(0))

| > restart : interface(showassumed =0) :

| > assume(a*-a +bb=1);

U= ()]

—b a

Is the "with linearAlgebra" statement below always and strictly necessary for a simple 2x2

inverse?

Its dizzying betwween Linalgebra-generic and non generic, Deep learning, and so many packages
| that have a matrix inverse function: How to choose?

| > with(LinearAlgebra) :

[The assume(a*a + b*b = 1) above seems to do nothing below. how can we make the assumption
| stick?
> DI := Determinant(U); _
Dl=aa+bb 3
;Why does Inverse fail? is the modulus mandatory?
> Ul = Inverse(1, U); U= Inverse(U); U= inverse(U);

+ a b]
U' = Inverse| 1, - _
—b a
+ a b]
U' := Inverse -
—b a
+ a b]
U' := inverse ;- 4
—b a

Is it possible to denote the usual inverse with the superscript -1?

> U = Inverse(U);

Frror, illegal use of an object as a name
.................... \

; The assume(a*a + b*b = 1) above seems to do nothing below
> Uinv := MatrixInverse([U]);

aa+bb b
a* @ aa
Uinv := — 5
5 ®)
P aa
[The curly bracket seems to do what I expected Assuming would do (in-line format).
| I'd also expect {} to mean a set!! Why is there no mention of {} in the Simplify documentation?
> simplify(Uinv, {a* a+b -b=1 I3F
1
2 dta
_ 6
51 ©)
ia aa
;The inverse should be much simpler (as below). Is Uinv really the inverse?
a —b
> Ul ;
b a
aa+bb 0
= Q)
0 aa+bb

| Below [use r_t. Can one use r' (as in transformed r) and not mean it to be the derivative?

a(x+1y)+bz
—b(x+1y)+az

| > assume(o > 0) :

o
> subs[a=e 2 ,b=0 r];

X
e’ (x+1y)

L
—0 (x+1y)+e? z

| Why does it cc alpha despite the assume statement? and why zero-bar?

UJr = Inverse[

®

®

(10)

