Linear System of Equations. Let {y1,y2,¥ys,y4} denote the dependent variables, {«, 3,7, d,e} the parame-
ters, and x the ‘shocks’ (which we’ll feed into the system to study the change of dependent variables for given
parameters). Consider the following system of equations:

Y10 = Y25 — Y36 (1)

where
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subject to the following parameter constraints:
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The equilibrium of this system is pinned down by two sets of equations — the ya’s from equation (2) and the y4’s
from equation (3). Importantly, under the parameter constraints from equation (4), the system in equation (2) is
homogenous of degree 1 and has infinitely many solutions. However, by choosing any of the y>’s as a scaling factor,
it is possible to obtain an up-to-scale unique solution (see attached Maple file).

Matrix Form. It is possible to rewrite the above system of equations in the following (block) matrix form:
yi=X(I-M)"Z+V, (5)
where

e y; is a 2 x 1 vector of the key dependent variables, y; 1 and y; 2,

e X is a 2 x 4 matrix of independent variables, I is a 4 x 4 identity matrix, M is a 4 X 4 matrix of independent
variables, Z is a 4 x 1 vector of independent variables and V is a 2 x 1 vector of independent variables

e the + sign stands for the Moore-Penrose pseudoinverse, as the matrix I — M is singular (not full rank) and,
hence, non-invertible under the parameter constraints (note that this is a direct implication of the fact that
the system of yo’s from equation (2) has infinitely many solutions).

Importantly, as shown in the attached Maple file, the solution of equation (5) is identical to the one obtained from
solving the original system of linear equations. Also, we know the left eigenvector (and the stationary distribution)
of matrix M, which allows us to rewrite equation (5) in terms of a regular inverse:

yi=X(I—M*Z+V =y1 = X(I— A Z+V, (6)

where A = M + @ and @ is a suitably defined 4 x 4 matrix of independent variables (think of this matrix as a
scaling factor akin to the one chosen in equation (2) to ensure an up-to-scale unique solution).

Question. Consider two different sets of parameters, {Parametersl} and {Parameters2}, explicitly defined in
the attached Maple file. Both of them satisfy the parameter constraints in (4), but under {Parametersl} the
spectral radius (p) of (M + Q) is smaller than one (p(M + Q) < 1) and equation (6) can be rewritten as Neumann
series, whereas under {Parameters2} we have p(M + @) > 1 and the power series decomposition of equation
(6) is not possible. Also, if we apply an iterative updating process to yo;’s and y4, from equations (2) and (3)
under {Parametersl}, the solutions converge to the “correct” (up-to-scale unique) solution, whereas if we do the
exact same iterative updating under { Parameters2}, the solutions diverge (see my previous post on MaplePrimes).
Importantly, for both sets of parameters, there exist an (up-to-scale) unique solution of the linear system, which
is also identical to the matrix solutions obtained in equations (5) and (6) — it’s just that, under {Parametersl},
this solution can also be obtained iteratively (either by iterative ‘updating’ of the original system of linear equations
or Neumann series decomposition), while under {Parameters2} this solution cannot be obtained iteratively. This
makes me wonder whether the equilibrium under { Parameters2} is unstable and, if so, how to formally verify this?



