
Journal of Computational and Applied Mathematics 137 (2001) 293–315
www.elsevier.com/locate/cam

An algorithm for $nding all solutions of a nonlinear system
Michael W. Smileya ; ∗, Changbum Chunb

aDepartment of Mathematics, Iowa State University, 400 Carver Hall, Ames, IA 50011-2064, USA
bDepartment of Mathematics, Seoul National University, Seoul, South Korea

Received 29 November 1999; received in revised form 12 November 2000

Abstract

Let f :X → Rk be a Lipschitz continuous function on a compact subset X ⊂Rd. Subdivision algorithms are described
that can be used to $nd all solutions of the equation f(x)=0 that lie in X . Convergence is shown and numerical examples
are presented. Modi$cations of the basic algorithm which speed convergence are given for the case of nondegenerate zeros
of a vector $eld. c© 2001 Elsevier Science B.V. All rights reserved.

MSC: 65H10; 68Q25

Keywords: Subdivision algorithm; Newton’s method

1. Introduction

One of the oldest and most basic problems in mathematics is that of solving an equation f(x)=0.
This problem has motivated many theoretical developments including the fact that solution formulas
do not in general exist (as in the case where f(x) is a $fth degree polynomial). Thus, the develop-
ment of algorithms for $nding solutions has historically been an important enterprise. Our goal here
is to contribute to this enterprise by describing a numerical method for $nding all solutions of an
equation f(x) = 0 for a relatively broad class of nonlinear functions f. By all solutions we mean,
all solutions lying in a given compact set X . Essentially, the method starts with the compact set X
and uses a recursive subdivision process to eliminate all of X but the zeros contained in X . In this
sense, it is a variant of Weyl’s algorithm [20] for $nding the zeros of a polynomial (see [11] for a
description of Weyl’s algorithm).

Several diAerent methods have been proposed for solving nonlinear systems. A class of methods
that is suitable for $nding curves of solutions, for example, in the case of bifurcation problems, is

∗ Corresponding author.
E-mail address: mwsmiley@iastate.edu (M.W. Smiley).

0377-0427/01/$ - see front matter c© 2001 Elsevier Science B.V. All rights reserved.
PII: S 0377-0427(00)00711-1



294 M.W. Smiley, C. Chun / Journal of Computational and Applied Mathematics 137 (2001) 293–315

that of continuation methods (cf. [1,12]). As the name implies these methods piece together local
problems, thus using local methods to solve a problem of a more global character. Of course, a
known solution is needed to start the process. Homotopy algorithms (cf. [1,10,14,19]) are similar to
continuation methods in that the idea is to start from a known solution and progress along a path
to another solution. However, in the case of homotopy methods the path is the homotopy path that
connects the given system to an arti$cial system that is readily solvable. Homotopy methods have
proven to be eAective in many cases, and in the case of polynomial systems have been incorporated
into an algorithm for $nding all the solutions of the system (cf. [10]).

Numerical methods based on topological degree theory have also been proposed (cf. [6,8,15,17,18]).
In these methods it is the computation of the degree of a function on a given domain that is the
major task. As with degree theory itself, a nonzero degree is only a suHcient condition for the
existence of a zero in the given region. Thus, some solutions can remain undetected. For example,
a pair of solutions in a given region can produce a degree of zero. Closely related to the topo-
logical degree methods are the search methods of Hsu [6,7] which subdivide the domain into cells
and then apply simplicial index theory to determine approximate locations of the zeros of a func-
tion. Once approximate locations are determined, Newton-like methods can be used to re$ne the
approximation.

Weyl’s algorithm for solving a single polynomial equation (cf. [11,20]) seems to stand alone
in its ability to reliably locate all solutions of the given equation. The algorithm uses a search
and deletion algorithm starting with an initial square containing all the zeros of the polynomial. The
square is partitioned into four congruent subsquares and a “proximity test”, gauging the closeness of
a midpoint to the set of zeros, is performed on each square. If the test guarantees that a subsquare
cannot contain any of the zeros it is discarded. This process is then applied recursively to the
subsquares not discarded. After the search region has been suHciently re$ned, rapidly converging
iterative techniques can be used to accelerate convergence.

Weyl’s algorithm is an example of a subdivision algorithm. Subdivision algorithms have appeared
in other contexts. For example, Gregory and his co-workers [3,4] have developed subdivision al-
gorithms for the generation of curves and surfaces in geometric design problems, and Dellnitz and
Hohmann [2] have used a subdivision algorithm to determine the attractor of a dynamical sys-
tem. Some of the strengths of subdivision algorithms are their simplicity, reliability and robustness.
For example, in the algorithms presented here for $nding zeros, little is required of the function
f. In principle, the zero set can be arbitrary, although there could be complexity issues in prac-
tice. A weakness of subdivision algorithms, in addition to complexity issues, is that it behaves
like the bisection method. However, it is possible to accelerate the convergence. For example, to
locate non-degenerate zeros of a C1 vector $eld, Newton’s method can be used as part of the
process.

Although our primary interest is the problem of $nding the zeros of a vector $eld, the algo-
rithm is initially described for a real-valued function de$ned on a rectangle in Rd. This is done in
Section 2. When the problem is to $nd the zeros of a vector $eld, there are techniques that can be
used to accelerate the convergence of the algorithm. These are described in Section 4 after a discus-
sion in Section 3 on strategies for handling rectangles containing known zeros. Section 5 presents
several example problems and results obtained using the composite subdivision algorithm described
in Section 4. Section 6 gives proofs of convergence for the subdivision algorithms that appear in
the paper.



M.W. Smiley, C. Chun / Journal of Computational and Applied Mathematics 137 (2001) 293–315 295

2. Basic versions of the algorithm

In this section, we present some basic versions of a subdivision algorithm for $nding all the zeros
of a real-valued function F(x), that lie in a compact set in Rd. Since any compact set in Rd can be
enclosed in a rectangle we assume for simplicity that the given compact set is a closed rectangle
R⊂Rd, with sides parallel to coordinate planes. Thus, we present these algorithms in the context
of $nding the set Z = {x ∈ R: F(x) = 0}.

Throughout it is assumed that F is Lipschitz continuous on R. As such we may further assume
F :R → [0;∞), by replacing F by |F | if necessary. An important example is F(x) = ‖f(x)‖, where
f(x) is a C1 vector $eld on Rd and ‖ · ‖ is any norm on Rd. Two natural choices in our work are
the l∞ norm, ‖x‖∞ = max{|xi|: 16i6d}, and the l2 (or Euclidean) norm ‖x‖2 = (

∑ |xi|2)1=2. To
measure distances within R we will always use the l∞ norm.

By a subdivision algorithm for determining Z we mean a process that generates a sequence of
subsets {Xi}∞i=0 of R that approximate Z with successively increasing accuracy. By construction this
will be a nested sequence, Xi+1 ⊂Xi for all i, that converges to Z in the sense that Z =

⋂{Xi: i¿0}.
In each case, the process consists of subdividing the current subset Xi into smaller subsets which
are then either retained or discarded according to a selection criterion. The ones that are retained
determined the next subset Xi+1. In this section, four diAerent selection criteria are suggested. Four
closely related but diAerent algorithms result.

A sequence of partitions of R is needed for the subdivision process. A $rst partition of R
into congruent subrectangles can be obtained by slicing R into two equal parts in each coordinate
direction. For example, if R is a rectangle in the plane, this results in four congruent subrectangles.
For a rectangle in Rd there will be 2d subrectangles. In this context, it is natural to call R the parent
rectangle and the congruent subrectangles the children of R.

A sequence of partitions of R is de$ned inductively as follows. Let P0 = {R} be the triv-
ial partition. Assuming the partition Pi−1 = {Ri−1; j′ : 16j′6ni−1} has been de$ned, the partition
Pi = {Rij: 16j6ni} is de$ned as the collection of all subrectangles Rij obtained by applying the
process described above to each parent rectangle Ri−1; j′ ∈ Pi−1. Since this is obviously a tree-like
structure, the original rectangle will be called the root rectangle. A simple induction argument shows
that the number of rectangles in Pi is ni = 2di. In fact, an indexing scheme that can be used to
conveniently keep track of all the subrectangles generated in this way can be derived and is given
in the appendix.

The $rst subdivision algorithm we consider is based on a selection criterion that uses minimum
values. For each integer i¿1 de$ne the subset of indices

Ji =
{
j ∈ {1; 2; : : : ; ni}: min

x∈Rij

F(x)62−i
}
: (2.1)

If j ∈ Ji then Rij will be retained; otherwise it will be discarded. Thus, we de$ne Xi =
⋃{Rij: j ∈

Ji}⊂R. The basic idea is to discard any subrectangle Rij which cannot contain a zero of F . This
is contained in the de$nition of Ji: if j 
∈ Ji then F(x)¿2−i ¿ 0 on Rij. Obviously, Z ⊂Xi since no
rectangle containing a zero can be discarded.

The sequence of subsets obtained by using this process is a nested sequence that converges to Z .
The nested property is easy to verify. Suppose j ∈ Ji. By the geometric subdivision process there is

Gonzalo Garcia
Resaltado



296 M.W. Smiley, C. Chun / Journal of Computational and Applied Mathematics 137 (2001) 293–315

another index j′ such that Rij ⊂Ri−1; j′ and

min
x∈Ri−1; j′

F(x)6min
x∈Rij

F(x)62−i ¡ 2−(i−1):

Thus, j′ ∈ Ji−1 and Rij ⊂Ri−1; j′ ⊂Xi−1. Hence, the de$nition above is equivalent to the inductive
de$nition

Ji =
{
j ∈ {1; 2; : : : ; ni}: Rij ⊂Xi−1 and min

x∈Rij

F(x)62−i
}
;

where X0 = R by convention. The convergence, Z =
⋂{Xi: i¿0}, is shown in Section 6.

The naturally recursive nature of the geometric subdivision process is inherited by this zero $nding
algorithm. Suppose that R is a rectangle in the plane. Then to determine X1, we $rst subdivide R
into four subrectangles R11; R12; R13; R14. The selection criterion must be applied to each of these
subrectangles. If the conclusion after testing R11 is that it is to be retained then it becomes in eAect
a new root rectangle. None of the remaining three rectangles have any eAect on the retention or
rejection of any of the children of R11. Therefore, applying the subdivision algorithm to R is the
sum of the results of applying the subdivision algorithm to each of the children of R.

The subdivision algorithm based on the selection criterion (2.1) is impractical since the minimum
of F over each relevant subset Rij must be found. However, the Lipschitz property of F can be used
to modify the selection criterion into a more realistic form. Let L denote the Lipschitz constant of F ,
xij denote the midpoint of the subrectangle Rij, and �i denote the radius of Rij which is independent
of j by congruency. (Since the l∞ norm is being used �i is half the maximum side length.) Set
X lip

0 = R, and inductively de$ne for each integer i¿1 the set of indices

J lip
i = {j ∈ {1; 2; : : : ; ni}: Rij ⊂X lip

i−1 and F(xij)62−i + �iL} (2.2)

and the subset X lip
i =

⋃{Rij: j ∈ J lip
i }. As in the $rst case, it can again be shown that the sequence

{X lip
i }∞i=0 is nested with X lip

∞ = {x ∈ R: F(x) = 0}, where X lip
∞ is the intersection over all the X lip

i ’s.

Example 2.1. To convey a sense of how the algorithm works, we consider the (Euclidean) distance
function F(x) = dist(x;S), where x ∈ R2 and S = C ∪D is the union of a curve and a disk in the
plane, with C and D chosen to be

C = {(sin t; sin 2t): 06t62�}; D = {(x1; x2): |x1 − 0:5|2 + x2
260:1}:

As with any distance function F(x) is Lipschitz continuous with L=1. Clearly {x ∈ R2: F(x)=0}=S.
Choosing R=[−2; 2]×[−2; 2] and applying the algorithm determined by (2.2) produces a sequence
of subsets that converges to S. Fig. 1 contains four plots showing the subsets X lip

i obtained when
i = 5; 6; 7; 8. These sets were computed by using a recursive procedure that accepted a rectangle and
a recursion depth as parameters. The procedure applied the selection criterion (2.2) to each of the
four subrectangles obtained through subdivision. The retained subrectangles were passed recursively
to the procedure with the recursion depth parameter increased by one, until the maximum recursion
level i was reached. On the maximum level, the retained subrectangles were saved for printing and
the procedure returned to the previous call terminating the recursion.

Although the subdivision algorithm based on the selection rule (2.2) is more practical than the
one based on (2.1), it is slower to converge in the sense that Xi ⊂X lip

i for each i. There are other



M.W. Smiley, C. Chun / Journal of Computational and Applied Mathematics 137 (2001) 293–315 297

Fig. 1. The sets X lip
5 , X lip

6 , X lip
7 , X lip

8 are the unions of the shaded rectangles in the respective plots.

variants of the selection rule that regain some of the speed of convergence. The simplest one uses
the local Lipschitz constants

Lij = sup
x;y∈Rij ; x �=y

|F(x) − F(y)|
‖x − y‖∞ : (2.3)

With xij and �i de$ned as before, set X loclip
0 = R, and inductively de$ne for each integer i¿1 the

set of indices

J loclip
i = {j ∈ {1; 2; : : : ; ni}: Rij ⊂X loclip

i−1 and F(xij)62−i + �iLij} (2.4)

and the subset X loclip
i =

⋃{Rij: j ∈ J loclip
i }. An easy induction argument shows that Ji ⊂ J loclip

i ⊂ J lip
i

and Xi ⊂X loclip
i ⊂X lip

i , so that the convergence of this variant of the algorithm is intermediate to the
$rst two versions. In fact, the diAerence in convergence between the algorithm based on (2.2) and
the algorithm based on (2.4) can be rather surprising. This is illustrated in Example 2.2.

However, to put this in a proper perspective the amount of work needed for each algorithm
should also be considered. From a practical point of view, the local Lipschitz constants Lij will
need to be determined as the algorithm proceeds, and in all likelyhood this can only be done
approximately. While (2.2) requires only a determination of the Lipschitz constant L, (2.4) requires
Lij to be determined for each subrectangle that is to be tested. Thus, an algorithm based on (2.4)
will certainly require more work than one based on (2.2).

Consider the important special case of F(x) = ‖f(x)‖∞, where f :R → Rd is a C1 vector $eld
on a neighborhood of R. Let x; y ∈ R. Integrating the derivative of f(y + s(x − y)) from



298 M.W. Smiley, C. Chun / Journal of Computational and Applied Mathematics 137 (2001) 293–315

Fig. 2. The sets X lip
6 and X loclip

6 are the unions of the shaded rectangles in the respective plots. The computation of X lip
6

required 3728 work units and the computation of X loclip
6 required 13 568 work units.

s = 0 to s = 1 gives

f(x) − f(y) =
∫ 1

0
Df(y + s(x − y))(x − y) ds; (2.5)

where Df(x) denotes the derivative matrix of the vector $eld f(x). From the de$nition of the induced
matrix norm (‖A‖∞ = max{‖Ax‖∞: ‖x‖∞ = 1}), and the properties of the vector norm and integral,
it follows that |F(x) − F(y)|6L‖x − y‖∞, for all x; y ∈ R, where L = max{‖Df(x)‖∞: x ∈ R}.
Similarly, Lij =max{‖Df(x)‖∞: x ∈ Rij} can be used in (2.4). These values can be estimated (from
below) by sampling ‖Df(x)‖∞ at points in Rij.

In this context, to measure the amount of work done while using one of these subdivision algo-
rithms we will use function evaluations. One evaluation of f(x) will be called one work unit. By
analogy, the evaluation of Df(x) requires d work units. In the next example, we compare the algo-
rithms based on (2.2) and (2.4), both in terms of rate of convergence and in terms of the number
of work units used.

Example 2.2. Consider the vector $eld f(x; y) = [f1; f2] de$ned on the plane R2 by

f1(x; y) = x2 + 4y2 − 4; f2(x; y) = y(x − 1:995)(y − x2)(y − x + 1):

This is a simple polynomial vector $eld having eight zeros, all of which lie on the ellipse f1 = 0.
Although the zeros are all isolated, there are three zeros clustered together in a small neighborhood of
the point (2; 0). To three decimal places they are (2; 0) and (1:995;±0:071). To compare algorithms
(2.2) and (2.4) they were both started with R= [− 3; 3]× [− 3; 3], F(x) = ‖f(x)‖∞ and allowed to
process through six levels of recursion, as described in Example 2.1. The resulting sets X lip

6 and X loclip
6

are shown in Fig. 2. As suggested above, sampling was used to estimate the Lipschitz constants. On
larger rectangles 16 evaluations of Df(x) were used for these estimates, and on smaller rectangles
only one evaluation of Df(x) was used. Gradations between these two extremes were also used. The



M.W. Smiley, C. Chun / Journal of Computational and Applied Mathematics 137 (2001) 293–315 299

total work done using (2.2) was 3728 work units and the total work done using (2.4) was 13,568
work units.

There are many other choices of selection criteria. As our last example, we consider an alternative
to (2.4) that is suggested by changing the norm used in de$ning F . Consider F(x) =‖f(x)‖2, where
f is C1 on a neighborhood of R = (a1; b1) × · · · × (ad; bd). As before let xij denote the mid-point
of Rij. Since matrix multiplication can be written as Ax = x1A1 + · · · + xdAd, where Aj is the jth
column of A and xj is the jth component of x, it follows from (2.5) that |F(x) − F(xij)|6�ij, for
all x ∈ Rij, where

�ij =
1
2

d∑
k=1

(
max
x∈Rij

∥∥∥∥ @f@xk (x)
∥∥∥∥

2

)
|bk − ak |: (2.6)

The numbers �ij de$ned in this way are directionally sensitive to the rates of change in F . These
numbers determine an algorithm based on the following selection criterion. Let X �

0 =R and, for each
i¿1, inductively de$ne

J �
i = {j ∈ {1; 2; : : : ; ni}: Rij ⊂X �

i−1 and F(xij)62−i + �ij} (2.7)

and the corresponding subsets X �
i =

⋃{Rij: j ∈ J �
i }. As in the other cases this is a nested sequence

that converges to Z (see Section 6).

3. Known zeros — isolation and exclusion

The subdivision algorithms described in the previous section can be compared to the bisection
algorithm. As such when the location of a zero has been suHciently resolved, it becomes desirable to
accelerate the convergence if possible. For example, if F(x)=‖f(x)‖, where f(x) is a C1 vector $eld
on a neighborhood of the rectangle R, one could attempt to solve f(x) = 0 using Newton’s method
given this situation. However, even if this is successful, to accomplish our goal of determining
Z = {x ∈ R: F(x) = 0} there is still the problem of $nding all the remaining zeros in R. In this
section an approach to this problem, that does not eAect the recursive geometry of the subdivision
process, is presented. The basic idea is to use a type of penalty function that we choose to call an
exclusion function. We develop the necessary ingredients for an algorithmic process in two parts.
In Section 4, these ingredients will be incorporated into a recursive process that can be used to $nd
all the zeros of f(x).

As in the previous section, R⊂Rd will denote a rectangle with sides parallel to the coordi-
nate planes, and P = {Pi}i¿0, with Pi = {Rij}nij=1, the sequence of partitions of R into congruent
subrectangles. The midpoint and radius of Rij will be denoted by xij and �i, respectively.

3.1. Subdivision with exclusion

Let F :R → [0;∞) be Lipschitz continuous, with constant L, and suppose that x0 ∈ R is a
known isolated zero of F(x). In this context isolated means there is a relative deleted neighborhood
N (x0;  ) = {x ∈ R: 0¡ ‖x − x0‖∞ ¡ } of x0 in R such that F(x)¿ 0 for all x ∈ N (x0;  ). Such a
neighborhood will be called an isolating neighborhood. The l∞ norm is used due to the rectangular

Gonzalo Garcia
Resaltado



300 M.W. Smiley, C. Chun / Journal of Computational and Applied Mathematics 137 (2001) 293–315

geometry of R and its children. Since x0 is known it should be excluded from the set of zeros in
R that remain to be found. A type of penalty function can be used for this purpose.

Let  ¿ 0 be a $xed diameter for an isolating neighborhood N (x0;  ) of x0. Suppose that ! : [0;∞)
→ [0;∞) is a continuous function satisfying: (i) !(t) is non-increasing, (ii) !(t)¿ 0 for 06t ¡ 
and (iii) !(t) = 0 for t ¿ . An “exclusion function” e(x) is then de$ned by e(x) = !(‖x − x0‖∞).
This terminology is justi$ed by the following fact veri$ed in Section 6. If we apply the algorithm
based on (2.1) to Fe(x) = F(x) + e(x) then X∞ = {x ∈ R: Fe(x) = 0} = {x ∈ R− {x0}: F(x) = 0}.

A subdivsion with exclusion selection criterion that is analogous to the one based on (2.2) can
now be developed. In doing so, a device is used that eliminates the need to actually evaluate e(x)
when the algorithm is implemented. Instead, a simple test for the inclusion Rij ⊂N (x0;  ) can be
used. Let # ∈ (0;  ), $¿ 0, and de$ne !(t) to be the continuous function that is linear on the
subintervals [0;  − #], [ − #;  ] and satis$es !(0) = !( − #) = $, !(t) = 0 for t ¿ . Also de$ne
%(t) to be the characteristic function for the interval [0;  − #]: %(t) = 1, if t ∈ [0;  − #], and %(t) = 0
otherwise. To enforce the exclusion feature of the algorithm we use the function

&(t; s) = !(t) − $%(t + s); t; s¿0; (3.1)

to de$ne the numbers &ij = &(‖xij − x0‖; �i). Let X elip
0 = R and for each i¿1 inductively de$ne

J elip
i = {16j6ni: Rij ⊂X elip

i−1 and F(xij) + e(xij)62−i + �iL + &ij}; (3.2)

and the corresponding subset X elip
i =

⋃{Rij: j ∈ J elip
i }. Again it can be shown (see Section 6) that

X elip
∞ = {x ∈ R− {x0}: F(x) = 0}.
The inequality in the de$nition of J elip

i can be equivalently written as

F(xij)62−i + �iL− $%(‖xij − x0‖ + �i):

When ‖xij − x0‖ + �i ¿ − # this inequality reduces to the one appearing in (2.2). When ‖xij −
x0‖+ �i6 − #, so that Rij is contained in the closure of a  − # neighborhood of x0, the inequality
becomes

F(xij)62−i + �iL− $:

This will never be valid if $ is chosen suHciently large. Since $ is arbitrary this can be assumed
to be the case. Hence, either ‖xij − x0‖ + �i6 − # and Rij should be discarded, or the reverse
inequality is true and the inequality to be tested reduces to the one in (2.2). Thus, evaluations of
e(x) and &(t; s) are never actually needed to determine J elip

i , and F(xij) only needs to be computed
when ‖xij − x0‖+ �i ¿ − #. Obviously, a local Lipschitz version of subdivision with exclusion can
also be given.

3.2. Estimating isolating neighborhoods

To implement the subdivision with exclusion algorithm based on the selection criterion (3.2) an
isolating neighborhood must be known. That is, a radius  which determines an isolating neighbor-
hood must be computed. We consider this problem for F(x) = ‖f(x)‖2, where f(x) is C2 vector
$eld de$ned on a neighborhood of R and x0 ∈ R is a zero of f. If the derivative matrix Df(x0) is
nonsingular then x0 is an isolated zero according to the inverse function theorem. For convenience set
A=Df(x0), and de$ne the remainder term r(x; x0)=f(x)−f(x0)−Df(x0)(x−x0)=f(x)−A(x−x0).



M.W. Smiley, C. Chun / Journal of Computational and Applied Mathematics 137 (2001) 293–315 301

Since A is invertible it follows that ATA is a symmetric positive de$nite matrix. Hence, it has a
smallest positive eigenvalue (1 ¿ 0 such that ‖Ax‖2

2¿(1‖x‖2
2, for every x ∈ Rd.

Consider the family of relative-deleted neighborhoods, N (x0; s) ={x ∈ R: 0¡ ‖x− x0‖∞ ¡s}, for
s¿ 0. Since x0 is isolated, N (x0; s) will be an isolating neighborhood for s suHciently small. De$ne
the function

b(s) = sup
x∈N (x0 ; s)

‖r(x; x0)‖2

‖x − x0‖2∞
; s¿ 0: (3.3)

Since f ∈ C2 the function b(s) is a $nitely valued, nondecreasing function whose range is contained
in [0; B], for some B¿ 0 which depends only on R. If x ∈ N (x0; s) it follows from the triangle
inequality and the de$nitions of (1; b(s) that

‖f(x)‖2 ¿ ‖A(x − x0)‖2 − ‖r(x; x0)‖2

¿
√
(1‖x − x0‖2 − b(s)‖x − x0‖2

∞¿
√
(1‖x − x0‖∞ − b(s)‖x − x0‖2

∞:

If ‖x − x0‖∞ ¡ (s), where  (s) =
√
(1=b(s) then the lower bound on the right is positive. Hence,

F(x) = ‖f(x)‖2 ¿ 0, for all x ∈ N (x0; s) ∩ N (x0;  (s)). Clearly, N (x0; s) ∩ N (x0;  (s)) = N (x0;
min{s;  (s)}). Since b(s) is nondecreasing,  (s) is nonincreasing. It follows that there is a unique
s0 ¿ 0 such that s0 =  (s0) = max{min{s;  (s)}: s¿ 0}. Thus, with s0 de$ned in this way, F(x) =
‖f(x)‖2 ¿ 0, for x ∈ N (x0; s0).

These observations yield an algorithm for computing a relatively large isolating neighborhood of
x0 in R. Suppose s is chosen to be the radius � of the rectangle R. Assuming (1 has been computed,
compute b(�) and then  (�) to determine a radius min{�;  (�)} of an isolating neighborhood. An
examination of the graph of min{s;  (s)} on s¿ 0 shows that either �6 (�), so R is an isolating
neighborhood of x0, or  (�)¡�, in which case [ (�); �) is an interval estimate of the optimal radius
s0. In the later case, a new value of s can be chosen, based on the interval estimate, and a larger
radius computed.

4. Accelerating convergence

A main goal of this work is to describe an eAective numerical algorithm that can be used to $nd
all the isolated zeros of a vector $eld f(x) lying in a given rectangle R. A subdivision algorithm,
such as one of those described in Section 2, provides the main ingredient. As with any iterative
process the basic issues of eHciency, rates of convergence and stopping criteria must be addressed.

Although the various subdivision algorithms discussed in Section 2 have convergence properties
analogous to the bisection method, some converge faster than others, in the sense that they produce
smaller sets approximating the set of zeros at the same depth of recursion. This is clearly illustrated
in Fig. 2. However, as Example 2 also shows increasing the rate of convergence may decrease
eHciency. Clearly, the diAerence in the rate of convergence is due to having better information on
the behavior of the function on the current rectangle being tested. In fact, the selection methods
given in (2.2) and (2.4) are at two extremes, the former using only the global information L, which
incurs no cost, and the later using the most local information available, which incurs a considerable
cost. To balance the competition between the rate of convergence and eHciency we have thought
to use an intermediate strategy of updating the Lipschitz constants intermittently.



302 M.W. Smiley, C. Chun / Journal of Computational and Applied Mathematics 137 (2001) 293–315

Consider for example a rectangle in the plane. After proceeding to a recursion depth of 2 the
original rectangle has been subdivided into 16 subrectangles. At this point, a local Lipschitz constant
can be computed for each of the subrectangles that has been retained and then used subsequently for
all of the subrectangle’s respective children and grandchildren. The choice of 2 here is an arbitrary
one and is not being suggested as optimal.

As with the bisection method, once a reasonably good approximation of a zero has been determined
a more rapidly converging method can be used to accelerate convergence. In the context of a
subdivision algorithm, a good approximation would take the form of a small cluster of subrectangles
that are isolated from the rest of the subrectangles that have been retained at a certain depth of
recursion. Intuitively, a subdivision algorithm should yield a collection of small clusters of retained
subrectangles, each clustering around a zero of F(x). This behavior is evident in the more resolved
graph of Fig. 2. Some issues arise in considering these clusters of rectangles. Assuming that a zero
can be found, for example by Newton’s method, how does the cluster get subsequently processed?
Since there may be other zeros contained in the cluster of subrectangles the cluster cannot be
automatically discarded. From a data-management perspective, how should the subrectangles in the
cluster be stored? The depth of recursion needed to produce isolated clusters may have also produced
a large number a very small rectangles. One strategy that can be used to overcome both of these
diHculties is the use of covering rectangles.

Suppose that C is the union of a cluster of subrectangles. We say R is a covering rectangle for
C if R is a rectangle, with sides parallel to the coordinate planes, that contains C. Algorithmically,
we are interested in the covering rectangle that is minimal with respect to this property. Replacing
a cluster C by the minimal covering rectangle R completely resolves the data-management problem.
Furthermore since C ⊂R any zeros that remain in C can be found by applying a subdivision with
exclusion algorithm to R. This yields a second recursive process which starts with a recursive
subdivision process being applied to a root rectangle R. Clusters of subrectangles are generated and
then incorporated into covering rectangles. Each covering rectangle, having the same characteristics
as the root rectangle, then becomes a root rectangle for a new process.

Covering rectangles can be constructed as the algorithm proceeds without the need to save any of
the individual retained subrectangles. With the maximum depth of subdivision recursion $xed, the
subdivision algorithm generates retained subrectangles one at a time when it reaches the maximum
depth. If a retained subrectangle does not intersect any of the existing covering rectangles then it
becomes its own covering rectangle, otherwise the subrectangle is incorporated into any covering
rectangle that it intersects, perhaps causing covering rectangles to be enlarged or merged as part of
the process.

The use of covering rectangles and subdivision with exclusion can be combined into a composite
algorithm which is recursive but can be expected to terminate after a $nite number of steps, with the
set of zeros Z completely determined. We describe such an algorithm as a procedure (or subroutine)
that takes three input parameters R;S;D, where (i) R is a rectangle with sides parallel to the
coordinate planes, (ii) S is either the empty set, ∅, or a two element set, {x0;  }, where x0 is an
isolated zero of f(x) in R and N (x0;  ) is an isolating neighborhood of x0, and (iii) D is a positive
integer indicating the maximum depth of recursion allowed for the subdivision process on R.

To allow for a generic description we assume that a selection criterion has been chosen (including
a strategy for updating any Lipschitz-like constants) and use {Ji}Di=0 to denote the sequence of
subsets of indices that are obtained by applying the selection criterion to R and then recursively



M.W. Smiley, C. Chun / Journal of Computational and Applied Mathematics 137 (2001) 293–315 303

to its oAspring to a recursion depth of D. If S 
= ∅ then it is assumed that a subdivsion with
exclusion algorithm is used and the corresponding sequence of subsets of indices will be denoted by
{J e

i }Di=0. Let the corresponding subsets of retained subrectangles be denoted by Xi =
⋃{Rij: j ∈ Ji},

or X e
i =

⋃{Rij: j ∈ J e
i }, respectively, for 16i6D. Using these notations we de$ne a recursive

composite subdivision algorithm as follows.

Input: R;S; D.
Step 1: If S = ∅, then recursively apply the subdivision algorithm to depth D to determine XD,

otherwise use the data in S to de$ne an exclusion function and use subdivsion with exclusion to
determine X e

D. In either case call the resulting set X ∗
D .

Step 2: If X ∗
D = ∅, the procedure terminates; there are no zeros in R (resp. R−{x0}). Otherwise,

X ∗
D has a $nite number of connected components C1; : : : ; CM . For m=1; : : : ; M , let Rm be the smallest

rectangle, with sides parallel to coordinate planes, that encloses Cm; that is let Rm be the minimal
covering rectangle for Cm. If R1; : : : ;RM is a disjoint set of covering rectangles then this step is
complete. Otherwise, consolidate intersecting covering rectangles into larger covering rectangles until
all covering rectangles are disjoint. In either case, let R1; : : : ;RM denote the disjoint set of covering
rectangles obtained at the end of this step.

Step 3: For each covering rectangle Rm, 16m6M , obtained at the end of Step 2, attempt to
$nd one zero in Rm, for example by using Newton’s method. If a zero xm can be found, use the
observations of Section 3.2 to determine a radius  m ¿ 0 for an isolating neighborhood N (xm;  m) of
xm and set Sm = {xm;  m}. Otherwise set Sm = ∅.

Step 4: For m = 1; : : : ; M , perform precisely one of the following three tasks: (i) If Sm = ∅ then
recursively pass the parameters Rm; ∅; D to this procedure. (ii) If Sm 
= ∅ and Rm is contained in
N (xm;  m) then add xm to the list of zeros. (iii) If Sm 
= ∅ and Rm is not contained in N (xm;  m)
then add xm to the list of zeros and recursively pass the parameters Rm;Sm; D to this procedure.
Output: Z = {x ∈ R: f(x) = 0}.

In the above algorithm the recursion will continue as long as one of the covering rectangles
obtained in Step 2 may contain an undetermined zero. This is the condition being tested in Step 4.
The algorithm will terminate either at the beginning of Step 2, if all subrectangles have been discarded
during the subdivision process of Step 1, or at the end of Step 4, if each covering rectangle Rm

assembled in Step 2 satis$es {xm}⊂Rm ⊂N (xm;  m), where Sm = {xm;  m} is the corresponding set
determined in Step 3. From a practical point of view, since the algorithm is recursive, an upper bound
on the number of generations of covering rectangles recursively spawned needs to be set. Thus, in a
practical implementation the output may also include covering rectangles that were spawned at the
maximum depth of recursion and thus remain unresolved subrectangles. There is another possibility
for algorithm failure. The subdivision process may yield clusters of subrectangles for which the
original rectangle is the minimal covering rectangle.

5. Zeros of vector &elds — some examples

The application of a composite subdivision algorithm to several example problems is discussed
in the section. The algorithms described in the previous sections were implemented as programs



304 M.W. Smiley, C. Chun / Journal of Computational and Applied Mathematics 137 (2001) 293–315

Fig. 3. The covering rectangles R1; : : : ;R6 obtained at the end of Step 2 during the $rst pass through the composite
algorithm, starting with R = [ − 3; 3] × [ − 3; 3]. The function is F(x; y) = ‖f(x; y)‖2, where f is the vector $eld in
Example 2.2. The set X8 is the union of the shaded rectangles contained in all of the covering rectangles.

written in the C programming language. The basic objects of the algorithm, rectangles, were de-
clared as structures with members describing attributes such as vertices, Lipschitz constants, and the
recursion level to which the rectangle belonged. The addressing scheme described in the appendix
was used in determining subrectangles of a given rectangle. Since C functions can be called re-
cursively, both the subdivision process and the composite algorithm were readily implemented as
C functions. Other functions were written to manage the covering rectangles, implement Newton’s
method, compute radii for isolating neighborhoods, and estimate Lipschitz constants. The selection
criterion used was essentially the one described in (2.7), but with a strategy for updating the �ij that
was intermediate to a purely local one (e.g., Eq. (2.4)) and a purely global one (e.g., Eq. (2.2)).
All of the computations were performed on an AlphaStation 255=300 workstation, running a Digital
Unix V4.0D operating system. The source code for the programs can be obtained by contacting the
$rst author (mwsmiley@iastate.edu) or downloaded from the web (http:==www.public.iastate.edu/ ˜
mwsmiley/zeros.html). For convenience, below we refer to our implementation of the recursive com-
posite subdivision algorithm described in the previous section as RCSA.

5.1. Examples

Example 5.1. As a $rst example, we consider the vector $eld f(x; y) = [f1; f2] de$ned in
Example 2.2, but with F(x; y) = ‖f(x; y)‖2, and describe the step by step workings of the RCSA
procedure for this problem. The procedure was started with the parameters R = [ − 3; 3] × [ − 3; 3],
S = ∅ and D = 8. At the end of Step 2, six covering rectangles R1; : : : ;R6 are obtained. These are
shown in Fig. 3, enclosing the set of subrectangles that make up X8. Fig. 4 contains blow-ups of
each of the six covering rectangles. In Step 3, a zero is found in each of the covering rectangles
by using Newton’s with the midpoint of the covering rectangle as the initial approximation. Radii



M.W. Smiley, C. Chun / Journal of Computational and Applied Mathematics 137 (2001) 293–315 305

Fig. 4. Blow-ups of the covering rectangles R1; : : : ;R6 appearing in Fig. 3. The shaded rectangles in each case make up
the connected components of X8.

for isolating neighborhoods are then computed and Step 3 $nishes with Sm ={xm;  m}, 16m66. In
Step 4, R1; : : : ;R5 are found to be contained in the computed isolating neighborhoods of their re-
spective zeros, while R6 is not. (This is as it should be since R6 contains the cluster of three zeros
near (2; 0) and hence there are two other zeros that remain to be determined.) Thus, in Step 4 six
zeros are added to the list of zeros and there is one recursive call to the procedure with R6;S6; D
passed as parameters.

Starting with the input R6;S6; D causes subdivision with exclusion to be used in Step 1 since S6

is nonempty. At the end of Step 2, four covering rectangles R61; : : : ;R64 ⊂R6 are found to cover the
clusters of saved subrectangles that result. Newton’s method produces a zero in two of the covering
rectangles and fails to converge in the other two. Thus, Step 3 concludes with S61 = {x61;  61},
S62 = {x62;  62}, S63 = ∅, S64 = ∅. In Step 4, R61 and R62 are found to be contained in the
computed isolating neighborhoods of their respective zeros. Hence, the two zeros x61; x62 are added
to the list of zeros and two recursive calls to the procedure are made. Both calls, one with the
parameters R63; ∅; D and one with the parameters R64; ∅; D yield XD = ∅ at the end of the Step 1.
Thus, after an initial call and two recursive calls to the procedure the recursion is terminated with
all eight zeros found. To complete its task our implementation of the composite algorithm used
approximately 7:3 × 103 works units, which is considerably less than the number used to compute
X loclip

6 as described in Example 2.2. Varying the choice of D caused variations in the number of
work units but this count was quite typical.

Example 5.2. A vector $eld f(x; y; z) = [f1; f2; f3] with known solutions is de$ned on R3 by

f1 = (x2 + y2 + z2 − r2
1)(x2 + y2 + z2 − r2

2);



306 M.W. Smiley, C. Chun / Journal of Computational and Applied Mathematics 137 (2001) 293–315

f2 = (a0x + b0y + c0z − d01)(a0x + b0y + c0z − d02);

f3 =
m∏
i=1

(aix + biy + ciz − di);

where (assuming c0 
= 0)

ai = b0vi − c0 sin /i; di = d01ci=c0;

bi = c0 cos /i − a0vi; vi = −(a0 cos /i + b0 sin /i)=c0;

ci = a0 sin /i − b0 cos /i; /i = i�=m:
With this choice of coeHcients the level surface f3 = 0 de$nes a collection of m planes that contain
a common line L that is perpendicular to the two parallel planes f2 = 0. The angle �=m is the
angle between each pair of adjacent planes. Thus, the intersection of the two level surfaces f2 = 0
and f3 = 0 is a set of 2m lines. It follows that there are 8m solutions of f(x; y; z) = 0 when the
parameters are chosen so that each line intersects both spheres f1 = 0 (i.e. when the common line
L intersects the planes f2 = 0 at points interior to the smaller sphere). This happens for example
when r1 = 1; r2 = 2, a0 = 0:5, b0 = 0:5, c0 = 1, d01 = 0:2, and d02 = −0:7. The RCSA algorithm was
applied in this case, with m = 3. The procedure was started with R = [ − 3; 3] × [ − 3; 3] × [ − 3; 3],
S=∅ and D=8. All 24 zeros were determined and are listed in Table 1. The number of work units
used was approximately 7:5×105. Thus, the code took about the same amount of time to execute as
it did to compile. The algorithm was also applied with larger values of m and with diAerent values
for the coeHcients. Not surprisingly, as m increased so did the amount of work. For example, with
m = 5 about 1:8 × 106 work units were needed, and with m = 7 about 13:5 × 106 work units were
needed. In both cases all solutions (40 and 56, respectively) were found.

Example 5.3. The method of alternative problems can be used (cf. [13]) to show that all solutions
of the boundary value problem

− (x2u′)′ + u3 − (u = f(x); 1¡x¡ 4; (5.1)

u(1) = u(4) = 0: (5.2)

can be characterized in terms of the zeros of a vector $eld B(!) de$ned on Rd, where d depends on
(. The zeros ! are in fact the $rst d Fourier coeHcients of the corresponding solution of (5.1), (5.2).
The vector $eld B(!) is called the bifurcation function and is de$ned in terms of integrals involving
solutions of an auxiliary boundary value problem. Having an eAective way to $nd all solutions of
the equation B(!)=0, and hence also of (5.1), (5.2), was our main purpose in attempting to develop
a robust zero $nding method. We have found the RCSA algorithm to be a very eAective tool in
attacking this problem. Computed solutions and bifurcation diagrams can be found in (cf. [13]).

Example 5.4. The polynomial system

0 = a11x4
1 + a12x3

1x2 + a13x3
1 + a14x1 + a15;

0 = a21x1x2
2 + a22x2

2 + a23



M.W. Smiley, C. Chun / Journal of Computational and Applied Mathematics 137 (2001) 293–315 307

Table 1
The 24 zeros of the function f(x) de$ned in Example 5.2, with r1 = 1; r2 = 2, a0 = 0:5, b0 = 0:5,
c0 = 1, d01 = 0:2, d02 = −0:7, and m = 3

i xi yi zi

1 −1:933009 −0:300000 0.416504
2 −1:701684 0.000000 1.050842
3 −1:258803 1.360696 −0:750946
4 −1:044691 −1:589843 0.617267
5 −0:996600 1.726162 −0:164780
6 −0:951026 −0:300000 −0:074486
7 −0:800000 0.000000 0.600000
8 −0:776373 −1:344718 1.260546
9 −0:717665 0.423418 −0:552876

10 −0:592072 −0:805884 −0:001021
11 −0:499927 0.865900 0.017013
12 −0:360640 −0:624646 0.692643
13 0.082249 −0:962075 −0:260086
14 0.085220 0.367221 −0:926221
15 0.453788 0.785984 −0:419886
16 0.464511 −0:804557 0.370022
17 0.511026 −0:300000 −0:805513
18 0.623386 1.151180 −1:544510
19 0.869521 −1:899353 −0:062016
20 0.869521 1.506056 −0:987788
21 0.960000 0.000000 −0:280000
22 0.961183 −1:664819 0.551817
23 1.493009 −0:300000 −1:296504
24 1.861684 0.000000 −0:730842

Table 2
CoeHcients for the polynomial systems of Example 5.4

i ai1 ai2 ai3 ai4 ai5

1 1:069e − 03 2:000e + 04 1:000e + 00 −1:800e − 10 −1:283e − 24
2 2:000e + 16 1:000e + 14 −1:000e + 00

i ci1 ci2 ci3 ci4 ci5
1 1:069e − 05 2:000e + 02 1:000e + 05 −1:800e + 05 −1:283e − 04
2 2:000e − 02 1:000e + 01 −1:000e + 01

with the coeHcients given in Table 2 arises in the study of chemical equilibria (cf. [9,10]). It is
known to have seven real solutions and a complex conjugate pair of solutions. These solutions are
very ill-conditioned and appear at extreme scales. Thus, scaling of the variables and equations is
usually required for solution techniques to be eAective (see [9] for scaling strategies). As an example,
changing variables x1 = t1 ×10−5, x2 = t2 ×10−7 and scaling the $rst equation by 1020 and the second



308 M.W. Smiley, C. Chun / Journal of Computational and Applied Mathematics 137 (2001) 293–315

Table 3
Computed solutions for Example 5.4

i ti1 ti2

1 −1:34298 −1:00134
2 −1:34030 1.00134
3 1.34030 0.99866
4 1.34298 −0:99866

by 10 results in the system

0 = c11t4
1 + c12t3

1 t2 + c13t3
1 + c14t1 + c15;

0 = c21t1t2
2 + c22t2

2 + c23

with the coeHcients given in Table 2. The RCSA procedure was applied to this scaled system.
Starting the procedure with R = [ − 5; 5] × [ − 5; 5], S = ∅ and D = 9, four of the seven real
solutions were found. The process used approximately 3 × 104 work units. The computed solutions,
after rounding to 6 digits, are given in Table 3 and are in close agreement with the corresponding
solutions given in [9]. In terms of the original variables, the other three real-valued solutions are
very roughly (x1; x2) = (−7 × 10−15;±1 × 10−7) and (x1; x2) = (−5 × 10−3;−5 × 10−5). Clearly,
these require a diAerent scaling. Of all the solutions, only the one with both x1 and x2 positive is
physically relevant.

Example 5.5. In [6], Hsu and Guttalu considered the problem of $nding all the period 2 points for
the mapping g :R4 → R4 de$ned by

g1(x) = x1 + C1[x3 − 3 sin x1 cos x2]; g3(x) = D1[x3 − 3 sin x1 cos x2];

g2(x) = x2 + C2[x4 − 3 cos x1 sin x2]; g4(x) = D2[x4 − 3 cos x1 sin x2]:

This is a problem that has its origins in mechanics (see [5] for a formulation of the problem).
The constants C1; C2; D1; D2 that appear are de$ned in terms of two parameters 41; 42 according to
D1 = exp(−241), D2 = exp(−242), C1 = (1 − D1)=241, C2 = (1 − D2)=242. As reported in [6], with
3 = 5, 41 = �=10 and 42 = �=5 there are 41 period 2 points in the rectangle R = [ − 1:02�; 1:02�] ×
[ − 1:02�; 1:02�] × [ − 0:5�; 0:5�] × [ − 0:5�; 0:5�]. Clearly, the problem of $nding period 2 points
of g(x) is equivalent to $nding zeros of f(x) = g(g(x)) − x. We applied the RCSA algorithm to
this problem, starting with the rectangle just described. The algorithm computed exactly 41 zeros of
f(x) that were in complete agreement with the period 2 points listed in [6]. The amount of work
units was roughly 4 × 109 and execution took almost 40 min.

Example 5.6. The kinematics of a general six-degree-of-freedom manipulator can be described by
a system of the form Hj(/1; /2; /4; /5) = 0, 16j64, where

Hj(/) = a1; j cos /1 cos /2 + a2; j cos /1 sin /2 + a3; j sin /1 cos /2 + a4; j sin /1 sin /2

+ a5; jcos /4 cos /5 + a6; j cos /4 sin /5 + a7; j sin /4 cos /5 + a8; j sin /4 sin /5



M.W. Smiley, C. Chun / Journal of Computational and Applied Mathematics 137 (2001) 293–315 309

Table 4
CoeHcient values for the functions Hj of Example 5.6

i ai;1 ai;2 ai;3 ai;4

1 −2:90965281e − 02 3:40782577e − 02 −6:02977989e − 01 4:78568871e − 01
2 1:23862738e − 01 −1:56062187e − 01 −1:31668277e − 01 1:12420352e − 01
3 2:15085388e − 02 −2:70999144e − 02 −7:58247387e − 01 6:47403003e − 01
4 1:67560227e − 01 −1:96248865e − 01 1:04706029e − 01 −8:31026124e − 02
5 0:00000000e + 00 2:20738619e − 01 −5:51846548e − 02 3:90625000e − 02
6 −7:00449588e − 02 0:00000000e + 00 1:23100969e − 01 1:75112397e − 02
7 −2:70632939e − 01 0:00000000e + 00 3:18608753e − 02 6:76582347e − 02
8 0:00000000e + 00 −8:52868532e − 01 2:13217133e − 01 −1:01101189e − 02
9 −6:15842911e − 01 7:21283769e − 01 −2:14660298e − 02 1:96624145e − 04

10 4:55239233e − 01 −5:73583561e − 01 −6:01805218e − 01 5:00438377e − 01
11 −1:30935803e − 01 −6:31988451e − 02 0:00000000e + 00 −5:00000000e − 01
12 −1:29409523e − 01 0:00000000e + 00 2:44181587e − 01 5:05897097e − 01
13 4:18258152e − 01 −1:45259532e − 01 3:63148829e − 02 −2:64395380e − 02
14 −5:41265877e − 01 0:00000000e + 00 −2:09664074e − 02 1:95686833e − 01
15 0:00000000e + 00 −4:75625621e − 01 −7:13438432e − 01 1:95312500e − 01
16 1:50925910e − 01 0:00000000e + 00 6:15504846e − 01 2:26388866e − 01
17 −2:38536450e − 02 1:91169833e − 02 5:47700901e − 01 −3:39187451e − 01

+ a9; j cos /1 + a10; j sin /1 + a11; j cos /2 + a12; j sin /2 + a13; j cos /4 + a14; j sin /4

+ a15; j cos /5 + a16; j sin /5 + a17; j :

There are two additional angles /3 and /6 that can be determined from /1; /2; /4; /5. Here we have
conformed to the notation used by Tsai and Morgan [16]. By changing variables (x1 = cos /1,
x2 = sin /2, etc.) and adding four new equations (x2

1 + x2
2 = 1, etc.) this can be converted to a

polynomial system. This is done in [16] so that homotopy continuation methods for polynomial
systems can be applied. This problem is also discussed in [10]. The RCSA algorithm can be applied
directly to this system. This was done using the coeHcients given in Table 4. This is a diAerent
set of coeHcients than given in [10]. The coeHcients given in Table 4 correspond to the data
given in [16], and were used so that our computed solutions could be checked against the values of
/1; /2; /4; /5 recorded in [16].

The system of equations Hj(/1; /2; /4; /5)=0, 16j64, is obtained in such a way that extraneous so-
lutions are introduced. According to [16] there are 16 genuine solutions and 16 extraneous solutions.
Of the 16 genuine solutions, 12 are real-valued and physically relevant while four are complex-valued
and not physically relevant. Starting the RCSA algorithm with the rectangle R = [ − �; �]4 we were
able to compute all 12 physically relevant solutions. These are recorded in Table 5. However,
only seven of the extraneous solutions were found. Since the algorithm returned several unresolved
covering rectangles upon reaching the pre-set upper bound on recursive generations of covering rect-
angles, we are led to believe that the remaining real-valued extraneous solutions are tightly packed
in a small region where the function is nearly singular. For example, with the generation limit set
to six there were three unresolved covering rectangles returned, all of which were contained in the
rectangle [2:842; 3:052] × [1:411; 1:519] × [1:031; 1:227] × [ − 1:602;−1:472]. (coordinates given in
rad). Restarting the RCSA procedure with this rectangle resulted in essentially the same algorithm



310 M.W. Smiley, C. Chun / Journal of Computational and Applied Mathematics 137 (2001) 293–315

Table 5
The 12 physically relevant solutions of the system Hj(/1; /2; /4; /5) = 0, 16j64, of Example
5.6. The angles /i are given in degrees

i /i;1 /i;2 /i;4 /i;5

1 −142:999715 100.072114 18.464582 −59:490607
2 −106:069054 −140:856892 −161:281104 35.539996
3 −65:365854 142.240676 −70:901651 −51:633556
4 −16:694202 97.897535 −80:984287 −25:722033
5 7.747473 103.865780 −21:369854 −79:895876
6 20.933357 58.740169 −27:073033 −125:660752
7 38.928126 −56:446153 12.283461 72.225890
8 47.258567 163.443114 28.317628 −41:132867
9 107.559134 1.998782 166.772114 −173:540089

10 115.859496 −168:646343 157.169857 −111:407314
11 120.516644 31.270039 114.146527 −143:618716
12 167.676727 83.550094 65.842958 −88:668795

behavior; slightly smaller unresolved covering rectangles were returned. Complex-valued solutions
were not sought. The number of work units in this case was roughly 1 × 109 and execution took
approximately 20 min.

5.2. Further remarks

The results that we have obtained illustrate both the strengths and weaknesses of our zero $nding
subdivision algorithm. They show the algorithm can be eAective in handling physically relevant
nontrivial problems which have many zeros. They also show the dependence of the computational
work on the dimension of the problem and on the complexity of the set of zeros. As with the
bisection method, the RCSA method appears to have robust convergence properties and requires
only basic information of the system function. However, it can be slow to converge, especially as
the dimension grows.

In developing programs for the example problems, we experimented with several strategies for
implementing selection criteria, approximating Lipschitz constants and performing other required
tasks. Experimentation showed that subtle variations in strategies could produce substantial changes
in algorithm performance, as measured in terms of work units. For example, by delaying the creation
of covering rectangles, at the expense of additional memory requirements, we were able to reduce
the work unit count in Example 5.5 by a factor of 3. Thus, we believe the code we developed should
be considered as a preliminary version. Additional eAorts to optimize performance are needed and
could result in substantial improvements in performance.

6. Convergence of the algorithms

The convergence of the subdivision algorithms described in the previous sections relies only on
the basic properties of continuity and compactness. Thus, throughout this section we assume that



M.W. Smiley, C. Chun / Journal of Computational and Applied Mathematics 137 (2001) 293–315 311

(X; d) is a compact metric space and F :X → [0;+∞) is a continuous function. The set of zeros of
F in X will be denoted by Z ; hence, Z =F−1(0)∩X = {x ∈ X : F(x) = 0}. In this setting successive
subdivisions of X are described in terms of a sequence of partitions {Pi}∞i=0 of X . This sequence is
assumed to satisfy the two hypotheses:

(H1) Each partition, Pi = {Kij}nij=1, is composed of a $nite collection of compact subsets. Thus,

X =
ni⋃
j=1

Kij ∀i¿0;

where each Kij is a compact subset of X and ni is a $nite integer. The partition P0 consists
only of X , so that n0 = 1 and K01 = X

(H2) For each i¿1, the partition Pi is a sub-partition of Pi−1 which has been further re$ned. That
is, for each j ∈ {1; 2; : : : ; ni} there is a j′ ∈ {1; 2; : : : ; ni−1} such that Kij ⊂Ki−1; j′ . The $neness
of the partition is characterized by the number

di = max
16j6ni

diam(Kij); where diam(Kij) = sup
x;y∈Kij

d(x; y):

It is assumed that di+16di and di → 0 as i → ∞.

Since all of the subsets are to be compact the void intersection property of a partition, Kij1 ∩Kij2 =∅
when j1 
= j2, will not be required. Properties (H1) and (H2) are obviously valid when X is a
rectangle in Rd partitioned by subdivisions into congruent subrectangles as described in Section 2.
The following lemma provides a basic tool for verifying convergence of all the subdivision algorithms
discussed in this paper.

Lemma 6.1. Let {7i}∞i=1 be a decreasing sequence of positive numbers; with 7i → 0 as i → ∞. Let
X0 = X and; for each i¿1; de9ne the subset of indices

Ji =
{
j ∈ {1; 2; : : : ; ni}: min

x∈Kij

F(x)67i

}
(6.1)

and the corresponding subset Xi =
⋃{Kij: j ∈ Ji}. Set X∞ =

⋂{Xi: i¿0}. Then Z = X∞.

Proof. If Z =∅ then there is a point x0 ∈ X such that F(x)¿F(x0)¿ 0, for all x ∈ X . Hence, Xi =∅
for all i suHciently large and the equality is valid. Therefore, Z may be assumed nonempty. In this
case, each Xi is also nonempty since Z ⊂Xi. To see this let x ∈ Z . Then, for each i¿0, there is a
j ∈ {1; 2; : : : ; ni} such that x ∈ Kij and

0 = F(x) = min
y∈Kij

F(y)67i:

Hence, j ∈ Ji and x ∈ Xi.
It is now clear that X∞ is a nonempty set that contains Z . To see that it is also contained in Z let

x ∈ X∞. Since x ∈ Xi for each i there is a sequence of points {yi}i¿1 satisfying yi ∈ Xi, d(x; yi)6di

and F(yi)67i, for each i¿1. This is clear since x ∈ Kij, for some j ∈ Ji, with diam(Kij)6di by
properties (H1), (H2), and by compactness there is a yi ∈ Kij such that

F(yi) = min
y∈Kij

F(y)67i:



312 M.W. Smiley, C. Chun / Journal of Computational and Applied Mathematics 137 (2001) 293–315

Since F(x)6|F(x) − F(yi)| + F(yi), it follows by passing to the limit as i → ∞ that F(x) = 0.
Thus, X∞ ⊂Z and the equality Z = X∞ follows.

Corollary 6.1. Let (Y; dY ) be a metric space; y0 ∈ Y be a 9xed element of Y; and f :X → Y
a continuous function. If F(x) = dY (f(x); y0) and Ji; Xi are de9ned as in Lemma 6:1; then {x ∈
X : f(x) = y0} =

⋂{Xi: i¿0}.

We now suppose that F(x) is Lipschitz continuous on X , with Lipschitz constant L. And further
assume that, as part of the construction of the sequence of partitions {Pi}∞i=0, a sample point xij ∈ Kij

is selected (e.g., the midpoint of a rectangle). The distance to the sampling point from any point
x ∈ Kij must be no larger than

dij = max
x∈Kij

d(x; xij):

Obviously, dij6di for all j ∈ {1; 2; : : : ; ni}, and |F(x)−F(xij)|6dijL for all x ∈ Kij. To allow for a
slightly more general situation we assume that for each i¿1, 16j6ni, there is a number �ij such
that

|F(x) − F(xij)|6�ij ∀x ∈ Kij; (6.2)

�ij6Cdi; 16j6ni (6.3)

for some constant C that is independent of i; j. Clearly, �ij=dijL is one example. Two other examples
with Kij = Rij a subrectangle and xij its midpoint are: (i) �ij = �iLij, where Lij is a local Lipschitz
constant as given in (2:3) and �i = dij is the radius of Rij; and (ii) the numbers �ij de$ned in (2.6).

Lemma 6.2. Let {7i}∞i=1 be a decreasing sequence of positive numbers; with 7i → 0 as i → ∞; and
let {�ij} be a set of numbers satisfying (6:2); (6:3). Set X �

0 = X and; for each i¿1; inductively
de9ne the subset of indices

J �
i = {j ∈ {1; 2; : : : ; ni}: Kij ⊂X �

i−1 and F(xij)67i + �ij}
and the corresponding subset X �

i =
⋃{Kij: j ∈ J �

i }. Set X �
∞ =

⋂{X �
i : i¿0}. Then Z = X �

∞.

Proof. Again it may be assumed that Z is nonempty. We assume the induction hypothesis that
Xi−1 ⊂X �

i−1. Let Ji be de$ned by (6.1), or equivalently (see the discussion following (2.1))

Ji =
{
j ∈ {1; 2; : : : ; ni}: Kij ⊂Xi−1 and min

x∈Kij

F(x)67i

}
:

Let j ∈ Ji and x ∈ Kij be such that F(x)67i. From (6.2) it follows that

F(xij)67i + |F(xij) − F(x)|67i + �ij:

Hence, j ∈ J �
i which shows Ji ⊂ J �

i and consequently Xi ⊂X �
i . It now follows from Lemma 6.1 that

Z =X∞ ⊂X �
∞. Let x ∈ X �

∞. For each i¿1 there is an index j ∈ J �
i such that x ∈ Kij. By (6.2), (6.3)

F(x)67i + �ij + |F(x) − F(xij)|67i + 2Cdi:

Letting i → ∞ then shows that x ∈ Z . Thus, X �
∞ ⊂Z .



M.W. Smiley, C. Chun / Journal of Computational and Applied Mathematics 137 (2001) 293–315 313

Next, we verify the convergence of the subdivision with exclusion algorithms presented in
Section 3, under the assumptions on !(x) and e(x) postulated there.

Lemma 6.3. Let {7i}∞i=1 be a decreasing sequence of positive numbers; with 7i → 0 as i → ∞. Set
X e

0 = X; and for each i¿1; inductively de9ne the subset of indices

J e
i =

{
j ∈ {1; 2; : : : ; ni}: min

x∈Kij

{F(x) + e(x)}67i

}
; (6.4)

and the corresponding subset X e
i =

⋃{Kij: j ∈ J e
i }. Set X e

∞ =
⋂{X e

i : i¿0}. Then Z − {x0} = X e
∞.

Proof. Applying Lemma 6:1 to Fe(x) = F(x) + e(x) shows that X e
∞ is the set of all zeros of

F(x) + e(x). Since both terms must be zero the conclusion follows.

In addition to the function &(t; s) de$ned in (3.1), the function 9(t; s) = !(t) − !(t + s) will also
be needed in proving the convergence of the algorithm based on the selection criterion (3.2). With
xij and dij de$ned as above set &ij = &(‖xij − x0‖; dij).

Lemma 6.4. Let {7i}∞i=1 be a decreasing sequence of positive numbers; with 7i → 0 as i → ∞; and
let {�ij} be a set of numbers satisfying (6:2), (6:3). Set X e�

0 = X; and for each i¿1; inductively
de9ne the subset of indices

J e�
i = {j ∈ {1; 2; : : : ; ni}: Kij ⊂X e�

i−1 and F(xij) + e(xij)67i + �ij + &ij};
and the corresponding subset X e�

i =
⋃{Kij: j ∈ J e�

i }. Set X e�
∞ =

⋂{X e�
i : i¿0}. Then Z −{x0}=X e�

∞.

Proof. We assume the induction hypothesis that X e
i−1 ⊂X e�

i−1. Let J e
i be de$ned by (6.4), or equiv-

alently

J e
i =

{
j ∈ {1; 2; : : : ; ni}: Kij ⊂X e

i−1 and min
x∈Kij

{F(x) + e(x)}67i

}
:

Let j ∈ J e
i and choose x ∈ Kij satisfying F(x) + e(x)67i. Since

‖x − x0‖6‖x − xij‖ + ‖xij − x0‖6dij + ‖xij − x0‖
and !(t) is nonincreasing with !(t)¿$%(t) for all t, it follows that

e(xij) − e(x) = !(‖xij − x0‖) − !(‖x − x0‖)

6!(‖xij − x0‖) − !(‖xij − x0‖ + dij)

6!(‖xij − x0‖) − $%(‖xij − x0‖ + dij) = &ij:

Note that similarly e(x)− e(xij)69(‖x− x0‖; dij). From the $rst of these inequalities it follows that

F(xij) + e(xij)67i + |F(xij) − F(x)| + e(xij) − e(x)67i + �ij + &ij:

Thus, j ∈ J e�
i , J e

i ⊂ J e�
i and Z − {x0} = X e

∞ ⊂X e�
∞. Suppose that x ∈ X e�

∞. Then for each i¿1 there is
a ji ∈ J e�

i such that x ∈ Kiji . But then

F(x) + e(x)6F(xiji) + e(xiji) + |F(x) − F(xiji)| + e(x) − e(xiji)

6 7i + 2Cdi + &iji + 9(‖x − x0‖; diji):



314 M.W. Smiley, C. Chun / Journal of Computational and Applied Mathematics 137 (2001) 293–315

Since di → 0 and xiji → x as i → ∞, passing to the limit as i → ∞ in this inequality produces

F(x) + e(x)6&(‖x − x0‖; 0) = !(‖x − x0‖) − $%(‖x − x0‖):

But e(x)=!(‖x−x0‖). Thus, the validity of this equality implies that F(x)=0 and ‖x−x0‖¿ −#.
Thus X e�

∞ ⊂{x ∈ R− {x0}: F(x) = 0}.

Appendix

There is a simple indexing scheme that can be used to conveniently list all the subrectangles
obtained through subdivision of a given rectangle. Let R⊂Rd be a rectangle with sides parallel
to the coordinate planes. Such a rectangle is determined by a pair of opposing vertices a; b ∈ Rd

according to

R =
d∏

i=1

[ai; bi] = {x ∈ Rd: ai6xi6bi; 16i6d}:

A partition of R into congruent rectangles can be obtained as follows. Let N¿2 be a positive
integer determining the number of subdivisions in each coordinate direction. For example, if N = 2
and R is a rectangle in the plane, then each side will be subdivided into two subintervals and there
will be four subrectangles obtained by taking all pairwise products of subintervals. We may refer to
these subrectangles as children of the parent rectangle R. In general, there will be nc = Nd children
(subrectangles) in the partition, which will be enumerated as {R0; : : : ; Rnc−1}.

The vertices of the subrectangles {Ri}nc−1
i=0 are conveniently listed by using a multi-index notation.

Let 3 = (31; : : : ; 3d) be a multi-index with the property that each 3j ∈ {0; 1; : : : ; N − 1}. Then 3
naturally corresponds to an integer expressed in base N :

3 ↔ i =
d−1∑
k=0

3d−kN k :

For example, if N = 2 then each 3 corresponds to a binary number which determines an integer in
the range from 0 to 2d − 1. In general, for each i ∈ {0; : : : ; nc − 1} there is a unique multi-index
3i = (3i1; : : : ; 3

i
d) such that 3i13

i
2 : : : 3

i
d is the base N representation of i. Using this correspondence,

the vertices of the child Ri are readily described in terms of the vertices a; b of the parent rectangle
R. Let v = N−1(b − a) ∈ Rd and de$ne the componentwise product 3i ∗ v = (3i1v1; : : : ; 3idvd) ∈ Rd.
Then Ri is the rectangle with opposing vertices ci; di ∈ Rd given by

ci = a + 3i ∗ v and di = ci + v:

References

[1] E.L. Allgower, K. Georg, Continuation and path following, Acta Numer. (1993) 1–64.
[2] M. Dellnitz, A. Hohmann, A subdivision algorithm for the computation of unstable manifolds and global attractors,

Numer. Math. 75 (1997) 293–317.
[3] N. Dyn, The work of John Gregory, rational spline interpolation, subdivision algorithms and C2 polygonal patches,

in: G. Mullineux (Ed.), The Mathematics of Surfaces, Vol. VI, Clarendon Press, Oxford, 1996, pp. 21–42.



M.W. Smiley, C. Chun / Journal of Computational and Applied Mathematics 137 (2001) 293–315 315

[4] J.A. Gregory, An introduction to bivariate uniform subdivision, Numerical Analysis 1991, in: D.F. GriHths, G.A.
Watson (Eds.), Pitman Research Notes in Mathematics, Longman, New York, 1991, pp. 103–117.

[5] C.S. Hsu, Nonlinear behavior of multibody systems under implusive parametric excitation, in: K. Magnus (Ed.),
Dynamics of Multibody Systems, Springer, New York, 1978, pp. 63–74.

[6] C.S. Hsu, R.S. Guttalu, Index evaluation for dynamical systems and its application to locating all of the zeros of a
vector function, J. Appl. Mech. 50 (1983) 858–862.

[7] C.S. Hsu, W.H. Zhu, A simplical mapping method for locating the zeros of a function, Quart. Appl. Math. 42 (1984)
41–59.

[8] B. Kearfott, An eHcient degree-computation method for a generalized method of bisection, Numer. Math. 32 (1979)
109–127.

[9] K. Meintjes, A.P. Morgan, A methodology for solving chemical equilibrim systems, Appl. Math. Comput. 22 (1987)
333–361.

[10] A.P. Morgan, A.J. Sommese, L.T. Watson, Finding all isolated solutions to polynomial systems using HOMPACK,
ACM Trans. Math. Software 15 (1989) 93–122.

[11] V.Y. Pan, Solving a polynomial equation: some history and recent progress, SIAM Rev. 39 (1997) 187–220.
[12] W.C. Rheinboldt, Numerical Analysis of Parametrized Nonlinear Equations, Wiley, New York, NY, 1986.
[13] M.W. Smiley, C. Chun, Computation of Morse decompositions for semilinear elliptic PDEs, Numer. Methods for

PDEs, to be published.
[14] M. Sosonkina, L.T. Watson, D.E. Stewart, A note on the end game in homotopy zero curve tracking, ACM Trans.

Math. Software 22 (1996) 281–287.
[15] F. Stenger, Computing the topological degree of a mapping in Rn, Numer. Math. 25 (1975) 23–38.
[16] L.-W. Tsai, A.P. Morgan, Solving the kinematics of the most general six- and $ve-degree-of-freedom manipulators

by continuation methods, J. Mech. Transmissions Automat. Des. 107 (1985) 189–200.
[17] M.N. Vrahatis, K.L. Iordanidis, A rapid generalized method of bisection for solving systems of non-linear equations,

Numer. Math. 49 (1986) 123–138.
[18] M.N. Vrahatis, Solving systems of nonlinear equations using the nonzero value of the topological degree, ACM

Trans. Math. Software 14 (1988) 312–328.
[19] L.T. Watson, Globally convergent homotopy methods: A tutorial, Appl. Math. Comput. 31 (1989) 369–396.
[20] H. Weyl, Randbermerkungen zu hauptproblemen der mathematik, II, fundamentalsatz der algebra and grundlagen

der mathematik, Math. Z. 20 (1924) 131–151.


