Solve

d d d
In (COS (ay (x))) + (ay (x)) tan (ay (x)) =y (x)
This is d’Alembert ODE. It has the form
y (@) =xf(y' (x) + gy (x)

Where f,g are functions of y/(x). If x is missing, then f,g must both be nonlinear in p for the ODE to be
d’Alembert ODE.

Solving for y (x) in the differential equation gives the following

d d d
y() =In (cos (ay (x))) + (ay (x)) tan (ay (x)) 1)

Replacing %y(x) by p (x), the above becomes
y=f+g 1)

f=ptan (p)
g=1In (cos (p))

ODE (1) is now solved.

y(x) = ptan (p) +In (cos (p)) (1)
Since ; q q
d—’; = (af’ (x)) tan (p () +p (x) (@p (x)) (1+ (tan (p)))
And
s (5p00)sin(p)
dx cos (p (x))
Then taking derivatives of (1) w.r.t. x and remembering that p (x) is a function of x gives
_af %
P=ax T ax
=|tan (p) +p (1 + (tan (p))z) - sin (P) % (2)
cos (p) dx

) Solving the above for p gives

The singular solution is found when 7= =

p=0

Substituting p = 0 values in (1) gives the singular solution

y (x) = 1In(cos (0))
=0



The general solution is found when % # 0. From (2) this results in

2" P[tan (1) +p (1 + (tan ()) - = (P)]

Inverting the above gives

j—; = % [tan (p) +p (1 + (tan (p))z) - sin (p))]

x(p) is now the dependent variable and p as the independent variable. Now this ODE is solved for x(p).

Solving for dipx (p) in d%x (p) - % (tan (p) +p (1 + (tan (p))Z) 3 sin(l’)) =0 gives

cos(p)
ix (p) _ _Tcos (P) (tan (p))z p - tan (p) cos (p) - pcos (p) +sin (p)
o pcos (p)

X (p) is now found by integration. Hence

. (P) B f _~cos (p) (tan (p))z p - tan (p) oS (p) —pcos (p) + sin (p)

= dp = tan p) +C
p cos (p) (
Solving for p from the above in terms of x gives

p = arctan (x — Cy)

Substituting the above solution for p in Eq (1) gives the general solution.

In(1+(x-Cy)°)

y(x) = arctan (x — C;) x —arctan (x - C;) C; - 2

Verification of solutions

y(x) =0

Verified OK

In(1+(x-Cy))

y (x) = arctan (x — C;) x — arctan (x — C;) C; — >

Verified OK

To compare with Maple
y) =0

y(x) _
X - f (RootOf(In(cos (_Z)) + _Z tan(_Z)—_a)) d_a-_Cl=0



