#### Student VectorCalculus Package - Overview Dr. Robert J. Lopez Emeritus Professor - RHIT Maple Fellow - Maplesoft

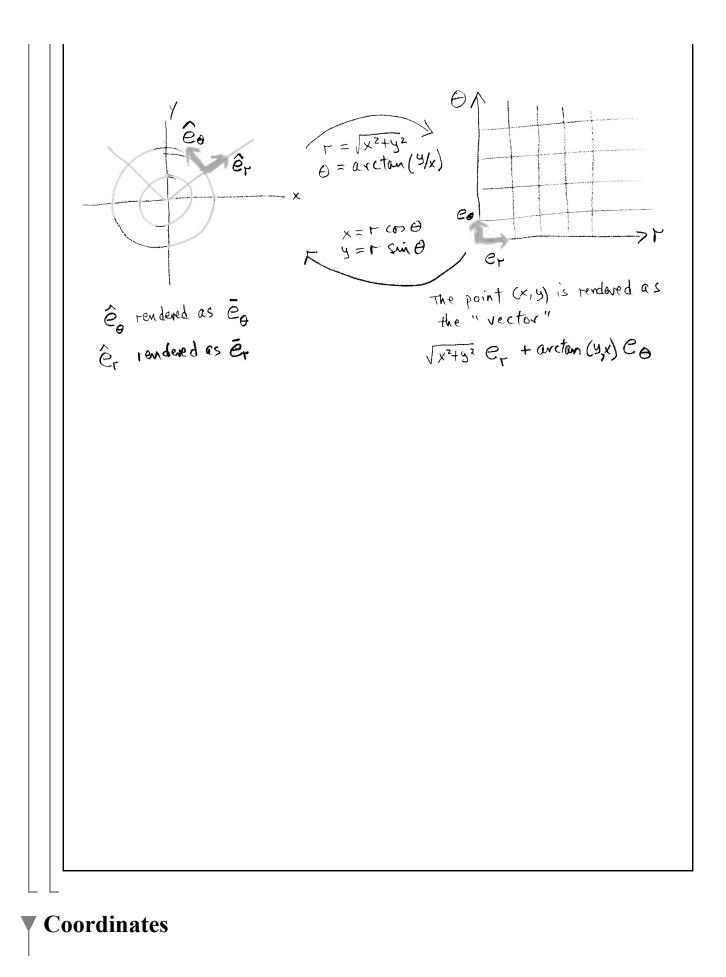
## **Introduction**

### **Starting Point**

| Loading Student:-VectorCalculus                                                                 |                                                                                       |
|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Command                                                                                         | Result                                                                                |
| Vector([u, v])                                                                                  | $(u)e_x + (v)e_y$                                                                     |
| Vector([x, y], polar)                                                                           | $(x)e_r + (y)e_{\theta}$                                                              |
| $MapToBasis(Vector([x, y]), polar[r, \theta])$                                                  | $\left(\sqrt{x^2+y^2}\right)e_r + (\arctan(y,x))e_{\theta}$                           |
| VectorField([x, y])                                                                             | $(x)\overline{e}_{x} + (y)\overline{e}_{y}$                                           |
| <i>VectorField</i> ([ <i>x</i> , <i>y</i> ], polar)                                             | $(x)\overline{e}_{r} + (y)\overline{e}_{\theta}$                                      |
| simplify(MapToBasis(VectorField([x, $y$ ]), polar[r, $\theta$ ]))                               | $(r)\overline{e}_{r}$                                                                 |
| $MapToBasis(VectorField([u, v]), polar[r, (u \cos(\theta) + v \sin(\theta))\overline{e}_r + (-$ | $\left( \theta \right] $<br>$u \sin(\theta) + v \cos(\theta) ) \overline{e}_{\theta}$ |

### One Sure Thing

| $\mathbf{i} \cos(\theta) = +\mathbf{j} \\ \sin(\theta)$ | ⇒ | $\mathbf{i} = \cos(\theta) \ \hat{e}_r \\ -\sin(\theta) \ \hat{e}_{\theta}$ |
|---------------------------------------------------------|---|-----------------------------------------------------------------------------|
| $-\mathbf{i}\sin(\theta) = +\mathbf{j} \\ \cos(\theta)$ |   | $\mathbf{j} = \sin(\theta) \hat{e}_r + \cos(\theta) \\ \hat{e}_{\theta} c$  |


$$u \mathbf{i} + v \mathbf{j} = u \left( \cos(\theta) \ \hat{e}_r - \sin(\theta) \ \hat{e}_{\theta} \right) + v \left( \cos(\theta) \ \hat{e}_r - \sin(\theta) \ \hat{e}_{\theta} \right)$$
$$= \left( u \cos(\theta) + v \sin(\theta) \right) \ \hat{e}_r + \left( v \cos(\theta) - u \sin(\theta) \right) \ \hat{e}_{\theta}$$

#### Identification of Point and Position Vector

• In Cartesian coordinates, the point (a, b) is identified with the vector  $a \mathbf{i} + b \mathbf{j}$ .

- The Cartesian identification of point with position vector is carried over to nonCartesian coordinates.
- A point in nonCartesian coordinates is represented by a fictitious "position vector" in such coordinates.
- At top-level in Maple, points are generally lists: [*a*, *b*], but these don't carry a coordinate system.
- Points in the *VectorCalculus* packages, being represented as vectors, carry a coordinate system.

### Implications



The Student VectorCalculus package recognizes the five coordinate systems listed in Table 1.

| System                                                                                                                       | Default Names of Coordinate Variables |
|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| cartesian                                                                                                                    | <i>x</i> , <i>y</i>                   |
| cartesian                                                                                                                    | <i>x</i> , <i>y</i> , <i>z</i>        |
| polar                                                                                                                        | <i>r</i> , θ                          |
| cylindrical                                                                                                                  | <i>r</i> , θ, <i>z</i>                |
| spherical                                                                                                                    | <i>r</i> , φ, θ                       |
| Table 1         Coordinate systems recognized by the Student           VectorCalculus package         VectorCalculus package |                                       |

#### **Talking Points**

- Default names for coordinate
- variables
- Conventions for spherical coordinates
- Ambient coordinate system
- "Forgiving" nature of the Student
- package

Table 2 lists the two commands relevant to changing the ambient coordinate system.

| Command                                         | Usage                                               |
|-------------------------------------------------|-----------------------------------------------------|
| <b><u>SetCoordinates</u></b>                    | SetCoordinates(polar) or SetCoordinates(polar[r,t]) |
| <b><u>GetCoordinates</u></b>                    | GetCoordinates() or GetCoordinates(object)          |
| Table 2         Manipulating coordinate systems |                                                     |

# Vector Objects

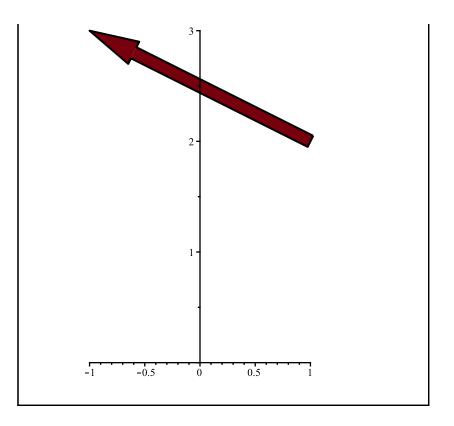
#### **Table of Basic Vector Objects**

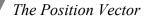
Table 3 lists the four basic vector objects in the Student *VectorCalculus* package. These are the free <u>Vector</u>, the <u>**RootedVector**</u>, the <u>**PositionVector**</u>, and the <u>**VectorField**</u>.

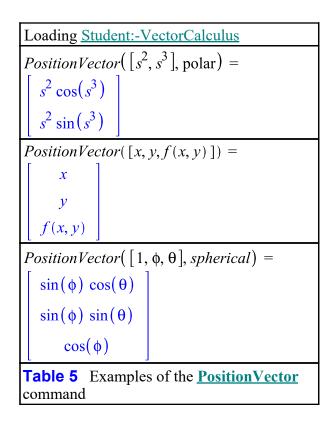
| Object      | Usage                                                                                                                                  |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Free vector | <a, b=""><br/>Vector([a, b])<br/>Vector(<a, b="">)<br/>Vector(<a, b="">, polar)<br/>Vector(<a, b="">, polar[r, t])</a,></a,></a,></a,> |

| Rooted vector                  | <b>RootedVector</b> (root = [u, v], <a, b="">)</a,>                                                                                                            |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Position<br>vector             | PositionVector([a, b])<br>PositionVector([f(s), g(s)], polar[r, t])<br>PositionVector([f(u, v), g(u, v), h(u, v)],<br>spherical[ $\rho$ , $\phi$ , $\theta$ ]) |
| Vector field                   | VectorField( <f(x, g(x,="" y)="" y),="">)<br/>VectorField(<f(r, g(r,="" t)="" t),="">, polar[r, t])</f(r,></f(x,>                                              |
| Table 3   Basic vector objects |                                                                                                                                                                |

#### Details for the Basic Objects in Table 3


Free Vectors


| • Tools>Load Package: Student<br>Vector Calculus                                                             | Loading <u>Student:-</u><br><u>VectorCalculus</u> |
|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| Examples of free                                                                                             | vectors                                           |
| $\langle a, b \rangle = (a)e_x + (b)e_y$                                                                     |                                                   |
| $\langle a, b, c \rangle = (a)e_x + (b)e_y + (c)e_z$                                                         |                                                   |
| $Vector(\langle a, b \rangle, \text{polar}) = (a)e_r + (b)e_{\theta}$                                        |                                                   |
| <i>Vector</i> ( $\langle a, b, c \rangle$ , <i>cylindrical</i> ) = $(a)e_r + (b)e_{\theta} + (c)e_z$         |                                                   |
| $Vector(\langle a, b, c \rangle, spherical[\rho, \phi, \theta]) = (a)e_{\rho} + (b)e_{\phi} + (c)e_{\theta}$ |                                                   |
| Table 4   Free vectors                                                                                       |                                                   |


Rooted Vectors

with(Student:-VectorCalculus):

 $PlotVector(RootedVector(root = [1, 2], \langle -2, 1 \rangle), scaling = constrained, view = [-1..1, 0..3])$ 







The real benefit of representing curves and surfaces via the <u>PositionVector</u> command is its compatibility with the <u>PlotPositionVector</u> command by means of which various vector fields can be superimposed on the curves and surfaces this command draws. (See the

section Visualizations, below.)

Vector Fields

with(Student:-VectorCalculus) :  $VectorField(\langle x + y, x - y \rangle) = (x + y)\overline{e}_{x} + (x - y)\overline{e}_{y}$   $VectorField(\langle u, v, w \rangle) = (u)\overline{e}_{x} + (v)\overline{e}_{y} + (w)\overline{e}_{z}$   $VectorField(\langle r + \theta, r - \theta \rangle, \text{polar}) = (r + \theta)\overline{e}_{r} + (r - \theta)\overline{e}_{\theta}$   $VectorField(\langle u, v, w \rangle, cylindrical) = (u)\overline{e}_{r} + (v)\overline{e}_{r} + (w)\overline{e}_{z}$   $VectorField(\langle u, v, w \rangle, spherical) = (u)\overline{e}_{r} + (v)\overline{e}_{r} + (w)\overline{e}_{\theta}$   $VectorField(\langle u, v, w \rangle, spherical) = (u)\overline{e}_{r} + (v)\overline{e}_{r} + (w)\overline{e}_{\theta}$  Table 6 Vector fields with explicit display of "moving basis vectors"

- When a <u>VectorField</u> is evaluated at a point, a <u>RootedVector</u> results.
- The evalVF command is used to evaluate a VectorField at a point.
- If an ordinary evaluation (or substitution) were made, only the components of the vector would be pointwise evaluated, and the basis vectors would therefore be incorrect, and a rooted vector would not result.

With the inclusion of the option "output = plot", the <u>VectorField</u> command returns a graph of the arrows of the field.

### **Commands Applicable to Basic Vector Objects**

Table 7 lists other commands relevant for the use of the basic vector objects in Table 3.

| Command            | Comments                                                                                                                                                                                                                                                       |  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <u>BasisFormat</u> | <ul> <li>Changes the display of free vectors and vector fields.</li> <li>The default is to display basis vectors, either unbarred or barred.</li> <li>Executing the command with the argument "false" switches the display to column-vector format.</li> </ul> |  |
| <u>About</u>       | • Applied to any of the four basic vector objects, this command returns relevant information for that object.                                                                                                                                                  |  |
| <u>evalVF</u>      | • As noted after Table 6, this command is used to evaluate a vector field at a point, and results in a rooted vector.                                                                                                                                          |  |
| <b>MapToBasis</b>  | • Change coordinates in a free vector or in a vector field.                                                                                                                                                                                                    |  |

|                                                                          | • Does not apply to scalar fields.                                                                         |
|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| <b>ConvertVector</b>                                                     | • Converts Cartesian free vector, rooted vector, or position vector to a free, rooted, or position vector. |
| Table 7 Commands pertinent to use of the basic vector objects in Table 3 |                                                                                                            |

### **Differentiation**

### **Y** Basic Differentiation Commands

Table 8 lists the commands in the Student *VectorCalculus* package that in some way involve differentiation.

| Command                        | Comments                                                                                                  |  |
|--------------------------------|-----------------------------------------------------------------------------------------------------------|--|
| diff                           | • The top-level <u>diff</u> command is modified so that it automatically maps onto components of vectors. |  |
| <u>Gradient</u>                | • Computes $\nabla f$ , the gradient of the scalar $f$ , returning a vector field.                        |  |
| <b>Divergence</b>              | • Computes $\nabla \cdot \mathbf{F}$ , the divergence of the vector field $\mathbf{F}$ .                  |  |
| <u>Curl</u>                    | <ul> <li>Computes ∇× F, the curl of the vector field F, returning a vector field.</li> </ul>              |  |
| <u>Laplacian</u>               | • Computes $\nabla^2 f$ , the Laplacian of the scalar $f$ .                                               |  |
| DirectionalD<br>iff            | • Computes the directional derivative of the scalar $f$ .                                                 |  |
| <u>TangentLin</u><br><u>e</u>  | • Returns a representation of the line tangent to a curve.                                                |  |
| <u>TangentPla</u><br><u>ne</u> | • Returns a representation of the plane tangent to a surface.                                             |  |
| Table 8 Di                     | Table 8         Differentiation commands in the Student VectorCalculus package                            |  |

#### **Frenet-Serret Formalism**

Commands relevant to the Frenet-Serret formalism are listed in Table 9.

| Command                             | Comments                                                                                                                                                                                                                             |  |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <b><u>Curvature</u></b>             | • Computes $\kappa$ , the curvature of a curve <b>R</b> .                                                                                                                                                                            |  |
| <u>RadiusOfCurv</u><br><u>ature</u> | <ul> <li>Computes 1/κ, the reciprocal of the curvature of a curve R.</li> <li>With "output = plot", returns a graph of R and the circle of curvature.</li> </ul>                                                                     |  |
| <b>Torsion</b>                      | • Computes $\tau$ , the torsion of a curve <b>R</b> .                                                                                                                                                                                |  |
| <b>TangentVector</b>                | <ul> <li>Computes R', a vector tangent to a curve R.</li> <li>With the option <i>normalized</i>, returns T, the <i>unit</i> tangent vector.</li> <li>With "output = plot", returns a graph of R and representative (unit)</li> </ul> |  |

|                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>tangent vectors.</li> <li>With "output = animation", returns a graph of <b>R</b> and a representative <b>T</b> traversing <b>R</b>.</li> </ul>                                                                                                                                                                                                                       |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <u>PrincipalNorm</u><br><u>al</u>                                                                                                                                                                                                                                                                                                                            | <ul> <li>For a curve R, computes a vector along N, the principal normal vector with the option <i>normalized</i>, returns N, the <i>unit</i> principal normal.</li> <li>With "output = plot", returns a graph of R and representative (unit) principal-normal vectors.</li> <li>With "output = animation", returns a graph of R and a representative traversing R.</li> </ul> |  |
| <u>Binormal</u>                                                                                                                                                                                                                                                                                                                                              | <ul> <li>For a curve R, computes a vector along B, the binormal vector.</li> <li>With the option <i>normalized</i>, returns B, the <i>unit</i> binormal.</li> <li>With "output = plot", returns a graph of R and representative (unit) binormal vectors.</li> <li>With "output = animation", returns a graph of R and a representative traversing R.</li> </ul>               |  |
| <ul> <li>Returns a sequence of T, N, and B, the (unit) tangent, principal norm and binormal vectors for a curve R.</li> <li>With "output = plot", returns a graph of R and representative triples of T, N and B vectors.</li> <li>With "output = animation", returns a graph of R and a representative triple of T, N and B vectors traversing R.</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                               |  |
| Table 9 Comm                                                                                                                                                                                                                                                                                                                                                 | nands relevant to the Frenet-Serret formalism                                                                                                                                                                                                                                                                                                                                 |  |

The Space Curve tutor implements the graphical aspects of the commands in Table 9. The

computational aspects are captured in the Context Panel when the Student *VectorCalculus* package is installed.

# Integration

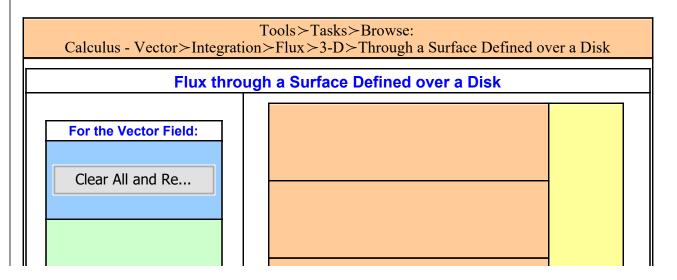
Table 10 lists the commands in the Student *VectorCalculus* package that in some way involve integration.

| Command        | Comments                                                                                                                                                                                                                                                                                                      |  |  |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| <u>int</u>     | • The top-level <u>int</u> command is modified to recognize the following pre-defined domains: <i>Circle, Ellipse, Parallelepiped, Rectangle, Region, Sector, Sphere, Tetrahedron</i> , and <i>Triangle</i> .                                                                                                 |  |  |
| <u>PathInt</u> | <ul> <li>Computes \$\int_C f ds\$, the line integral of the scalar f , taken with respect to arc length s along the curve C.</li> <li>The following pre-defined paths of integration of recognized: Arc, Circle, Ellipse, Line, LineSegments, and Path.</li> <li>Access through the Context Panel.</li> </ul> |  |  |
|                | • Computes along the curve $C$ , $\int_C \mathbf{F} \cdot \mathbf{dr} = \int_C \mathbf{F} \cdot \mathbf{T}  ds$ , the line integral of the tangential component of the vector field $\mathbf{F}$ , where $\mathbf{T}$ is the unit tangent vector along                                                        |  |  |

| <u>LineInt</u>             | <ul> <li><i>C</i>, and <i>ds</i> is the element of arc length along <i>C</i>.</li> <li>The following pre-defined paths of integration are recognized: <i>Arc</i>, <i>Circle</i>, <i>Circle3D</i>, <i>Ellipse</i>, <i>Line</i>, <i>LineSegments</i>, and <i>Path</i>.</li> <li>A graph of the vector field and the integration path is a possible return for the following pre-defined paths of integration: <i>Circle</i>, <i>Line</i>, <i>LineSegments</i>, and <i>Path</i>.</li> <li>Access through the Context Panel.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| <u>SurfaceInt</u>          | • Computes $\iint_{S} f d\sigma$ , the surface integral of the scalar $f$ taken over the surface $S$ , with $d\sigma$ being the element of surface area for $S$ .<br>• The following pre-defined surfaces are recognized: <i>Box</i> , <i>Sphere</i> , and <i>Surface</i> .<br>• Surfaces specified by the <i>Surface</i> option can be defined over the following planar regions: <i>Circle</i> , <i>Ellipse</i> , <i>Rectangle</i> , <i>Region</i> , <i>Sector</i> , and <i>Triangle</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| Flux                       | <ul> <li>In the plane, computes ∫<sub>C</sub> F • N ds, the flux of the vector field F through the plane curve C, where N is a unit normal field along C, and ds is the element of arc length along C.</li> <li>The following pre-defined curves are recognized: Arc, Circle, Ellipse, Line, LineSegments, and Path. A graph of the vector field and the curve is a possible return for the Circle, Line, LineSegments, and Path options. One or more representative normal vectors are drawn.</li> <li>In space, computes ∬<sub>S</sub> F • N dσ, the flux of the vector field F through the surface S, where N is a unit normal field on S, and dσ is the element of surface area for S.</li> <li>The following pre-defined surface option can be defined over the following planar regions: Circle, Ellipse, Rectangle, Region, Sector, and Triangle.</li> <li>For the Box, Sphere, and Surface options, a graph of the vector field and surface of integration is a possible return. One or more representative normal vectors are drawn. However, no graphs are drawn for surfaces specified over any of the predefined planar regions.</li> <li>Implemented in a set of Task Templates.</li> </ul> |  |  |  |
| <u>ScalarPote</u><br>ntial | Given a vector field <b>F</b> , returns (if it exists) the scalar $f$ whose gradient $\nabla f$ equals <b>F</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| <b>VectorPote</b>          | Given a vector field <b>F</b> , returns (if it exists) a vector <b>A</b> whose curl $\nabla \times \mathbf{A}$ equals <b>F</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |

## **Visualization**

Table 11 lists the commands in the Student VectorCalculus package that do, or can, return graphs.


| Command                              | Comment                                                                                                                                                                         |  |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <b><u>PlotVector</u></b>             | • Graphs one or more free or rooted vectors.                                                                                                                                    |  |
| <u>PlotPositionVe</u><br><u>ctor</u> | • Graphs the curve or surface represented by a <b><u>PositionVector</u></b> , and has options for adding vectors from various vector fields defined along the curve or surface. |  |

| <u>VectorField</u>                                                                    | <ul> <li>Creates a vector-field object, or graphs its arrows.</li> <li>This graphical functionality can also be accessed through the</li> <li>Vector Field tutor.</li> </ul> |  |  |  |
|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| <b>FlowLine</b>                                                                       | • Graph arrows of a vector field, and one or more of its flow lines.                                                                                                         |  |  |  |
| <u>SpaceCurve</u>                                                                     | <ul> <li>Provides a unified interface for graphing planar and spatial curves.</li> <li>The Space Curve tutor provides interactive access to this functionality.</li> </ul>   |  |  |  |
| <u>LineInt</u>                                                                        | • Forms and evaluates line integrals of the tangential component of a vector field, and can also return a graph.                                                             |  |  |  |
| <u>Flux</u>                                                                           | • Forms and evaluates flux integrals, and can also return a graph of the vector field and the curve or surface.                                                              |  |  |  |
| RadiusOfCurv<br>ature<br>TangentVector<br>PrincipalNorm<br>al<br>Binormal<br>TNBFrame | • These commands for implementing the Frenet-Serret formalism, can                                                                                                           |  |  |  |
| Table 11 Stud                                                                         | lent VectorCalculus commands that do, or can, return graphs                                                                                                                  |  |  |  |

### Example

Calculate the flux of  $\mathbf{F} = (x + y^2) \mathbf{i} + (x^2 - y) \mathbf{j} + x y z \mathbf{k}$  through that part of the surface  $z = 10 - x^2 - y^2$  that sits over the disk whose center is at (1, 2) and whose radius is 1.

### Solution via Task Template



| Select Coordinate v                                                                              |                            |                                                  |           |
|--------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------|-----------|
|                                                                                                  |                            |                                                  |           |
|                                                                                                  |                            |                                                  |           |
| Flux I<br>Simplify                                                                               |                            |                                                  |           |
| Value<br>Simplify                                                                                |                            |                                                  |           |
| Float                                                                                            |                            |                                                  |           |
| Solution via Explicit Co<br><i>Initialize</i>                                                    | mmands                     |                                                  |           |
| <ul> <li>restart</li> <li>with(Student:-VectorCalculate)</li> <li>BasisFormat(false):</li> </ul> | ulus):                     |                                                  |           |
| $ \mathbf{F} := VectorField([x + y^2$                                                            | $x^2, x^2 - y, x y z])$    |                                                  |           |
| $Obtain the Flux$ $> Flux(F, Surface(\langle x, y, 10 \\ = integral)$                            | $-x^2-y^2\rangle, [x,y]=0$ | Circle( $\langle 1, 2 \rangle, 1, [r, \theta]$ ) | ), output |

$$\begin{bmatrix} > Flux(\mathbf{F}, Surface(\langle x, y, 10 - x^2 - y^2 \rangle, [x, y] = Circle(\langle 1, 2 \rangle, 1, [r, \theta]))) \\ \hline From First Principles \\ \begin{bmatrix} > Z := 10 - x^2 - y^2 \\ > X := 1 + r \cos(\theta); \\ Y := 2 + r \sin(\theta) \\ \end{bmatrix} \begin{bmatrix} > d\sigma := \sqrt{1 + \left(\frac{\partial}{\partial x} Z\right)^2 + \left(\frac{\partial}{\partial y} Z\right)^2} \\ \begin{bmatrix} > \mathbf{N} := Normalize(Gradient(z - Z)) \\ \end{bmatrix} \begin{bmatrix} > \mathbf{N} := Normalize(Gradient(z - Z)) \\ \begin{bmatrix} > q := simplify(eval(\mathbf{F} \cdot \mathbf{N} \cdot d\sigma, z = Z)) \\ \end{bmatrix} \begin{bmatrix} > Q := eval(q, [x = X, y = Y]) \\ \end{bmatrix} \begin{bmatrix} > \int_0^1 \int_0^{2\pi} Q \cdot r \, d\theta \, dr \end{bmatrix}$$