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2.3 Periodic Lattice

The periodic lattice problem ([F171, problem 15]) serves to demonstrate the
remarkable feature of what happens to the discrete eigenvalues of bound-state
problems, if the potential well is replicated many times to form an infinite
lattice. This problem is relevant in solid-state physics, particularly in 3D and
2D in order to explain electron band structure and conductivity.

From a very simple mathematical toy problem in 1D we can learn how
electronic delocalization comes about in a metal or even a macromolecule.
The periodic arrangement of square-well potentials can be imagined to rep-
resent the potential provided by a lattice of ions to the outermost electrons.
The idealization of a realistic, smoothly varying attractive potential by a dis-
continuous piecewise constant potential is implemented in order to allow for
a simple solution by matching, as in the single square-well problem.

We consider a périodic potential in 1D that represents a sequence of square
wells of width a separated by segments of length b. We set a basic potential
region originating at 0 to be of the following type:

> Vpot:=(x,a,b,V0)->Heaviside (x+b)*Heaviside (-x);
Vpot := (z,a,b, V0 ) — Heaviside(z + b ) Heaviside( —z )

> plot(Vpot(x,2,1,1),x=-2..4);

The interval of periodicity equals [ = a + b. We plot three adjacent segments
of the potential.

> plot(Vpot(x,2,1,1)+Vpot(x+3,2,1,1)+Vpot(x-3,2,1,1),x=-5..5);
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Naively one might think that this is a replica of the standard square-well
problem. But there are some surprises. First, one uses an argument to relate
the neighbouring problems, by requesting that the probability distribution
be the same for the electron within each cell. Thus, their wavefunctions can
differ by at most a phase factor

P(z +1) = ByY(z) = ¥(z +nl) = "Y(z).

The phase factor can be expressed in terms of the lattice period ! and a
‘constant to cancel the dimension: 8 = exp(iKl), with K dimensionally a
wave number. The periodicity in the function exp(i¢) allows us to restrict
the range of the propagation number (which is a vector if considered in 3D)
to the base interval

—-T< Kl< T,

thereby introducing a reduced propagation number.

With the assumption that E < V0, k2 = 2mE/k?, ¢%> = 2m(V0 — E)/h?
we write down the wavefunctions for the first and second cells (in units in
whichm = A= 1):

> V0:=1; a:=2; b:=1;
V=1 a:=2 b:=1

> ks:=sqrt(2*En); gs:=sqrt (2% (V0-En));

ks :== V2VEn gs:=VvV2—-2En
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> assume (En>0) ;
911 is the inside-the-barrier part, 19; is the free solution — both are for

cell 1.
> psill:=x->Al*exp(gs*x)+Bl*exp(-qs*x);
Pll:=z — A1e(#%) 4 Brel-o=)

> psi2l:=x->A2xexp(I*ks*x)+B2*exp (-I*ks*x) ;
P2l =z — A2 e(Iksz) + B2 e(—Tksz)

Now we define the same states in the neighbouring cell: Ip is the periodicity
length, Kp the propagation number. Note how the argument in parts of 112

and 199 is shifted!

> 1lp:=a+b;
lp:=3

> psil2:=x->exp (I*Kp*1p)* (Al*exp(qs* (x-1p))+Bl*exp(-gs*(x-1p)));
$12:=z — e IEPIP) (A1 (s (2=1p)) | By1e(—as(2=lP)))

> psi22:=x->exp (I*Kp*1lp)*(A2*exp (I*xks*(x-1p))
> +B2*exp(-I*ks*(x-1p)));

P22 1=z — e IKPIP) (g o(Iks(2=Ip)) | Boe(~Tks(2=Ip)))

Now we set up the matching conditions. The four constants Ai, Bi are
determined from 4 matching conditions, which, however, represent a homo-
geneous system of equations.

> eql:=psil11(0)=psi21(0);
eql:= A1+ Bl =A2+ B2

> eq2:=D(psi1l) (0)=D(psi21) (0);

eq2:=A1V2—2En —B1vV2—2En =1A2vV2VEn —IB2V2VEn"

Now we match onto the next cell at z = a:
> eq3:=psi2i(a)=psii2(a);
eq3d := A2 e(21V2V Bn”) 4 Bge(-21V2VEn") _
o(31Kp) (AI o(~V2=2En") + B1 e(\/_z—zzn'))



72 2. Bound States in 1D

> eq4:=D(psi21) (a)=D(psil2)(a);

eqd:=T A2 VZVEn e(21V2VER)
—IB2V2VEn e(721VZVEnT) _ o(31Kp)
(A1 VZ=2Bn e(-YZ7F%) _ 1 VT -2 En (V72 PV))

Now we try something naive by attempting a direct solution:

> solve({eql,eq2,eq3,eq4},{A1,A2,B1,B2});
{B1=0,B2=0,42=0,4A1=0}

Is this just an uninteresting trivial solution? No, we have to use the energy
En to make the determinant of the coefficient matrix vanish. Whether we
can find energies will depend on the choice of the propagation number Kp.
In fact, the continuous variable Kp allows us to find a continuum of solutions
En, i.e., the problem is qualitatively different from a single well with the
potential high at the boundaries that has a discrete spectrum. It is also
different from a potential that goes to zero asymptotically, which admits
continuous scattering solutions at all energies En > 0.

How do we extract the determinant for the system of equations? We order
the unknowns into (A1, B1, A2, B2)

- > collect(eq2,Al);

A1V2—2En —B1V2—2En =1A2V2VEn —I1B2vV2VEn"

> coeff(",Al);
Error, unable to compute coeff

It appears that collect/coeff doesn’t work on equations, one can use it
only on expressions. So let us redefine the equations by arranging all terms
on the left: row 1 in the coefficient matrix is trivial: 1,1, -1, —1.

> eq2:=D(psi11) (0)-D(psi21) (0);

eq2:= A1V2—2En —BI1V2—-2En —IA2V2VEn +IB2V2VEnR"

> eq3:=expand(psi2i(a)-psil2(a));

=\ 2 B2 (elTKP))3 A1
eq3 = A2 ((IVZVERT))" | _
A ( ) (e(I ﬁ,r—En-))2 o(VZ=2En’)

_ (e(IKp))SBI e(\/W)
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> eq4:=expand(D(psi21) (a)-D(psil2) (a));

==\ \ 2 vVEn~
eqd:=T A2V2VEn" (e(I‘/§ En )) - M
(e(wim))
(el TKP))3 A1+/2 _2FEn"
a o(VZ=2Bn")
+ (e{1KP))3 By /23— 2 B~ e(VEZT2ER)

> coeff(eq2,A2);

—I1V2VEn"

This seems to work.
> with(linalg):

> rowl:=vector([1,1,-1,-1]1);
rowl:=[11 -1 —1]

> row2:=vector([coeff(eq2,Al),coeff(eq2,B1),coeff(eq2,A2),
> coeff(eq2,B2)1);

row2 := [\/2—2En" -V2=2En -IvV2VEn 1\/§\/En~]

> row3:=vector([coeff(eq3,Al),coeff(eq3,B1),coeff(eq3,A2),
> coeff(eq3,B2)]);

(e(IKp))3

rowd := [-— m — (e(IKp))3e(\/2—2T) (e(lx/ix/fn—'))2

1
(e(I\/is/_En'))z]
> rowé:=vector([coeff (eq4,Al) ,coeff(eq4,Bl),coeff(eq4,A2),

> coeff(eq4,B2)]);

(elIKP)Y3 /2 2 En~
(V2B
(e(”"”))3 2 — 2 En e(VZ-2ER)

rowd := [
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Ve (A - ]
e

> Coeff:=matrix(4,4,0):

> for i from 1 to 4 do

> Coeff[1,i] :=rowil[i]; Coeff[2,i] :=row2[i];

> Coeff[3,i] :=row3[i]; Coeff[4,i]:=row4[i];

> od:

> evalm(Coeff);
(1,1,-1,-1]
[V2—2En",—V2—2En",-1V2VEn" ,I1V2VEn"]

(IKp))3
[_ u,_(e(le)p%l,%gz’L]

%1 %2*
(IKp)\3 — =
[- eyt 3
0
I\/E\/En"%f,—%— “f"]
(V)

%1 = e(\/z-z En")
52 = (1 VIVET)

> chareq:=det(Coeff);

chareq := 2 (21%2\/27— 2En- V2VEn %1°
—2(elTEP) 3 902 pn~ 4+ 2 (eI KP) )3 %02 B~ %1%
—I1(e 1K) a0 En” %22 V2VER"
— 1 (X)) V3 /3 "2 En” %2% V2 VEnR" %1*
+ (el TKP) )3 0792 _ 9492 (e(1KP) )3 0714
+2 (e TEP) Y3 En~ — 2 (e 1XP))3 Ep~ %14
—1(e 7P /2 "0 En V2 VEn"
—1( 1K)V /22 En” V2VER" %1*
+21 (e 1K)V /2 "2 FEn %2 V2 VEn" %1?
— (elTKP))3 4 (e(IKp))3%14) /(%2%12)

%1 = e(I\/iVE’n-)
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%2 := e(V2-2E™)

> sol:=solve(chareq,En);
sol :=

That didn’t work. Suspected problem: Kp isn’t specified (the next fruitless
attempt takes quite a while to complete).

> sol:=solve(subs(Kp=0,chareq),En);
sol :=

Now we should morally be allowed to use a numeric solver:

> sol:=fsolve(subs(Kp=0,chareq) ,En=0..V0);
sol := .5000000000

Apart from the occasionally occurring undesired numerical noise of an imag-
inary part, we have a numerical answer. However, we aren’t too happy about
the large value of En, as we are mostly interested in En < VO.

> sol:=Re(fsolve(subs(Kp=0,chareq) ,En=0.51..V0));
sol := .7550000000

Now we are ready to explore and set up a loop to obtain a list of values
for plotting purposes. The numerical output of pairs (Kp;, E;) is removed
below for i > 5. We explain below why we cannot solve for the roots of the
magnitude of the complex-valued characteristic equation.

> for i from 1 to 20 do

\Y

Kpili] :=evalf (-Pi+6.28/21%i)/1p;

> Ensol[i] :=fsolve(subs(Kp=Kpi[i] ,Re(chareq)+Im(chareq)),
> En=0.01..V0-0.01);
> print(Kpi[i] ,Ensol[il); od:

—.9475150116, .5849117411
—.8478324719, .5456879542
—.7481499323, .4959266352
—.6484673926,.4447491723
—.5487848526, .3970435050



