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Introduction 

Algorithmic problems always played a role in the study of number theory. 
One of the outstanding early examples is Euclid’s algorithm (i.e., computational 
procedure) for finding the greatest common divisor (gcd) of two integers. His 
algorithm is efficient in a sense to be explained below. C. F. Gauss, who was 
deeply interested in computational questions, describes in his Disquisitiones 
Arithrneticue the problems of testing numbers for primality and factoring num- 
bers into prime factors as being among the most important problems in arith- 
metic. 

Not all interesting arithmetical questions are even in principle algorithmically 
solvable. A celebrated result of Matijasevitch states that there is no algorithm for 
testing, for every given polynomial Diophantine equation, whether it has a 
solution. For other problems, the possibility of algorithmic solution seems to be a 
trivial statement. Consider the problem of finding (for n) a sum of four (integer) 
squares representation n = x 2  + y 2  + z 2  + w2.  Simply enumerate all quadruples 
x, y ,  z, w 5 6, and test for every quadruple whether it solves the equation. 
Similar remarks apply to the primality testing and factorization problems, as well 
as to the gcd problem. So what challenge did Gauss see and what is Euclid’s 
accomplishment? 

The answer to the above question revolves around the issue of efficiency of 
algorithms. Finding the sum of squares representation by the simple-minded 
method will require O ( n 2 )  arithmetical operations. If n has, say, 200 binary 
digits, we are talking about 2400 operations. Similarly, the simple algorithm for 
testing primality will require 6 - 2lo0 operations, and will behave worst when n 
is in fact prime. On the other hand, Euclid’s algorithm for the gcd of m, n - 2200 
will require at most 200 operations with integers smaller than 2200, an entirely 
feasible computation by computer. We can say about Euclid’s algorithm that it 
requires a number of operations linear in the length of n (when written in binary 
notation), i.e., in log2n. 
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A reasonable concept for an efficient algorithm is one which when working on 
input n ,  will require clogdn (all logarithms in this article are to base 2) 
arithmetical operations on integers smaller than n ,  where c and d are sufficiently 
small to render the algorithm practical, say c 5 50, d 5 3 (of course, if d is, say, 
1 we can afford a larger c). This somewhat vague notion is a specialization of the 
“ polynomial time solvable” notion popular in theoretical computer science. By 
arithmetical operations on n, m, we mean finding the binary representations of 
m + n, m - n, m n ,  [m/n] and of the remainder of m when divided by n .  

A surprising development of the past decade or so was that for certain 
number theoretic problems, efficient algorithms can be given by resorting within 
the computation to random choices of numbers. For example, in [17], [19] and 
[25], a randomized test for primality is given which tests n by c log n operations. 
A novel feature is that there is a small probability that. the test will produce a 
wrong answer. For the exact meaning of these statements, and a report on 
experimental results the reader may look at [19]. Despite extremely interesting 
work on ordinary algorithms for primality, there is as yet no provably polynomial 
time algorithm for primality, and the randomized tests are by far the most 
efficient. 

Another possibility arising when we use randomization, is to give up not 
assurance of the correctness of the result, but the ability to say exactly how many 
steps are required. Namely, with lucky random choices, success will come 
quickly, but the computation can also continue (with a small probability) for a 
long time. Thus we construct algorithms which for every n require at most an 
expected number c log% of operations, and always produce a correct result. 

In the present paper we apply these ideas to a number of Diophantine 
problems involving sums of squares and arising out of classical theorems. Every 
prime numbe; p = 4k + 1 can be represented as a sum p = x 2  + y 2  of two 
squares of integers. In Section 1, we present a randomized algorithm for this 
problem which requires an expected number O(1ogp) of operations. This al- 
gorithm appears in [18]. Recently, R. J. Schoof [24] gave a deterministic al- 
gorithm which requires O(log6p) operations. 

In Section 2, we give two randomized algorithms for finding the representa- 
tion n = x 2  + y 2  + z 2  + w 2 .  One, taken from [18], does it in an expected 
number of operations O(log2n). It uses integral quaternions and depends for its 
proof on the ERH. The second algorithm (see [21]) employs a celebrated theorem 
of Linnick and requires O(log2n log log n )  operations. In Section 3, another 
method, taken from [23] and using quaternions, is given which unlike the first 
method does not employ any unproven number theoretic assumption. In Section 
4, a randomized polynomial time algorithm for the sum of three squares problem 
is given, following [23]. For the classical literature on sums of squares, see [5], [7], 

Each of the algorithms in Sections 2-4 employs two or more randomizations 
within it. They run very efficiently in practice, and, of course, always produce 
correct answers. As yet, there is no non-randomized algorithm for any of these 
problems. An interesting feature is that they involve prime numbers even though 
they solve equations for arbitrary integers n .  

t151, ~ 6 1 .  
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1. Primes as Sums of Two Squares 

As a first example of the randomization method let us treat the well-known 
Fermat-Lagrange theorem to the effect that every prime p = 4k + 1 can be 
represented as a sum of two squares. Our aim is to present an efficient algorithm 
which for any given prime p = 4k + 1 will find integers x ,  y such that p = 
x 2  + y 2 .  The algorithm given here was first outlined in [HI. 

It is well known that if p = 4k + 1 is a prime, then there exists an integer 
u < +p such that u2 + 1 = 0 mod p. In other words, the equation t 2  + 1 has a 
solution in the finite field Z, of residues mod p. In [4] and [20], a randomizing 
method for finding solutions for a general polynomial equation over a finite field 
is given. For the sake of completeness we shall show how this algorithm 
specializes to the case of the equation t 2  + 1 = 0 (in Z,). 

Let the two roots of t 2  + 1 = 0 be u, and 24, = p - ul, then u1 # u2 .  For 
any residue 0 5 b < p consider the polynomial 

f b ( t )  = ( t  - b ) 2  + 1 = t 2  - 2bt + b2 + 1. 

The roots of fb(t) = 0 are u, + b and u2 + b. 
We have $ ( p  - 1) = 2k, so that the equation t Z k  - 1 = 0 is satisfied by 

exactly the 2k quadratic residues in Zp.  Thus if, for example, u, + b is a 
quadratic residue while u2 + b is a nonresidue, then we have 

where ( f ( t ) ,  g ( t ) )  denotes the gcd of these polynomials. It follows that if we 
succeed in finding a b E Z, with the above property, then we can compute u1 
from (1.1). 

It would seem that computing the gcd in (1.1) requires O(2k)  = O(p) 
operations, but this is not so. Let 2k = ddl + . . . + d d m  be the binary represen- 
tation of 2k.  Then d ,  5 log,p, 1 5 i m, and m 5 10g2p. Denoting r = 2d, we 
can compute t‘ mod f , ( t )  by computing the sequence 

Note that each g , ( t )  is a linear polynomial of the form ct + e ,  c, e E Zp,  so that 
computing g i + l  from g,  requires a fixed number of operations. Thus computing 
all the powers 1’’ mod f,(t), 0 5 i 4 10g2p, requires O(1og p )  operations. Now, 
to obtain h ( t )  = t 2 k  modf,(t) we just have to perform m multiplications 
mod fb(r) of linear polynomials, using the binary representation of 2k. 

Once h ( t )  has been obtained, the gcd in (1.1) is computed by a fixed number 
of operations, since (fb(t), t Z k  - 1) = ( f b ( t ) ,  h ( t )  - 1). 

How do we find a b E Z, such that h ,  + b is a quadratic residue while 
h ,  + b is not, or vice-versa, so that (1.1) will hold? Call a, p E Zp,  a # 0, p # 0, 
of dzfferent type if one is a quadratic residue while the other is not. 
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THEOREM [20]. Let a,, a2 E Z,, a, jt a2;  then 

f( p - 1) = c (  { 616 E Z,, a, + 6 and a2 + 6 are ofdifferent t y p e } ) ,  

The proof appears in [20], where the theorem is stated for arbitrary finite 
fields and is used for solving equations in any finite field. 

We can now give a randomized algorithm for solving the equation t + 1 = 0 
in Z,. Choose b E Z, randomly and compute ( ( t  - b)2  + 1 ,  t Z k  - 1). By the 
above theorem, in an expected number of two tries we find a b E Z, for wluch 
u1 + b and u2 + b are of different type so that (1.1) holds (for uI or u2) .  Thus 
u1 + b, and hence u1 with u: + 1 = 0 mod p is found in an expected number of 
operations O(1og p ) .  

Having found an integer u < p so that u2 + 1 = mp, we solve p = x 2  + y 2  
by following one of the well-known proofs of the Fermat-Lagrange theorem, 
using Gaussian integers. 

The ring GI consists of all complex numbers a + ib, a ,  b E 2. Denote 
N(a  + ib) = a 2  + b2. It is readily seen that for z ,  w E GI, w # 0, we can find 
q, r E GI such that z = q w + r and N ( r )  < :N(w). The computation requires 
a fixed number of operations with ordinary integers smaller than 
max( N(  z ) ,  N( w)). From the availability of a division with remainder algorithm 
with N ( r )  < i N ( w ) ,  it follows that Euclid’s algorithm for computing the gcd 
(zl,z2), zI, z2 E GI, will terminate in log,(max(N(z,), N ( z 2 ) )  steps. 

Recall that we found a u < p satisfying ( u  + i)( u - i )  = u 2  + 1 = mp. Com- 
pute ( u  + i ,  p )  = x + iy. It is readily seen that p = x 2  + y 2 .  The previous 
arguments establish the following 

THEOREM 1.1. For a prime p = 4k + 1 we can Jind the representation p = 
x 2  + y 2  by an O( log ,p )  expected number of arithmetical operations with integers 
smaller than p .  

2. Sum of Four Squares Using Primes 

Every integer n can be expressed as a sum 

(2.1) n = x 2  + y 2  + z2 + w 2  

of four integral squares. One elementary proof of this result proceeds from the 
fact that by the Euler identity, if n1 and n 2  are each a sum of four squares, then 
so is n1n2 (see Section 3). Hence it suffices to establish the result for primes p .  
This is done by showing the existence of a solution for x 2  + y 2  + 1 = mp, and 
proving by contradiction that the smallest m,,  for which m , p  is a sum of four 
squares, is m ,  = 1. 

This proof does not lead to an efficient algorithm for solving (2.1). First, we 
would need a factorization of n into its prime factors and there is, as yet, no 
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efficient factorization algorithm. Secondly, the proof that x2 + y 2  + 1 = mp is 
solvable proceeds by a counting argument which would reduce to an exhaustive 
search algorithm. Similar remarks apply to the attempts to turn other proofs into 
algorithms. 

The earliest polynomial time algorithm for the sum of four squares problem 
appeared in [18]. Briefly, it proceeded as follows. For an odd n ,  consider the 
sequence 

Every q in (2.2) satisfies q = 1 mod 4. From an unproven version of the extended 
Riemann hypothesis (ERH) it follows that the relative density of primes in the 
sequence (2.2) is O(l/log n ) .  Choose m < n3 randomly and test q for primality. 
In expected time O(logn), a prime q = mn - 1 = 1 mod4 is found. Now 
express q as a sum of two squares by the method of Section 1. Thus q = mn - 1 
= u2 + u2, mn = u2 + u2 + 1. From the last equation, a solution of (2.1) is 
found by using integral quaternions (see Section 3) in a manner similar to the use 
of Gaussian integers in Section 1. In [lo], R. Kannan uses the shortest vector in a 
lattice algorithm, for giving another reduction from a solution of mn = u2 + u2 
+ 1 to a solution of (2.1). 

The proof of correctness depends on ERH. Randomization is used twice, in 
finding a prime q = mn - 1, and in expressing q as a sum of two squares. The 
prime q is used to "piggyback" the solution for the number n .  

We shall now present the solution in [21] which does not require any 
unproven number theoretic propositions. Consider the equation 

(2.3) n = x2 + y 2  + p ,  p a prime. 

In a profound paper [12], Linnik proved a conjecture of Hardy and Littlewood 
concerning the asymptotic number of solutions of (2.3) as a function of n. As a 
corollary of that result we have that for a certain constant 0 < A ,  there exists a 
number n o  such that 

A * n  no < n * number of solutions of (2.3) > log log log . 

Thus the obvious plan for expressing n as a sum of four squares is to find a 
representation (2.3) with p = 4k + 1, and to express p as p = z 2  + w 2 .  We can 
actually ensure that the prime p will have the required form. 

LEMMA 2.1. Let n = 2(2m + 1). If x, y ,  p solve (2.3), then p = 2 or p = 

4k + 1. 

The proof follows at once from the fact that a square u2 has residue 0 or 1 
mod 4. 
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THEOREM 2.2. There is a randomizing algorithm for expressing a number n as 
a sum of four squares which requires an expected number O((1og n)’ log log n )  of 
operations with integers smaller than n for n o  < n. 

Proof: Assume first that n = 2(2k + 1). Choose randomly x ,  y 5 6. Em- 
ploy the randomizing algorithm of Section 1 to p = n - x’ - y’, which by 
Lemma 2.1 satisfies p = 4k + 1 (the case p = 2 leads to n = x’ + y’ + 1 + 1). 
If p is prime, then this will produce a solution p = z 2  + w’, so that n = x’ + y’ 
+ z’ + w’. 

However, since p may actually be composite, in which case the randomized 
algorithm for solving u’ + 1 = 0 mod p might not terminate, we introduce a 
small modification. Namely, in trying to solve u’ + 1 = mp, we make just one 
random choice of b E Zp.  If we do not solve the congruence u 2  + 1 = 0 mod p 
by using f b ( t )  (see Section l), then we discard p and again randomly choose 

To treat the general n, we distinguish two cases. If n is odd. then apply the 
x ,  y 4 6. 
above algorithm to m = 2n. Having found 

m = x’ +y’ + z 2  + w 2 ,  

we observe that x, y, z, w must fall into two pairs of integers with equal residues 
mod 2, say x y mod 2 and z = w mod 2. We then have 

n = L m =  2 ( * ( x  + y))’ + ( t ( x  - y))’ + ( + ( z  + w ) ) 2  + ( + ( z  - w))’. 

Assume n is even, n = 2d(2k + 1). If d is odd, then n = s 2(2k + l), where 
s is a square. Applying the algorithm to 2(2k + l), we find a solution for (2.1). 
Finally, if d is even, find a sum of four squares representation for 2 n  by the 
previous remark, and derive a solution for n by the method of the previous 
paragraph. 

It remains to analyze the expected number of operations. If suffices to treat 
the case n = 2(2k + 1). It follows from (2.4) that for A n/log n log log n pairs 
out of the n pairs x, y 5 6, the number p = n - x’ - y’ is a prime. Thus in 
an expected number at most A-’log n log log n of random choices of pairs x ,  y ,  
a prime p will be encountered. The probability of succeeding to solve u’ + 1 = 0 
mod p with one random choice of b E Zp is i, by the theorem in Section 1. 
Hence in an expected number smaller than 2A-‘log n log log n of choices of 
pairs x ,  y ,  p = n - x’ - y’ = 2’ + w’ will be solved. The computation associ- 
ated with each choice of a pair requires O(1ogn) operations, so that the total 
expected number of operations required for solving (2.1) is O(log2n log log n) .  

A more detailed analysis shows that the constant A in (2.4) is large, say 
1 4 A ,  hence A - ‘  is small so that the expected number of choices until 
p = n - x 2  - y 2  is encountered is not large. In actual implementation, the 
algorithm for solving (2.1) runs very quickly for large values of n ,  as well as for 
small values of n (even though n o  in (2.4) has not been calculated). 
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Finally, we wish to address a difficulty arising from the fact that, until the no 
in (2.4) is computed, we do not know whether (2.3) has solutions for, say, every 
lo6 < n .  It may happen for an n < n o  that p = n - x 2  - y 2  is never a prime 
and the algorithm of Theorem 2.2 will not terminate. As mentioned just now, in 
practice the algorithm runs quickly for small values of n as well. Even without 
knowledge of no we can, however, arrange our computation so that it will always 
terminate and have an asymptotic expected number of operations as in Theorem 
2.2. 

Consider the lexicographic ordering ( x i ,  yi, t i )  of all the triples x, y ,  z 5 fi. 
Interleve after every attempt in the algorithm of Theorem 1.1 to solve u2 + 1 = 0 
mod p ,  p = n - x 2  - y 2 ,  a test for one triple whether n - x: - y: - z," is a 
square of an integer, taking the triples in the lexicographic order. Obviously, the 
algorithm will always solve (2.1) and for no  < n will do so in the expected 
O(log2n log log n )  number of operations. Thus we have proved 

THEOREM 2.3. There exists a constant 0 < c so that, for every integer n ,  a 
sum of four squares representation can be found in an expected number 
c log2n log log n of arithmetical operations. 

3. Sums of Four Squares Through Integral Quaternions 

In this section, we give another method for obtaining four-square representa- 
tions through the theory of quaternions. The method runs in random polynomial 
time. 

Before we describe the method, we need some facts about quaternions. 
The algebra of rational quaternions H(Q) can be viewed as a subset of Q4. It 

is defined by 

H(Q) = ( h ,  + h,i + h 3 j  + h,klh, E Q} ,  

where i ,  j ,  and k are the coordinates and satisfy i 2  = j 2  = k 2  = - 1 and ij = k,  
j k  = i ,  ki = j .  Multiplication is defined by extending through linearity. 

H(Q) contains a noncommutative subring the Hurwitz integral quaternions, H, 
which are defined by 

H = { h ,  + h2i  + h ,  j + h,kJall h ,  belong either to Z or Z + 5 ) .  

The conjugate function is defined by 

conj(h, + h2i + h 3 j  + h 4 k )  = h ,  - h2i  - h , j  - h 4 k .  

The norm N ( h )  is given by 

~ ( h )  = conj(h)h = h,Z + h i  + h: + h z ;  
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the norm is multiplicative. The applicability of quaternions to the four-square 
problem is now easy to see; given four-square representations for a and b ,  we 
can easily find a four-square representation for ab by using quaternion multipli- 
cation. 

The units are the 24 elements with norm 1: 

f l ,  f i ,  fj, +k ,  f Q  f $i f $ j  Qk. 

We say h is an associate of g if g = Eh for some unit E. Every member of H with 
half-integer coordinates has an associate with integer coordinates. Inverses are 
given by h-’ = conj(h)(N(h))-’. 

We say f is a right diuisor of g if g = af.  Given g ,  h E H, an element f E H 
is said to be a greatest common right divisor (gcrd) of g and h if f is a right 
divisor of both g and h, and every right divisor of g and h is a right divisor of f .  
Any two integral quaternions have a gcrd which is unique up to a unit factor. For 
more information about the ring H, see [9], 20.6-20.9. 

Now we can give the outline of our algorithm to write M as the sum of four 
squares: 

(1) We write M = 2‘n with n odd. We can easily obtain a four-square 
representation for 2‘, and it now suffices to obtain the representation for n ,  since 
we may then obtain a representation for M using quaternion multiplication. 

(2) Find a ,  b such that u 2  + b2 = -1 mod n 
( 3 )  Replace a (respectively b )  by n - a (respectively n - b) ,  if necessary, to 

ensure that a ,  b < f lnl .  Compute g = gcrd ( a  + bi + j ,  n )  in H. 
(4) If N( g )  = n ,  then an associate of g gives a four-square representation for 

n .  Otherwise N ( g )  = kn, where kln, and so we have found a divisor of n. Apply 
the algorithm recursively to k and n / k ,  obtaining four-square representations; 
then combine the results using quaternion multiplication to obtain a four-square 
representation for n .  

The remainder of this section is devoted to showing that this algorithm is 
correct and can be made to run in random polynomial time. 

First, we show the following 

THEOREM 3.1. Suppose n is odd and gcd(k, n )  = 1. Then we can Jind a 
solution to x + y = k mod n in random polynomial time. 

Proof: The idea is quite simple. We choose w ,  z at random from Z,. Then if 
w 2  + z 2  = r ,  we have the congruence 

( x 2  + y 2 ) ( w 2  + 2’) = kr mod n ,  

where x and y are sought. Now we claim kr mod n will essentially be “ran- 
domly” distributed mod n and hence will “frequently” be a number for which we 
can quickly find a two-square representation, i.e., a prime power p a  congruent to 
1 mod4. Now we write p = u2 + u2; from 

(x’ + y 2 ) ( w 2  + z 2 )  = u2 + u2 mod n ,  
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we find 

x = (uw + U Z ) ( W '  + z2)- 'modn, 

y = (uw - u z ) ( w 2  + z2)- lmodn.  

Although the main ideas are simple, formalizing them requires some work. 
We need some lemmas: 

LEMMA 3.2. Let n = nf- ,p: ,  n odd. Let D be an integer relutiuelyprime to n .  
Then the number of distinct pairs ( x ,  y )  E Z X h that satisfv 

(3 -1) 

for a E Z: is 

x 2  - Dy2 = a mod n 

j I P : . L (  PI - (;)) 
I -  

where ($) is the Legendre symbol. 

Proof: 
Let X be an indeterminate. Consider the ring 

First we show the result in the case where n = p ,  an odd prime. 

R = Z [ X ] / ( X 2 -  D , p ) .  

There is a natural representation for elements of R in the form x + y f i  with 
x, y E Z,. Let us write R* for those elements of R with x 2  - Dy2 f 0 mod p .  
Consider the map N : R* -, Zp* defined by 

N ( x  + yfi) = x 2  - Or2. 

It is readily verified that N is multiplicative. It is well known that N maps R* 
onto Zp*. Hence N is a (group) homomorphism; and therefore x 2  - Dy2 takes on 
each value of H; equally often. 

then R is isomorphic to GF(p2) ;  thus IR*l = p 2  - 1 and so there are ( p 2  - 
l ) / ( p  - 1) = p + 1 solutions to (3.1) for each a.  On the other hand, if X 2  - D 
is reducible, then R* is isomorphic to 2, X Z,; thus IR*I = ( p  - 1)2 and so 
there are ( p  - 1)2/ (  p - 1 )  = p - 1 solutions to (3.1) for each a .  

This proves the lemma for the case n = p .  Now a simple argument based on 
Hensel lifting shows that for each solution modpk there are p solutions 
mod pk+' .  Hence the lemma is true for prime powers. Finally, an application of 
the Chinese remainder theorem proves the result for all odd n .  This completes 
the proof of the lemma. 

What is the structure of R*? I f  X 2  - D is irreducible mod p, i.e., ($)= -1, 
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COROLLARY. If w and z are chosen randomly from Z,, then w 2  + z2 is 
invertible mod n with probability at least q ( n ) 2 / n 2  > 1/(5 log log n ) 2 .  

Proof: Use the lemma with D = - 1 .  We find that there are 

1 -  G P P (  Pi - (E)) 
solutions for each a E Z,*; hence there are at least a total of 

solutions. An estimate of Rosser and Schoenfeld gives the last inequality (see [3]). 

Thus from the above results, we need to try at most 25(10glogn)~ pairs 
( w ,  z )  on average until we find a pair ( w ,  z )  such that w 2  + z 2  is invertible 
mod n; and in this case w 2  + z will in fact be a random element from Z ,*. Thus 
kr mod n will also be a random element from Z,*. To complete the proof of 
Theorem 3.1, it remains to prove that a random element of Z ,* is “likely” to be a 
prime power pa = 1 mod4; we can quickly find a two-square representation for 
such numbers. 

We have the following 

LEMMA 3.3.  Let 

B,, = (1 s y  n :  y = p a ,  pprime, y = 1 mod4, and gcd(y, n )  = l } ;  

1 E B,, by dejinition. Write A ( n )  = card( B,,), the number of elements in the set 3,. 
Then 

1 n  A ( n )  > -- 10 log n 

for aN n 2 2. 

Proof: We use some recent results of Livingston [ l l ] .  Let 

She has shown that 
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for all n 2 37. Thus it follows that for all n 2 37 there are at least 

2 n  
5 logn 
-- 

terms in the sum (*), i.e., prime powers pa 5 n with pa  = 1 mod 4. Since there 
are at most log, n prime powers smaller than or equal to n which are not 
relatively prime to n, we see that 

Now it is easily verified that 

2 n  1 n  - log2n > -- 5 logn 10 logn 

for all n 2 104; on the other hand, it is easily verified by explicit computation 
that 

-- 

for 2 5 n 103. This completes the proof of the lemma. 

Thus by choosing w and z at random, we will find an integer kr mod n of the 
required form with probability at least 1 in 10 log n. This completes the proof. 

COMMENT. Pollard and Schnorr [15] have given an algorithm for solving the 
more general congruence x2  - Dy2  = k mod n, which runs quickly assuming 
some unproved hypotheses. Also see [22], [6], [l]. 

Now we turn our attention to step (3) of the algorithm. We need to show that 
we can compute greatest common right divisors in H in polynomial time. 
Algorithms for computing the gcrd are given in many texts; for example, [9]. 
Unfortunately, however, if we follow these traditional presentations, it seems 
difficult to prove a polynomial bound for the run time. Hence, we alter the 
presentation somewhat. 

THEOREM 3.4. Given g, h E H, we can compute a greatest common right 
divisor f with all integer coordinates in polynomial time. 

Proof: We summarize our argument in a series of lemmas; the proofs given 
are only sketches. 

LEMMA 3.5. Given a point x E H(Q), there exists h E H satisfying N(x - h) 
5 3. 
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Proof: Consider the vertices of the unit hypercube in R4, and the vertex at 
the center (f, $, f, $1. It is easily verified that spheres of radius f i /2 centered at 
each of these 17 points cover the entire unit hypercube. Hence there is an h E H 
satisfying N ( x  - h )  s Q. 

We could of course find the appropriate h by testing each of the 17 points 
relevant to the particular hypercube containing x. However, there is a simpler 
algorithm: 
function Nearest-Integral-Quaternion( x ); 

for n := 1 to 4 do h,, := [ x n  + +]; 
for n := 1 to 4 do 

if x ,  2 h ,  then r,, := h ,  + $ 
else r,, := h ,  - f ;  

if N ( x  - h )  
else return( r ) ;  

N ( x  - r )  then return(h) 

LEMMA 3.6. (Division algorithm for quaternions). Given h ,  d E H, there 
exists q, r E H with h = qd + r and N ( r )  5 $ N ( d ) .  

Proof: Let q be nearest-integral-quaternion (hd- ' ) .  Put r = h - qd. Then 
from Lemma 3.5, we have 

and therefore, by the multiplicativity of the norm, we get 

N ( r )  = N ( h  - q d )  5 $ N ( d ) .  

LEMMA 3.8. (Euclidean algorithm for H). Given g ,  h E H, we can Jind a 
greatest common right divisor d in time which is a polynomial in 
1% 2 max( N (  g 1, N (  h >). 

Proof: Consider the following algorithm: 
function gcrd( g, h ) ;  
while g # 0 do begin 

t := g; 
Using Lemma 3.6, write g = qh + r ;  
g := r ;  
h := t 
end; 

return( h ) ;  



RANDOMIZED ALGORITHMS I N  NUMBER THEORY S25 1 

It is easily verified that this algorithm actually produces a greatest common 

By Lemma 3.6, we reduce the norm by at least a factor of f at each step, so in 
right divisor. 

at most 

steps, the algorithm will terminate. 

LEMMA 3.9. Given h E H with halfinteger coordinates, there exists an associ- 
ate Eh with integer coordinates. 

Proof: The following algorithm produces the appropriate associate: 
function Integral-Associate( h) ;  
for n := 1 to 4 do a,, := 2 17 1; h , + 1  

return( h conj( h - a)) ;  

For example, see [9], Theorem 371. 

Combining Lemmas 3.5-3.9 proves Theorem 3.4. 

It remains to verify the correctness of steps (3) and (4). By our choice of a 
and b, we know that n ) N ( a  + bi + j )  and N ( a  + bi + j )  < n 2 .  Since N ( g ) l a 2  
+ b2 + 1 and N(g) ln2 ,  either N ( g )  = n or N ( g )  = kn, where kln. In the first 
case, we are done. In the second case, we obtain a non-trivial factorization of n 
and can continue the algorithm on each piece. Since t h s  splitting of n can occur 
at most log2n times, the algorithm runs in polynomial time. Thus we have proved 

THEOREM 3.10. There is an algorithm for Jinding a representation n = x 2  + y 2  
+ z 2  + w 2  in random polynomial time. 

4. Expressing Numbers as the Sum of Three Squares 

In this section, we discuss some methods for expressing n as the sum of three 
integer squares and as the sum of three triangular numbers. 

Gauss proved that n can be expressed as the sum of three squares if and only 
if it is not of the form 4“(8k + 7), where a ,  k 2 0. (From this, it also follows that 
every number can be expressed as the sum of three triangular numbers.) For an 
“elementary” proof, see [2]  or [15]. 

If 4 divides n ,  then from a representation $n = x 2  + y 2  + z 2  we easily get 
n = ( 2 ~ ) ~  + ( 2 ~ ) ~  + ( 2 ~ ) ~ .  Thus without loss of generality, we may assume that 
n # 0 mod4. 
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Our results can be summarized as follows: 
(a) If p is a prime and p f 7 mod8, then we can express p as the sum of 

three squares in random polynomial time. 
(b) If n is an integer, n f 4“(8k + 7), then there is a procedure that, 

assuming some reasonable conjectures, will produce a three-square representation 
in random polynomial time, for all n large enough. In practice, the procedure 
runs quickly. 

(c) If 8n + 3 is a prime, then there is a random polynomial time algorithm to 
express n as the sum of three triangular numbers. If 8n + 3 is composite, then we 
can express n as the sum of three triangular numbers in random polynomial time, 
assuming a reasonable conjecture. 

THEOREM 4.1. If p is a prime, p f 7 mod 8 ,  then there is an algorithm to 
express p as the sum of three squares in random polynomial time. 

Proof: If p = 2 or p is of the form 4k + 1, then we can express p as the 
sum of two squares (and hence as the sum of three squares) in a random 
polynomial time using the algorithms of Section 1. The remaining case is p = 
3 mod 8. In this case, we use the following facts: 

(a) if[-] is an effective Euclidean domain. (That is, we can find the gcd of 
two elements in polynomial time.) 

(b) -2 is a quadratic residue of primes of the form 8k + 3. 
Using these facts, we can mimic the techniques of Section 2 and express p (of 

the form 8k + 3) as x’ + 2y’ in random polynomial time. Thenp = x’ + y 2  + y ’. 
The details are left to the reader. 

COROLLARY . If 8n + 3 is a prime, then we can express n as the sum of three 
triangular numbers in random polynomial time. 

Proof: Use Theorem 4.1 to express 8n + 3 as the sum of three squares; then 
congruence conditions imply that each of the squares is odd. Hence, 

8n + 3 = (2x  + 1)’ + (2y + 1)’ + (2z + 1)’ 

and so 

n = + x ( x  + 1) + + y ( y  + I) + fz(z + 1) = T ( x )  + ~ ( y )  + T(z). 
This completes the proof. 

In the case where n is not a prime, we use a trick similar to the one of Section 
2. If n = 1 or 2 mod4, we try to write n as the sum of a prime p and a square. 
Then it can be shown that either p = 2 or p = 1 mod4; in either case, we can 
express p as the sum of two squares in random polynomial time. If n = 3 mod 8 ,  
then we try to write n as the sum of a square and twice a prime. 
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These techniques depend on the number of such representations, which are 
estimated by some reasonable conjectures. The first is Hardy and Littlewood’s 
Conjecture H [8]. 

CONJECTURE 4.2. Every suficiently large number n is either a square or the 
sum of a prime and a square. The asymptotic behavior of the number N ( n )  of 
representations is conjectured to be 

where C ( n )  is defined by 

Some comments are in order. First, except for the infinite product term, this 
result is essentially what we would expect. For there are about 6 candidates for 
p ,  and the naive argument says each of these 6 candidates has about a one in 
log n chance of being prime. 

Second, we would like to estimate the size of the infinite product term. 
Following the ideas in [13], it can be shown that, assuming the extended Riemann 
Hypothesis, there exists a constant A such that 

Third, Conjecture H has been proved for “almost all” n. See [14]. 
In fact, the only non-squares congruent to 1 or 2 mod4 and less than 

1,000,000 which do not have representations as the sum of a square and a prime 
are: 

5,10,13,34,37,58,61,85,130,214,226,370,526, 

706,730,829,1414,1549,1906,2986,7549,9634. 

These are probably all the exceptions. 
The second conjecture we need is similar to the first; however, it has 

apparently not been explicitly stated before: 

CONJECTURE 4.3. Evey number of the form 8k + 3, k 2 1, can be expressed 
as the sum of a square and twice a prime. The asymptotic behavior of the number of 
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representation is conjectured to be 

where C( k )  is the infinite product given in Conjecture 4.2. 

The first statement of this conjecture has been verified for all k 
Assuming the truth of Conjectures 4.2 and 4.3, we can now give our algorithm 

125,000. 

for expressing n as the sum of three squares: 
function three-squares( n ); 
if n = 0 mod4 then begin 

( x ,  y ,  z )  = three-squares(an); 
return(2x, 2 y ,  22); 
end 

else if n = 7 mod 8 then write(‘No representation!’) and stop. 
else if n = 3 mod8 then begin 

x := random([&]); 
repeat 

p := $ ( n  - x 2 )  
until p is a probable prime; 
( y, z )  := two-squares( p ) ;  
return(x, y + z ,  y - z )  
end 

then return( d ,  0,O) 

repeat 

else if n is a perfect squares, n = d 2, 

else if n = 1 mod 4 or n = 2 mod 4 then begin 

x := random([&]); 
p := n - x2 

until p is a probable prime; 
( y ,  z )  := two-squares( p ) ;  
return(% y ,  z >  
end; 

THEOREM 4.4. The preceding algorithm is correct and with high probability 
returns an expression of n as the sum of three squares, for all n suflciently large. 

Proof: The only thing necessary to verify is that, in the two cases we are 
asked to express p as the sum of two squares, p is either 2 or of the form 4k + 1. 

First, the case n = 3 mod8; if we write 

n = x 2  + 2 p ,  
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then by considering both sides mod 8 we see that 2 p  = 2, 3, or 7 mod 8. Thus 
p = 1 or 5 mod8, and therefore p = 1 mod4 Note that if p = y 2  + z2, then 
2 p  = ( y  + z)2 + ( y  - 2)2. 

Second, the case n = 1 or 2 mod4: if we write 

n = x 2  + p ,  

then by considering both sides mod 4 we see that p = 0, 1, or 2 mod 4; so either 
p = 2 or p = 1 mod4. In either case, we can express p as the sum of two 
squares. 

COROLLARY. Assuming Conjectures 4.2 and 4.3, we can write n as the sum of 
three triangular numbers in random polynomial time. 

Acknowledgment. The research of the first author was supported by NSF 
Grant DCR-81-21431. 

Bibliography 

[l]  Adleman, L. M., Estes, D., and McCurley, K. S., Solving bivariate quadratic congruences in 

[2] Ankeny, N. C., S u m  of three squares, Proc. Amer. Math. SOC. 8 1957, pp. 316-319. 
[3] Bach, E., Miller, G., and Shallit, J., Sums ofdiuisors, perfect numbers, andfactoring, Proc. 16th 

[4] Berlekamp, E. R., Factoring polynomials over large finite fields, Math. Comput., 24, 1970, pp. 

[5] Brillhart, John, Note on representing a prime as a sum of two squares, Math. Comp. 26 1972, 

[6] Estes, D., Adleman, L. M., Kompella, K., McCurley, K. S., and Miller, G. L., Breaking the 
Ong-Schnorr-Shamir signature scheme for quadratic number fields, to appear. 

[7] Grace, J. H., The four-square theorem, J. Lond. Math. SOC. 2, 1927, pp. 3-8. 
[8] Hardy, G. H., and Littlewood, J. E., Some problems of ‘partitio numeromm’; III:  On the 

[9] Hardy, G. H., and Wright, E. M., An Introduction to the Theory of Numbers, Oxford, Clarendon 

random polynomial time, to appear. 

ACM Symposium on the Theory of Computing, 1984, pp. 183-190. 

713-735. 

1011-1013. 

expression of a number as a sum of primes, Acta Math. 44, 1923, pp. 1-70. 

Press, 1971. 
[lo] Kannan, R., Lattices, basis reduction, and the shortest vector problem, preprint. 
[ l l ]  Livingston, M. L., Explicit estimates for the +function for primes in arithmetic progression, S. I. 

U. E. Preprints in Mathematics X69, Southern Illinois University at Edwardsville, Edwardsville, 
IL, (March, 1986). 

[12] Linnik, Ju. V., A n  asymptotic formula in an additive problem of Hardy-Littlewood, Izv. h a d .  
Nauk SSSR Ser. Mat. 24, 1960, pp. 629-706. 

[13] Littlewood, J. E., On the class-number of the corpus P(m), Proc. London Math. SOC. 28, 1928, 

[14] Miech, R. J., On the equation n = p + x 2 ,  Trans. Amer. Math. SOC. 130, 1968, pp. 494-512. 
[15] Mordell, L. J., On the representation of a number as a sum of three squares, Rev. Math. Pures 

[16] Pollard J. M., and Schnorr, C. P., Solution ofx’  + ky2 = m(mod n ) ,  with application to digital 

[17] Rabin, M. O., Probabilistic algorithms, in Algorithms and Complexity, Recent Results and New 

pp. 358-372. 

Appl. 3, 1958, pp. 25-27. 

signatures, to appear, Math. Comp. 

Direction (J. F. Traub, ed.), Academic Press, New York, 1976, pp. 21-40. 



S256 M. 0. RABIN AND J. 0. SHALLIT 

[18] Rabin, M. O., EQcient Algorithms, Lecture Notes MIT, 1977, transcribed by M. Lui. 
[19] Rabin, M. O., Probabilistic tests forprimality, J. of Number Theory, 12, 1980, pp. 128-138. 
[20] Rabin, M. O., Probabilistic algorithms in finite fields, SIAM J. on Computing, 9, 1980, pp. 

[21] Rabin, M. O., Eflcient Algorithms, Lecture Notes Harvard University, 1980 transcribed by V. 

f221 Shallit, J. O., An exposirion of Pollard’s algorithm fur quadratic congruences, University of 

[23] Shallit, J. O., Random polynomial time algorithms for sums of squares, University of Chicago, 

[24] Schoof, R. J., Elliptic curues overfinitefields and the computation of square roots mod p ,  Math. of 

[25] Solovay, R. and Strassen, V., A fast  Monte-Carlo test forprimality, SIAM J. Comput. 6, 1977, pp. 

[26] Taussky, Olga, Sums of squares, Am. Math. Monthly 79, 1970, pp. 805-830. 

273-280. 

Hadzilacos. 

Chicago, Department of Computer Science, Technical Report 84-006, (Dec. 1984). 

Department of Computer Science, Technical Report 85-001, (Jan. 1985). 

Comp., 44,1985, pp. 483-494. 

84-85. 




