D) 2 () 0 ()2, B ) e, 0 e
SERI0

> T ensorArray(eqz, simplifier = Simpliﬁ/)

[ozo 0=0 0=0 0:0] (265)

So itis in eq, where the evolution of the gravitational field is encoded, in terms of the functions

{p w E(r),R(%,7) } and their derivatives
> eq,
(2R.R,+RR K

T T T\ _ _ W v
t @T(KM’V)—I—KV’T@“(t)—I—KM,T@V(t) R (266)
—2K K' +R —8n|y“y’T
W, T Y U, v n ‘Yu yv K, A
A KO o, B
Y (’y Yy T, —T 'n n)
o Twv Uk A © o B T ( 1:)
5 + B @T(KM’V)JFKV’T@H B
K, .2,(8")
+ M,T@v B
> EQ3 =T ensorArray(eq3, simplifier = simplijﬁ/)
EQ3 = _RrRr, t,t_Rr, z2 (267)
' 1+2E
2 E,
-R,/R+2RR R —4R TR (p,+2p )R +
- R(1+2E) ,0=0,0=0,0
:0’
RR R+ (-4n(p, +2p \R*—2E\R —ER
0=0,-R>—RR =——"" (47 (Put2p,) )R 0

R

7



=0,0=0

b

0=0,0=0,(-R>—RR, ) sin(0)° =

) sin(e)2 (—RIRMR+ <4n (pg+2pA)Rz+2E)Rr+ErR) 0=0|

7

0=0,0=0,0=0,0=0

To demonstrate that the system of equations EQ3 together with the constraint eg, is equivalent to

the 4D system of equations EQ4 it now suffices to show that each of these two systems entirely
reduces the other one. For this purpose, convert these arrays of equations to sets of equations

> EQ4 := convert(EQ4, setofequations)
EQ4': 0=0. - RZZ_R(Rth,t+Rr,t,tR+R[,th_E,,) ) pAR, _
o §R T 14 2E

2
' (268)

R®(R*+2RR, ,—2E) , 5
- 5 : ,-p, R sin(0) =
A
S8R (1+2E)™

Rsin(0)° (R R +R , R+R R —E)

—_ , +
S8R T Pa Py

R*R +2RR R—2ER—2RE
o ! r tort r r

SR R n
r

> EQ3 := convert(EQ3, setofequations ) U {(260) }

>~ RR,_,)sin(6)" = (269)

t

EQ3 = o=o,(—R

sin(6)° (-R R, R+ (47 (p,+2p,) K +2E)R +ER)

R

r

-R R —R

ror rt

l1+2F




E
2
“R_R+2R R R —4R [nR(pM—I-ZpA)Rr—I- ] i

R(l1+2E) ‘

:RZRMR+(—4n(pM+2pA)R2—2E)Rr—ErR e
R e AN

7

R’R +2RR R—2ER—2RE
t r t r,t r r

SR R m

The differential reductions can now be performed using PDEtools:-ReducedForm

> PDEtools:-ReducedForm (EQ4, EQ3)
[0,0,0,0,0] &where [ |

The reduction the other way around

> PDEtools:-ReducedForm (EQ3, EQ4)
[0,0,0,0,0] &where [ |

>

Tetrads and Weyl scalars in canonical form

(270)

Q271)

Generally speaking a canonical form is obtained using transformations that leave invariant the tetrad
metric in a tetrad system of references, so that theWeyl scalars are fixed as much as possible

(conventionally, either equal to O or to 1).

Bringing a tetrad in canonical form is a relevant step in the tackling of the equivalence problem

between two spacetime metrics.

The implementation is as in "General Relativity, an Einstein century survey", edited by S.W.
Hawking (Cambridge) and W. Israel (U. Alberta, Canada), specifically Chapter 7 written by S.

Chandrasekhar, page 388:

¥, ¥, Y, ¥, ¥, 'Remc'lual
invariance
Petrov type 0 #0 #0 1 0 none
I
Petrov type 0 0 #0 1 0 none
II
Petrov type 0 0 0 1 0 none
111
Petrov type 0 0 #0 0 0 ¥,
D .
remains
invariant




under
rotations of
Class 111

Petrov type 0 0 0 0 1 V¥, remains
N mvariant

under

rotations of

Class 11

The transformations (rotations of the tetrad system of references) used are of Class I, II and III as
defined in Chandrasekar's chapter - equations (7.79) in page 384, (7.83) and (7.84) in page 385.
Transformations of Class I can be performed with the command Physics.-Tetrads:-
TransformTetrad using the optional argument nullrotationwithfixed! , of Class Il using
nullrotationwithfixedn _and of Class 111 by calling TransformTetrad(spatialrotationsm_mb_plan,
boostsn_[ plane), so with the two optional arguments simultaneously.

The determination of appropriate transformation parameters to be used in these rotations, as well as
the sequence of transformations happens all automatically by using the optional argument,
canonicalform of TransformTetrad .

> restart,
with (Physics ) :
with(Tetrads );
Setting lowercaselatin_ah letters to represent tetrad indices

) .
Defined as tetrad tensors (see ? Physics,tetrads), ea’ v LIPS A ka’ b e

Defined as spacetime tensors representing the NP null vectors of the tetrad formalism (see

?Physics,tetrads), | ,n ,m ,m
wow T

[IsTetrad, NullTetrad, OrthonormalTetrad, PetrovType, SegreType, TransformTetrad, e , (272)

eta_,gamma_,l ,lambda ,m ,mb ,n_|

¥ Petrov type I

The numbers below used to enter the metric always refer to the equation number in the "Exact
solutions to Einstein's field equations" textbook

> g [[12,21,1]]
Systems of spacetime Coordinates are: {X= (t,x,y, )}
Default differentiation variables for d_, D_ and dAlembertian are: {X= (t,x,y, ) }

The McLenaghan, Tarig (1975), Tupper (1976) metric in coordinates [t,x, y, 0]

Parameters: |a, k, k0]
Comments.: k parametrizes the most general electromagnetic invariant with respect to the
last 3 Killing vectors

Resetting the signature of spacetime from "- - - +"to - + + + in order to match the



signature in the database of metrics:

a
0o 4 0 0
X
8.v 2
W, v
o 0o L o

2y 0 0 x*—4y

The default tetrad computed by the Physics package routines

>e[]
-1 0 0 2y
0 -~ 0 0
x|
“a . a
’ 0 0 — 0
Il
0 0 0 |x
The corresponding Weyl scalars
> Weyl[scalars |
_ Iix _ _ _ _ 1y
Vo= 5 sV =0, = sy =0y, =
a x a a” x

... there is abs around. Let's assume everything is positive to simplify the presentation of
formulas

> Assume(x > 0,y > 0,a > 0)
{a(0, ]}, {x::(0, o ]}, {y::(0, = ]}
The scalars are now simpler, although still not in "canonical form" because ¥, # 0 and
Y, # 1
> Weyl|scalars |

I 1 I
W02?5W1:0:W2:_?aq‘%:oa\'&(:j

a

The Petrov type

> Petrovlype( )
"I"

In this case the Weyl scalars are in canonical form when ¥’ ) =0,'¥ =0and ¥, = 1.

> TransformTetrad(canonicalform)

[_ V25 -3 (27 +5) JJ2TJ5 -3 (JT+(5)

2 42 ’ 2ax " 2ax’

273)

(274)

275)

(276)

Q77

(278)

(279)



Sz E s ey BTV T
+Jﬁﬁ—sﬁx+6y))],
I3 (5T +4y5)

10
BB (0T +2)3) TS5
10 x ’ 10 x ’

W2V =34 (VT +ay3) (V25 -3y

+VZE =3 Fatey))] ,

NN R N P W A NN W
4 5 4

J2J5 =35
+ 10 ’
V53 (51T 4215 +5J7 +4(F)a
20 x
_(-101+1ﬁ£—3\/_r)a,%((mwlﬁﬁ

—3y23) /25 =3 S+ 20/ 2 V5 -3 Y2 +3x)) |
NNENEEE e Jﬁﬁ—s Z, 1 Z5-3(F
4 4 5

J2J5 =35
* 10 ’
J2J5 =3 (512 4215 =52 —45)a
20 x ’
(-10 3 5)a 1
I+IJ_5;+ J2 s 0 ((101+1ﬁﬁ

+3yZ2J3) JVZ V5 -3 y+20 VT V5 -3 /T +3x))

Despite the fact that the result is a much more complicated tetrad, this is an amazing result in that
the resulting Weyl scalars are all fixed (see below). Let's first verify that this is indeed a tetrad,
and that now the Weyl scalars are in canonical form




> IsTetrad((279))
Type of tetrad: null

true (280)

Set (279) to be the tetrad in use and recompute the Weyl scalars
> Setup (tetrad = (279)) :

Inded we now have ‘PO =0, ‘1’4 =0 and ‘P3 =1
> simplify ([ Weyl|scalars]])

131
2 2 —1+1

V=0, = ——F ¥, = —— - V¥;= Ly, =0 (281)

a a

So Weyl scalars computed after setting the canonical tetrad (279) to be the tetrad in use are in
canonical form. Great! NOTE: computing the canonicalWeyl scalars is not really the difficult
part, and within the code, these scalars (281) are computed before arriving at the tetrad (279).
What is really difficult (from the point of view of computational complexity and simplifications)
is to compute the actual canonical form of the tetrad (279).
>

¥ Petrov type IT

Consider this other solution to Einstein's equation (again, the numbers in g [[24,37,7]] always
refer to the equation number in the "Exact solutions to Finstein's field equations" textbook)

> g [[24,37,7]]
Systems of spacetime Coordinates are: {X= (u,v,x,y)}
Default differentiation variables for d , D _and dAlembertian are: {X= (u,v,x,y)}

The Stephani metric in coordinates [u, v, x, y|

Parameters: | f(x), a, W1 (u,x,y)]
Comments: Case 6 from Table 24.1:Psil(u, x, y): diff(Psil(u, X, y), x, x) +diff(Psil(u,
X, y), ¥, y) =0, diff(x*diff( M(u, x, y), X), x) +x*diff( M(u, x,y),y,y) = kappa0*
(diff(_Psi(u, x, y), x)"2 +diff(_Psi(u, x, y), y)*2)

[ -2x (f(x) +ya) -x O 0
-X 0 0 0
0 0 L 0
g .= IS (282)
0 0 0 L
Jx
Check the Petrov type
> Petrovlype( )
"II" (283)

The starting tetrad
>e[]



-\/?\/f(x)—i-ya - * 0 0
(x) +ya
I
n” . . g 22 (284)
2)61]4 |4

results in Weyl scalars not in canonical form:
> Weyl[scalars ]

1
V= 0y, =0y, = =5 v = 0y, = (285)
8 x
& d
3Ia—2x[dxz f(x)] -3 (dxf(x))
Jx (4ya+4f(x))

For Petrov type "II", the canonical form is as for type "I" but in addition ‘¥', = 0. Again let's
assume positive, not necessary, but to get simpler formulas around
> Assume(f(x) > 0,x > 0,y > 0,a > 0)

{a:z(0, 0 1), {x(0, & |, (=/(x))=[ - 0, 0), £ (x):(0, e ]}, {::(0, o ]} (286)
Compute now a canonical form for the tetrad, to be used instead of (284)
> TransformTetrad(canonicalform)

2
ﬁ/ 31a—2x(sz f(x)]—3 (jx f(x))
8/x

‘ ,0,0,0], (287)

d’ d
3Ia—2x(dx2 f(x)] -3 (dx f(x)) +3ya

—[Sﬁx”z[x




2
3Ia—2x[% f(x)] -3 (% f(X)j| ],

)/

32
) 83 x ,-(4x5’4ﬁ(31a

d? d
3/‘31a—2x(§ f(x)] -3 (E f(X))|

—2x[§x—22 (x)] ~3 (% f(x)) +

w)))/

-/
/3Ia—2x(if(x)]—3(if(x))] (4\/7x514(21 i
P dx ’ 2

2

3Ia—2x(% f(x)] -3 (% f(x))‘

2

3Ia—2x(% f(x)] -3 (%

2

31a—2x[% f(x)) -3 (% f(X)j‘

f(x) x+31(% f(x)j +1

+3aJ/
2
3/3Ia—2x[% f(x))—3(% f(X))‘
2
/3Ia—2x(% f(x)] -3 (% f(x)) ]], )




3 >0,
’ d
/3Ia—2x[—2 f(x)] -3 [E f(x)) J2
2/3Ia—2x(d—22f(x)]—3(%f(x)) A
‘%/31“—“[—2 (x)]— (& /@) VT
/3Ia—2x[—22 (x)J—3(%f(x)j ol
_ /‘31a_2x[d—22 f(x))—3 (% f(x))‘ 3 x
, 0,

2 9
2/3Ia—2x[% f(x))—3 (% f(x)j Al
| _
2

2
/3Ia—2x[% f(x)] —3 (% f(x)j R

Set this tetrad and check the Weyl scalars again
> Setup (tetrad = (287)) :
> Weyl|scalars |

2

31a—2x(% f(x)] —3 (% f(x))| J2

1
Vo= 0V, = 0w, = 5T Vs = L, =0

This result (288) is fantastic. Compare these Weyl scalars with the ones (285) before
transforming the tetrad.
>

¥ Petrov type 111
> g [[12,35,1]]

(288)



Systems of spacetime Coordinates are: {X= (u,x,y,z)}
Default differentiation variables for d , D _and dAlembertian are: {X= (u,x,y,z)}
The Kaigorodov (1962), Cahen (1964), Siklos (1981), Ozsvath (1987) metric in

coordinates [u, x,y, z |

Parameters: [A]

Warning, for the signature (- + + +), that is with the timelike component in
position
1, the spacetime metric indicated has g, =g, | =0, and so the corresponding
system of reference cannot be realized with real bodies (e.g. you cannot define
proper time nor synchronize clocks in any infinitesimal region of space). Note as

well that the corresponding 3-dimensional space metric 7y is singular.

0 ¢** 0 0
e?? e 28 0
gvT] 0 2& 2¢7%7 0 (289)
0 0 0 =N
Al

> Assume(z > 0, Lambda > 0)
{A:(0, ]}, {z::(0, ]} (290)
The Petrov type and the original tetrad

> Petrovlype( )
"I (291)

>e []

(T -2) S VT et (VT 1) o
S (24 VT) S VT ET 1T (14T) 0

_ 292
¢ Lo . . JIJ3T | @

2/ A
_%ﬁe-h 0 0 V23
2/ A

This tetrad results in the following scalars
> Weyl|scalars |

11 A 3A AY2 A 3A AY2
Vpm Ty TAAVZLY ST S T TS T T Ty, @99)




=“4—A+2AJ7

that are not in canonical form, which for Petrov type III is as in Petrov type II but in addition we
should have ¥, = 0.

Compute now a canonical form for the tetrad
> TransformTetrad(canonicalform)

0 —%ﬁAezZ —%ﬁe_ZA —ﬁz\/x
%\/76_42 131\/7622 _2 3 e ?

8 8 713
A A A TS (294)
0 % J2 e’? % 2¢° - J3
4. A
4. I . I .
—rettyr o 2lymer Lyt - /3
4.\ A
Set this one to be the tetrad in use and recompute the Weyl scalars
> Setup (tetrad = (294)) :
> Weyl|scalars |
WOZO,WIZO,\IIZZO,W3:1,W4:0 (295)
>
V Petrov type N

> g [[12,6,1]]
Systems of spacetime Coordinates are: {X= (u,v,y,z)}

Default differentiation variables for d , D _and dAlembertian are: {X= (u,v,y,z)}
The Defrise (1969) metric in coordinates [u, v, y, z |
Parameters: [ A, k0]

Comments: Lambda < 0 required for a pure radiation solution

Warning, for the signature (- + + -+ ), that is with the timelike component in
position
1, the spacetime metric indicated has 8.0~ 811" 0, and so the corresponding
system of reference cannot be realized with real bodies (e.g. you cannot define
proper time nor synchronize clocks in any infinitesimal region of space). Note as

well that the corresponding 3-dimensional space metric Y is singular.



3

0 -— 0
2y" A

3 3
T2 4 0

2y A Ay

g =
MV 3
0 0 5
VA

0 0 0

> Assume(y > 0, Lambda > 0)

> Petrovlype( )

{Az(0, = ]}, {3::(0, = ]}

HN"

The original tetrad and related Weyl scalars are not in canonical form:

>e []

R ER I R R

> Weyl[scalars ]

WOZ_?’WIZZA’WZZX’W,?:_ZA’W4:_Z

JA JAY 2y A
T 9V g
JA JAY 2y A
SUERER 0 0
NN
23 0 0
‘NN
A 1 A 1

J2 3
2y A
J2 /3

Zy\/x |

A

For Petrov type "N", the canonical form has ¥’/ # 0 and all the other ¥', = 0.

Compute a canonical form, set it to be the tetrad in use and recompute the Weyl scalars

> TransformTetrad(canonicalform)

(296)

(297)

(298)

(299)

(300)



0 y2 0 0
I
—J2
23 L ms A3 ;
A Ay Ay
I I (301)
0 ST g T
VA Yy 2y A vy A
I I
_ VA Y 2y A vy A
> Setup (tetrad = (301)) :
> Weyl[scalars |
Vv, =0,y,=0,y,=0,y,=0,y, =1 (302)
>
¥ Petrov type D
> g [[12,8,4]]
Systems of spacetime Coordinates are: {X= (t,x,y,z)}
Default differentiation variables for d , D _and dAlembertian are: {X= (t,x,y,z)}
The metric in coordinates [t,x, y, z |
Parameters: [A, B]
Comments: k = 0, kprime = 1
- Bsiniz)> 0 0 0
0 A0 0
g = 303)
o 0 0 4% 0
0 0o 0 B
Pi
> Assume(A >0,B>0,x>00<L2z<L T)
{A::(0, % ]}, {B::(0, % ]}, {x::(0, ]}, [z:: 0, % } 304)
> Petrovlype( )
"D" 305)

The default tetrad and related Weyl scalars are not in canonical form, which for Petrov type "D"
is with ¥, # 0 and all the other ¥ =0



J2 Bsin(z) /2 4 0 0
2 2
J2 Bsin(z) 2 4
- 0 0
2 2
- (306)
@ 2 4 I
0 o JZ4x L J2 B
2 2
ﬁAx I
0 0 5 5 J2 B
> Weyl|scalars |
1
YV, =5V, =0y, = —— y,=0,y, = (307)
0 420 T 20 s 17 4B
Transform the tetrad, set it and recompute the Weyl scalars
> TransformTetrad(canonicalform)
J2 Bsin(z) 0 0 BJ2
J2 Bsin(z) B2
4 0 0 4
(308)
0 g 2
2 2
I 2 A
0 — /2 4 Jadx
2 2
> Setup (tetrad = (308)) :
> Weyl[scalars |
W():O"’II]:O’WZZ_6BZ’W3:0’W4:0 (309)

Again the expected canonical form of the Weyl scalars, and ¥, # 0 remains invariant under

transformations of
>

Class III.



