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Solve the heat equation ut = kuxx with periodic boundary conditions u (t, −π) = u (t, π) , ux (t, −π) =
ux (t, π)

Solution

Using separation of variables, Let u (x, t) = T (t) X (x). Substituting this into ut = kuxx gives T ′X = TX ′′.
Dividing by XT 6= 0 gives

1
k

T ′

T
= X ′′

X
= −λ

Where λ is the seperation constant. This gives the following ODE’s to solve
X ′′ (x) + λX (x) = 0
T ′ (t) + λkT (t) = 0

Where λ is the separation constant. Eigenfunctions are solutions to the spatial ODE.

X (x) = c1e
√

−λx + c2e−
√

−λx (1)
To determine the actual eigenfunctions and eigenvalues, boundary conditions are used. Starting with the
spatial ODE above, and transferring the boundary condition to X, it becomes

X ′′ (x) + λX (x) = 0
X (−π) = X (π)

X ′ (−π) = X ′ (π)
This is an eigenvalue boundary value problem. The solution is

X (x) = c1e
√

−λx + c2e−
√

−λx (1)
case λ < 0

Since λ < 0, then −λ is positive. Let µ = −λ, where µ is now positive. The solution (1) becomes
X (x) = c1e

√
µx + c2e−√

µx

The above can be written as
X (x) = c1 cosh (√µx) + c2 sinh (√µx) (2)

Applying first B.C. X (−π) = X (π) using (2) gives
c1 cosh (√µπ) + c2 sinh (−√

µπ) = c1 cosh (√µπ) + c2 sinh (√µπ)
c2 sinh (−√

µπ) = c2 sinh (√µπ)
But sinh is only zero when its argument is zero which is not the case here. Therefore the above implies
that c2 = 0. The solution (2) now reduces to

X (x) = c1 cosh (√µx) (3)
Taking derivative gives

X ′ (x) = c1
√

µ sinh (√µx) (4)
Applying the second BC X ′ (−π) = X ′ (π) using (4) gives

c1
√

µ sinh (−√
µπ) = c1

√
µ sinh (√µx)

But sinh is only zero when its argument is zero which is not the case here. Therefore the above implies
that c1 = 0. This means a trivial solution. Therefore λ < 0 is not an eigenvalue.

case λ = 0

In this case the solution is X (x) = c1 + c2x. Applying first BC X (−π) = X (π) gives
c1 − c2π = c1 + c2π

−c2π = c2π
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This gives c2 = 0. The solution now becomes X (x) = c1 and X ′ (x) = 0. Applying the second boundary
conditions X ′ (−π) = X ′ (π) is not satisfies (0 = 0). Therefore λ = 0 is an eigenvalue with eigenfunction
X0 (0) = 1 (selected c1 = 1 since an arbitrary constant).

case λ > 0

The solution in this case is
X (x) = c1e

√
−λx + c2e−

√
−λx

= c1ei
√

λx + c2e−i
√

λx

Which can be rewritten as (the constants c1, c2 below will be different than the above c1, c2, but kept the
same name for simplicity).

X (x) = c1 cos
(√

λx
)

+ c2 sin
(√

λx
)

(5)

Applying first B.C. X (−π) = X (π) using the above gives

c1 cos
(√

λπ
)

+ c2 sin
(

−
√

λπ
)

= c1 cos
(√

λπ
)

+ c2 sin
(√

λπ
)

c2 sin
(

−
√

λπ
)

= c2 sin
(√

λπ
)

There are two choices here. If sin
(

−
√

λπ
)

6= sin
(√

λπ
)

, then this implies that c2 = 0. If sin
(

−
√

λπ
)

=

sin
(√

λπ
)

then c2 6= 0. Assuming for now that sin
(

−
√

λπ
)

= sin
(√

λπ
)

. Then happens when
√

λπ =
nπ, n = 1, 2, 3, · · · , or

λn = n2 n = 1, 2, 3, · · ·
Using this choice, we will now look to see what happens using the second BC. The solution (5) now
becomes

X (x) = c1 cos (nx) + c2 sin (nx) n = 1, 2, 3, · · ·
Therefore

X ′ (x) = −c1n sin (nx) + c2n cos (nx)
Applying the second BC X ′ (−π) = X ′ (π) using the above gives

c1n sin (nπ) + c2n cos (nπ) = −c1n sin (nπ) + c2n cos (nπ)
c1n sin (nπ) = −c1n sin (nπ)

0 = 0
Since n is integer. Therefore this means that using λn = n2 will satisfy both boundary conditions with
c2 6= 0, c1 6= 0. This means the solution (5) becomes

Xn (x) = An cos (nx) + Bn sin (nx) n = 1, 2, 3, · · ·
The above says that there are two eigenfunctions in this case. They are

Xn (x) =
{

cos (nx)
sin (nx)

Since there is also zero eigenvalue, then the complete set of eigenfunctions become

Xn (x) =


1

cos (nx)
sin (nx)

Now that the eigenvalues are found, the solution to the time ODE can be found. Recalling that the time
ODE from above was found to be

T ′ (t) + λkT (t) = 0
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For the zero eigenvalue case, the above reduces to T ′ (t) = 0 which has the solution T0 (t) = C0. For non
zero eigenvalues λn = n2, the ODE becomes T ′ (t) + n2T (t) = 0, whose solution is T0 (t) = Cne−kn2t.

Putting all the above together, gives the fundamental solution as

un (x, t) =


C0

Cn cos (nx) e−kn2t n = 1, 2, 3, · · ·
Bn sin (nx) e−kn2t n = 1, 2, 3, · · ·

Therefore the complete solution is the sum of the above solutions

u (x, t) = C0 +
∞∑

n=1
e−kn2t (Cn cos (nx) + Bn sin (nx))

The constants C0, Cn, Bn can be found from initial conditions.


