$$C_1^2 \nabla^2 \Phi = \ddot{\Phi}, \ C_1^2 = (\lambda + 2\mu)/\rho,$$
 (1)

$$C_2^2 \left(1 - \left(\frac{l}{2} \right)^2 \nabla^2 \right) \nabla^2 \Psi = \ddot{\Psi}, \quad C_2^2 = \mu / \rho$$
(2)

Where l, μ, ρ, λ are constant. Φ is a scalar and Ψ is a vector. Also we know that $\nabla \cdot \Psi = 0$