Solve

$$\ln\left(\cos\left(\frac{\mathrm{d}}{\mathrm{d}x}y\left(x\right)\right)\right) + \left(\frac{\mathrm{d}}{\mathrm{d}x}y\left(x\right)\right)\tan\left(\frac{\mathrm{d}}{\mathrm{d}x}y\left(x\right)\right) = y\left(x\right)$$

This is d'Alembert ODE. It has the form

$$y(x) = x f(y'(x) + g(y'(x)$$

Where f,g are functions of y'(x). If x is missing, then f,g must both be nonlinear in p for the ODE to be d'Alembert ODE.

Solving for y(x) in the differential equation gives the following

$$y(x) = \ln\left(\cos\left(\frac{\mathrm{d}}{\mathrm{d}x}y(x)\right)\right) + \left(\frac{\mathrm{d}}{\mathrm{d}x}y(x)\right)\tan\left(\frac{\mathrm{d}}{\mathrm{d}x}y(x)\right) \tag{1}$$

Replacing $\frac{d}{dx}y(x)$ by p(x), the above becomes

$$y(x) = f + g$$

$$f = p \tan(p)$$

$$g = \ln(\cos(p))$$
(1)

ODE (1) is now solved.

$$y(x) = p \tan(p) + \ln(\cos(p)) \tag{1}$$

Since

$$\frac{df}{dx} = \left(\frac{\mathrm{d}}{\mathrm{d}x}p\left(x\right)\right)\tan\left(p\left(x\right)\right) + p\left(x\right)\left(\frac{\mathrm{d}}{\mathrm{d}x}p\left(x\right)\right)\left(1 + \left(\tan\left(p\left(x\right)\right)\right)^{2}\right)$$

And

$$\frac{dg}{dx} = -\frac{\left(\frac{d}{dx}p(x)\right)\sin\left(p(x)\right)}{\cos\left(p(x)\right)}$$

Then taking derivatives of (1) w.r.t. x and remembering that p(x) is a function of x gives

$$p = \frac{df}{dx} + \frac{dg}{dx}$$

$$= \left(\tan\left(p\right) + p\left(1 + \left(\tan\left(p\right)\right)^2\right) - \frac{\sin\left(p\right)}{\cos\left(p\right)}\right) \frac{dp}{dx}$$
(2)

The singular solution is found when $\frac{dp}{dx} = 0$. Solving the above for p gives

$$p = 0$$

Substituting p = 0 values in (1) gives the singular solution

$$y(x) = \ln(\cos(0))$$
$$= 0$$

The general solution is found when $\frac{dp}{dx} \neq 0$. From (2) this results in

$$\frac{\mathrm{d}p}{\mathrm{d}x} = p \left(\tan \left(p \right) + p \left(1 + \left(\tan \left(p \right) \right)^2 \right) - \frac{\sin \left(p \right)}{\cos \left(p \right)} \right)^{-1}$$

Inverting the above gives

$$\frac{\mathrm{d}x}{\mathrm{d}p} = \frac{1}{p} \left(\tan(p) + p \left(1 + \left(\tan(p) \right)^2 \right) - \frac{\sin(p)}{\cos(p)} \right)$$

 $x\left(p\right)$ is now the dependent variable and p as the independent variable. Now this ODE is solved for $x\left(p\right)$. Solving for $\frac{\mathrm{d}}{\mathrm{d}p}x\left(p\right)$ in $\frac{\mathrm{d}}{\mathrm{d}p}x\left(p\right)-\frac{1}{p}\left(\tan\left(p\right)+p\left(1+\left(\tan\left(p\right)\right)^{2}\right)-\frac{\sin\left(p\right)}{\cos\left(p\right)}\right)=0$ gives

$$\frac{\mathrm{d}}{\mathrm{d}p}x\left(p\right) = -\frac{-\cos\left(p\right)\left(\tan\left(p\right)\right)^{2}p - \tan\left(p\right)\cos\left(p\right) - p\cos\left(p\right) + \sin\left(p\right)}{p\cos\left(p\right)}$$

x(p) is now found by integration. Hence

$$x(p) = \int -\frac{-\cos(p)(\tan(p))^2 p - \tan(p)\cos(p) - p\cos(p) + \sin(p)}{p\cos(p)} dp = \tan(p) + C_1$$

Solving for p from the above in terms of x gives

$$p = \arctan(x - C_1)$$

Substituting the above solution for p in Eq (1) gives the general solution.

$$y(x) = \arctan(x - C_1)x - \arctan(x - C_1)C_1 - \frac{\ln(1 + (x - C_1)^2)}{2}$$

Verification of solutions

$$y\left(x\right) =0$$

Verified OK

$$y\left(x\right) = \arctan\left(x-C_{1}\right)x - \arctan\left(x-C_{1}\right)C_{1} - \frac{\ln\left(1+\left(x-C_{1}\right)^{2}\right)}{2}$$

Verified OK

To compare with Maple

$$y\left(x\right)=0$$

$$x-\int^{y\left(x\right)}\left(\operatorname{RootOf}\left(\ln\left(\cos\left(\underline{Z}\right)\right)+\underline{Z}\,\tan\left(\underline{Z}\right)-\underline{a}\right)\right)^{-1}d\underline{a}-\underline{C}1=0$$