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The Lorenz system (6.1) is a strongly dissipative system and hence the Poincare map in 

this case can be considered as one dimensional [35]. It is further to be noted that we 

cannot find an analytical expression for the Poincare map in this case but we can 

numerically find the points where the trajectories cuts the Poincare section and draw our 

conclusions depending on those points. Below, we have mentioned our technique of 

finding those points with the help of the phase portraits. 

We have initially solved the Lorenz system numerically with the help of classical 

Runge-Kutta fourth order method with some chosen initial points with the parameter 

values σ = 10, β = 	8/3 and for different values of r which are labelled in the figures 

and have drawn the trajectories in the phase space. These figures are shown in figures 

6.5(a), 6.6(a), 6.7(a), 6.8(a) and 6.9(a). Next, we have projected those phase portraits in 

the plane �	 = 	0. The projected phase portraits are shown in figures 6.5(b), 6.6(b), 

6.7(b), 6.8(b) and 6.9(b). We then considered the Poincare section to be the line �	 = � 

and found out where the projected trajectories cut the above mentioned section when 

they move from ‘right-to-left’. These points are shown in figures 6.5(c), 6.6(c), 6.7(c), 

6.8(c) and 6.9(c). In (d), (e) and (f ) of figures 6.5, 6.6, 6.7, 6.8 and 6.9,we have further 

shown the time series plots of x, y, z coordinates respectively. Depending on the above 

mentioned figures we can now draw conclusions about the Lorenz system in the 

following way:   
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Figure 6.5:(� )Phase portraits of Lorenzsystem in the phase space when � =
��, � = �� ,  = !�� with initial point " = −�, $ = �, # = !�		(b). Projection of (a) on 

the xy-plane and xz-plane (c).Trace of (b) in Poincare section (d).time series plot of 

x-values (e). time series plot of y-values (f). Time series plot of z-values which 

shows period one behaviour. 

 

The above figures are drawn for � = 10, 
 = ��  and 
 = 230. In the Poincare section 

(Fig. 6.5(c)), we get a single point when we vary 
continuously from ∞ to 229.412… 

keeping the other two parameters � and b  fixed[139]. This implies that the stable period 

one behaviour of the limit cycle continues within this parameter range. This fact is also 

supported by the time series plots which are shown in figures 6.5(d), 6.5(e) and 6.5(f).  

But as soon as we cross the parameter value 
 = 229.412…, the situation changes 

drastically. Instead of getting a single point, this time we get two points in the Poincare 

section which shows that the periodicity of the limit cycle increases from one to two. 

The situation is shown in the following Fig. 6.6. Hence, we consider the first period 

doubling point to be 
 = 229.412…  . At this point, we want to mention that we have 

drawn our conclusion depending on the behaviour of one variable which we observed in 

case of our one dimensional Poincare map. Investigation in this direction have already 

established the fact that if Period doubling occurs for one variable, then it generally 

occurs for the others as well. Hence, following the behaviour of one variable allows us 

to determine the overall periodicity and bifurcations for the system [72]. To validate this 
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finding we have drawn the time series plots for x, y and z in all the cases and have seen 

that they are in conformity with the above mentioned fact.  
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Figure 6.6: (�) Phase portraits of Lorenz system in the phase space when � =
��, � = �� ,  = !!� with initial point " = �, $ = �, # = � (b). Projection of (a) on 

the xy-plane and xz-plane  (c). Trace of (b) in Poincare section (d).time series plot 

of x-values (e). time series plot of y-values (f). time series plot of z-values which 

shows period two behaviour. 
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We have followed the same technique as elaborated above to find out several period 

doubling bifurcation points as listed below : 

1st bifurcation point 
1 = 229.412…… where the period of the limit cycle changes 

from 1 to 2 

2
nd

 bifurcation point  
2 = 218.2… where the period of the limit cycle changes from 2 

to 4 

3
rd

 bifurcation point  
3 = 215.9665… where the period of the limit cycle changes 

from 4 to 8 

4
th

  bifurcation point  
4 = 215.49231… where the period of the limit cycle changes 

from 8 to 16 

5
th

  bifurcation point  
5 = 215.3908… where the period of the limit cycle changes 

from 16 to 32 

6
th

  bifurcation point  
6 = 215.369057… where the period of the limit cycle changes 

from 32 to 64 

7
th

  bifurcation point  
7 = 215.36440296…  where the period of the limit cycle 

changes from 64 to 128   and so on. 

We further want to mention that following the technique we have explained above, it is 

possible to find more and more bifurcation points but it takes long duration of computer 

time to detect such a bifurcation point. Moreover, from the above bifurcation points it is 

seen that the difference between the successive bifurcation points goes on decreasing.   
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Figure 6.7: (�) Phase portraits of Lorenz system in the phase space when � =
��, � = �� ,  = !�� with initial point " = −�, $ = �, # = !� (b). Projection of (a) on 

the xy-plane  (c). Trace of (b) in Poincare section (d).time series plot of x-values (e). 

time series plot of y-values (f). time series plot of z-values which shows period four 

behaviour. 
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Figure 6.8: (�) Phase portraits of Lorenz system in the phase space when � =
��, � = �� , � = !��. � with initial point � = −�, � = �, � = !� (b).Projection of (a) 

on the xy-plane and xz-plane (c).Trace of (b) in Poincare section (d).time series plot 

of x-values (e). time series plot of y-values (f). time series plot of z-values which shows 

period eight behaviour. 
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Figure 6.9: (�) Phase portraits of Lorenz system in the phase space when � =��, � = �/�, � = !�! with initial point � = −�, � = �, � = !� (b).Projection of (a) 

on the xy-plane and xz-plane (c).Trace of (b) in Poincare section (d).time series plot 

of x-values (e). time series plot of y-values (f). time series plot of z-values which shows 

the chaotic behaviour. 
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