> restart: > with(LinearAlgebra): > Pauli := [ > Matrix([[0, 1],[1, 0]]), > Matrix([[0,-I],[I, 0]]), > Matrix([[1, 0],[0,-1]]) > ]: > F := Vector(8,(i) -> f[i]): > M1 := Omega[1]*Omega[4] *KroneckerProduct(Pauli[1],KroneckerProduct(Pauli[1],Pauli[1])): > M2 := Omega[1]*Omega[3] *KroneckerProduct(Pauli[1],KroneckerProduct(Pauli[1],IdentityMatrix(2))): > M3 := Omega[1]*Omega[2]*Omega[4]*KroneckerProduct(Pauli[1],IdentityMatrix(4)): > M4 := Omega[1]*Omega[2]*Omega[3]*KroneckerProduct(Pauli[1],KroneckerProduct(IdentityMatrix(2),Pauli[1])): > EQS := > convert(M1 . F - F,set) union > convert(M2 . F - F,set) union > convert(M3 . F - F,set) union > convert(M4 . F - F,set); {Omega[1] Omega[3] f[7] - f[1], Omega[1] Omega[3] f[1] - f[7], Omega[1] Omega[3] f[8] - f[2], Omega[1] Omega[3] f[2] - f[8], Omega[1] Omega[3] f[5] - f[3], Omega[1] Omega[3] f[3] - f[5], Omega[1] Omega[3] f[6] - f[4], Omega[1] Omega[3] f[4] - f[6], Omega[1] Omega[4] f[8] - f[1], Omega[1] Omega[4] f[1] - f[8], Omega[1] Omega[4] f[7] - f[2], Omega[1] Omega[4] f[2] - f[7], Omega[1] Omega[4] f[6] - f[3], Omega[1] Omega[4] f[3] - f[6], Omega[1] Omega[4] f[5] - f[4], Omega[1] Omega[4] f[4] - f[5], Omega[1] Omega[2] Omega[3] f[6] - f[1], Omega[1] Omega[2] Omega[3] f[1] - f[6], Omega[1] Omega[2] Omega[3] f[5] - f[2], Omega[1] Omega[2] Omega[3] f[2] - f[5], Omega[1] Omega[2] Omega[3] f[8] - f[3], Omega[1] Omega[2] Omega[3] f[3] - f[8], Omega[1] Omega[2] Omega[3] f[7] - f[4], Omega[1] Omega[2] Omega[3] f[4] - f[7], Omega[1] Omega[2] Omega[4] f[5] - f[1], Omega[1] Omega[2] Omega[4] f[1] - f[5], Omega[1] Omega[2] Omega[4] f[6] - f[2], Omega[1] Omega[2] Omega[4] f[2] - f[6], Omega[1] Omega[2] Omega[4] f[7] - f[3], Omega[1] Omega[2] Omega[4] f[3] - f[7], Omega[1] Omega[2] Omega[4] f[8] - f[4], Omega[1] Omega[2] Omega[4] f[4] - f[8]} >