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A Note from  the E ~►  ~io rs 
April 1994, Vol. >, No. 

If you have peeked at the front cover information, you may have noticed the categorizations of the ar-
ticles within the Table of Contents and the list of members of our newly formed editorial board, and thus 
realized that the Maple Technical Newsletter has been "re-born" as an officially refereed publication. That's 
why we start fresh with this particular issue marked as "Volume 1, Number 1". In the past, we always had 
"refereeing" of the articles at a grass-roots level but our referee organization refined itself at each issue to 
the extent that the recognition of an official editorial board became necessary. The names in this list include 
people who have already made valuable contributions to the Newsletter. 

As mentioned again in our new guidelines for authors, the Maple Technical Newsletter has been defined 
by essentially three types of articles:  

(i) Articles on Maple functionality. 

(ii) Education-level articles. 

(iii) Articles on Research/Applications. 

For educational-level articles, accessibility of the article is especially important as our readership 
includes people from various disciplines. This issue includes three such articles. The article entitled "Maple 
in Education, fart II" by Scott et al. shows the type of worksheets we are eager to make accessible to every-
one from the share library (as discussed in both the article itself and the update on the share library within 
the News and Announcements section). Of course, we also continue our column entitled Tips and Techniques 
which presents yet a fourth category and which has received favorable response. In this way, we hope to 
cover a very broad range of articles. 

For this issue, the section entitled Features of Maple V Release 3 shows the capabilities of this most 
recent version of Maple. Our previous requests for applications of Maple in all areas seems to have born 
fruit. Besides the conventional areas of science such as nuclear magnetic resonance, this particular issue 
shows an unusual application of Maple, namely its use in a model for snow transport. 

As before, the Newsletter includes updated reports on the share library, the availability of Maple books 
and manuals, recent conferences, and new platforms for the Maple system. Details on how to submit articles 
for publication in this Newsletter are available in the section entitled Guidelines for Authors on page 93. 
Everyone is encouraged to do so. We especially welcome technical and educational articles that are acces-
sible and self-explanatory to the general Maple user. Applications in all areas are of interest, not just the 
areas of mathematics, science, medicine or engineering. Comments or inquiries should be addressed to the 
editors. 



Editor's Note 

About the Articles and their Authors 
To inform the reader about some of the new features of MapleV Release 3, the first two articles of this 

issue are devoted to extended functionality. The first article, written by Robert Corless and Michael Monagan 
describes Maple's assume facility. This article includes examples of how assume is used to solve problems 
and how it is integrated into Maple. It also discusses the limitations of this facility and proposes how Maple 
should evolve to a "lastproviso" model of computation. Robert Corless received his doctoral degree in 
mechanical engineering at the University of British Columbia and is presently an assistant professor at the Uni-
versity of Western Ontario. His background also includes computer science and applied mathematics, and his 
interests include computational aspects of dynamical systems, numerical solutions of ordinary differential 
equations, flow-induced vibration and perturbations. As a Commonwealth scholar from New Zealand, 
Michael received his Ph.D in Computer Science in 1990 from the University of Waterloo and is one of the most 
significant contributors to the Maple system. He is presently doing post-doctoral research at the Eidgenoes-
sische  Technische  H6chschule (E.T.H) in Zürich, Switzerland, with the Institute for Scientific Computation. 
Besides finite and algebraic number fields, his research interests also include automatic program differentia-
tion, Fortran/C code generation, and optimization. He has also made many contributions to this newsletter. 

The second article, written by Zaven A. Marian and Rohit Goyal, is a functionality article in the area of 
random number generation which provides performance figures for the rand function. Zaven Marian ob-
tained his doctoral degree in Mathematics from the Ohio State University and has a background in Computer 
Science. Since 1964, he has been at Denison University where he holds the Benjamin Barney Chair of Math-
ematics. His primary area of interest is the study of computer simulations. Rohit Goyal is a senior undergrad-
uate Computer Science major at Denison University where he has been involved with the use and instruction 
of Maple. Currently, he is working on a project that uses the C-callable version of Maple to fit probability dis-
tributions to data. His other interests include artificial intelligence and object oriented programming. The third 
article, written by Paul Zimmermann, is an expository article on a Maple implementation called Gaia which 
is a package that helps count and draw random combinatorial structures of various sorts. Paul Zimmermann 
got his doctoral degree in 1991 at 1'Ecole Polytechnique (France). His main research topic is the average-case 
analysis of algorithms. With Bruno Salvy, he designed the system Lambda-Upsilon-Omega (LUO) that gives 
an asymptotic expansion for the average-case complexity of programs, and the Maple package gfun for the 
manipulation of holonomic sequences. 

The next article written by Nicola Pio Belfiore, Ettore Pennestri and Rosario Sinatra, is in the area of me-
chanical engineering and presents a Maple-based approach to gear analysis which is relatively unique in me-
chanical design and could be of value to others in the field. Its two unique contributions are in the areas of 
graph-theoretic analysis of mechanical networks, and symbolic approaches to mechanical analysis. Ettore 
Pennestri received his doctoral Engineering Sciences degree from Columbia University and is currently an 
Associate Professor at the University of Rome (Tor Vergata)., His research interests include kinematics and 
dynamics of machines. He is the author of a book (in three volumes) on kinematic synthesis of linkages and 
has been awarded with the A.M.R. International Kinematician Award (1993-1995). I.P. Belfiore completed 
the doctoral program in Applied Mechanics at the University of Rome in 1992 with a thesis on the structural 
synthesis of robotic wrists. He is teaching courses on Rational Mechanics and Mechanics applied to Machines 
at both the University of Cassino and the University of Rome (La Sapienza). Rosario Sinatra graduated in 
1955 at the University of Catania where he is currently a researcher in the department of Mechanics Applied 
to Machines. His research interests include machine design, robotics and mechanical vibrations. 

The next article, written by Johannes Grotendorst, Paul Jansen, and Siegfried M. Schoberth, involves an 
application in the area of Nuclear Magnetic Resonance (NMR) spectroscopy. It demonstrates various ways of 
how the McConnell equations can be solved analytically using Maple and verifies solutions found in the lit-
erature. It also indicates computation techniques of mixed symbolic-numeric type for the determination of the 
formal parameters involved in the solutions. Johannes Grotendorst obtained his doctoral degree in theoretical 
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Editor's Note 

chemistry at the University of Regensburg and his background also includes studies of mathematics and phys-
ics at the University of Bielefeld. Since 1988, he has been at the Institute for Applied Mathematics at the  Jülich  
research center (KFA). His current research interests include approximation of functions, series and integrals 
(he developed the Maple share library package trans), and integration of symbolic and numeric computa-
tion for mathematical problem-solving in applied science. Paul Jansen obtained his diploma in mathematics 
at the Technical University of Aachen (RWTH) and is currently at the the Institute for Applied Mathematics 
at the  Jülich  research center where he lectures in numerical and statistical mathematics. His interests include 
mathematical and statistical software and inverse problems. Siegfried Schoberth obtained his doctoral degree 
in microbiology at the University of  Göttingen.  He is currently a research scientist in the Institute for Biotech-
nology at the  Jülich  Research Center. His research interests include "in vivo" NMR spectroscopy and general 
microbiology. 

The next article, aptly described by its title: "Modelling Snow Transport, An Application of Maple" and 
written by Christian Hoffmann, involves perhaps the most esoteric application of Maple seen so far. Christian 
Hoffmann received his mathematical training at the Polytechnical Institute at Darmstadt, Germany, and at the 
Federal Institute of Technology at Zürich, Switzerland. His doctoral thesis was completed in 1976 and he is 
currently working as a mathematical and statistical consultant at the Federal Institute of Forest, Snow, and 
Landscape Research near Zürich. His interests include numerical mathematics, the use of computer algebra 
in practical problems, statistical analysis, computer science, modelling, and astronomy. 

The next three articles involve educational-level subjects. The first of this set presents some educational 
examples in Physics, Chemistry and Engineering prepared on worksheets using MapleV Release 3. We hope 
these examples will encourage Maple users to make similar types of worksheets and will show users the type 
of accessible applications we wish to include within the Maple Share Library. This article is a sequel to Maple 
in Education as presented in issue 7 of this newsletter and is co-authored with Michael Monagan, Richard 
Pavelle and Darren Redfern. Richard Pavelle, a leading figure in the area of symbolic computation, was on 
the research staff at the MIT Laboratory for Computer Science and MIT Lincoln Laboratory for more than 10 
years, and has pioneered the development and use of symbolic systems since 1973. Among many other things, 
he is an inventor, the author of a Scientific  American article on Computer Algebra, and an expert in using com-
puter algebra systems to find analytical solutions for mathematical problems in science, engineering, and fi-
nance. Darren Redfern is a graduate of the Math Faculty of the University of Waterloo. After working as the 
Product Support Manager for Waterloo Maple Software, Darren started his own company, Practical Ap-
proach, in 1992. He is creating a tbird-party industry for products such as Maple, MATLAB, and others by 
providing books, training, and packages of code that supplement the basic functioning of these products. As 
one of his many duties, he is the Series Editor for all of Springer-Verlag's Maple material. He was also an 
assistant-editor of this Newsletter from issues 6 to 9 inclusive. 

The next article is a Maple worksheet prepared by Robert Lopez and presents some simple applications 
of Maple to solving ordinary differential equations. With a doctoral degree in Relativistic Cosmology ob-
tained in 1970 from Purdue University, Robert Lopez considers himself a classically trained applied mathe-
matician. At the Rose-Hulman Institute of Technology, he pioneered the use of Maple in teaching mathemat-
ics to engineering students, won the Dean's outstanding Teacher Award and co-authored a numerical analysis 
text. He has also spent the last two years in association with Waterloo Maple Software giving workshop's and 
presentations on the use of Maple in the classroom. 

Ross Taylor joins us again with another contribution, namely a readable article in the area of thermody-
namics which shows how Maple can be used to perform some simple phase equilibrium calculations, create 
phase diagrams and interpret data. Its contents could be also be useful to workers using Graph Theory in other 
areas. Ross Taylor obtained his doctoral degree in Chemical Engineering from the Institute of Science and 
Technology at the University of Manchester in 1980. He is a professor of chemical engineering at Clarkson 
University in Potsdam, New York and his particular interests are in mass transfer and design. 
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Maple Connections 

The New Maple/Prescience Info Server 

In our last issue, we had mentioned the merger of Waterloo Maple Software with Prescience Corpora-
tion, a developer of products such as Theorist and Expressionist. Now available by anonymous ftp from 
ftp.maplesoft.on.ca  is the "Info Server", an ftp site containing the Maple Share Library, demos, general in-
formation about Maple, Theorist and Expressionist, and support information. Some of the things you can 
find in the Info Server are: 

-Maple V Release 3 for DOS and Windows demo. 

-Theorist demo. 

-Expressionist demo. 

-Information about the Theorist Gopher Server. 

-Maple Sample Engineering Worksheets. 

-Answers to common support questions. 

-Maple availability lists. 

-List of Maple books and manuals. 

Information is updated regularly. If you have any questions about the Maple Info Server, please contact 
Waterloo Maple Software Technical Support at support@ maplesoft.on.ca. 

Shows and Conferences 

An Open Invitation to MEWS 94 

Maple Summer Workshop and Symposium 
August 9-13, 1994, Rensselaer Polytechnic Institute (RPI) 

Waterloo Maple Software (WMS) is currently making plans for MSWS '94. The conference will be held 
at RPI on August 9-13, 1994. This year's event includes a two-day workshop with courses in: 

-Discovering Maple V. 

-Maple V Programming Fundamentals. 

-Mathematical Applications with Maple V. 

-Advanced Maple V Programming Techniques. 

-Maple V in the Classroom. z 

-Algorithms for Computer Algebra. 

The applications symposium will contain invited talks from leading personalities, panel discussions, work-
shops, open forums, and paper presentations from researchers, educators and other innovative users from 
all fields. 

Also offered is a Spousal Program which includes a scenic and historic cruise of the Hudson or Mohawk 
Rivers, guided walking, driving or trolley tours of historic Albany and Troy, the Henry Hudson Planetarium, 
Shopping Excursions, bowling, and the Saratoga Thoroughbred Races. 
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News 

Dr. William H. Graves from the University of North Carolina at Chapel Hill is this year's MSWS'94 
banquet speaker. William Graves is the Associate Provost for Information Technology and the Director of 
the Institute for Academic Technology at UNCCH. He is also involved at this year's EDUCOM conference 
as the co-leader for a project entitled "Toward a National Learning Infrastructure". 

Further details on the program will be released as they become available. If you would like to be on the 
mailing list for MSWS '94 information, please contact: 

Paola D'Alessandro 
Events Coordinator at WMS 
Waterloo Maple Software 
450 Philip St. 
Waterloo, Ontario, N2L-3L3, Canada 
Phone: (519) 747-2373 
FAX: (519) 747-5284 
E-mail: pdalessa@maple  soft. on. ca  

Maple Publications 
® Solving Problems in Scientific Computing Using Maple and MATLAP by W. Hrebieek Gander, 

(Springer-Verlag),  ISBN 0-387-57329-1 (1993). 

A first comprehensive applications book of Maple and MATLAB to solving non-trivial problems in 
scientific computing. 250 pages. 

Contents: The Tractix and Similar Curves, Trajectory of a Spinning Tennis Ball, The Illumination 
Problem, Orbits in the Planar Three-Body Problem, The Internal Field in Semiconductors, Some 
Least Squares Problems, The Generalize Billiard Problem, Mirror Curves, Smoothing Filters, The 
Radar Problem, Conformal Mapping of a Circle, The Spinning Top, The Calibration Problem, Heat 
Flow Problems, Penetration of a Long Rod into a Semi-infinite Target, Heat Capacity of System of 
Bose Particles, Compression of a Metal Disk, Gauss  Quadrature,  Symbolic Computation of Explicit 
Runge-Kutta Formulas. 

® Exploring Calculus with Maple by H.H. Holmes, J.G. Ecker, W.E. Boyce and W.L. Siegmann (Add-
ison-Wesley), ISBN 0-201-52616-6 (1993). 

This easy-to-use manual enhances the fundamental concepts of calculus using Maple. Intended for 
use in a laboratory setting, a wide range of concepts are developed and investigated through a series 
of exploratory activities. 

® Calculus and Maple V by R. McLaughlin, (Saunders College), ISBN 0-03-096778-3 (1993). 

A collection of calculus lab exercises on the uses of Maple. 

® Maple Computer Manual for Advanced Engineering Mathematics by E. Kreyszig and E.J. Norming- 
ton (John Wiley & Sons, Inc.), ISBN 0-471-31126-X (1994). r 
A manual which presents a selection of about 250 worked-out examples and nearly 800 problems, 
covering almost all fields discussed in Advanced Engineering Mathematics. 

® Precalculus Investigations using Maple V by D.M. Mathews and I.E. Schwingendorf, (Harper Col-
lings College), ISBN 0-673-99410-4 (1994). 

This book provides an exciting and effective alternative to the traditional lecture-listen format of pre-
calculus, algebra and trigonometry courses. In the same spirit as the national calculus reform move-
ment, this book is intended to supplement any standard text with twelve carefully structured interac- 
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tive  learning environments for students  in  mathematics courses preceding calculus. Through the use  
of  Maple, the laboratory sessions provide students with conceptual understanding  of  core topics 
which traditionally constitute  precalculus  courses and courses  in  college algebra and trigonometry.  

® Erste Schritte mit  Maple by  W.  Burkhardt,  (Springer-Verlag), ISBN 3-540-56649-X (1994). 

Eine leichte Einführing mit Aufgaben und Lösungen. 130 Seiten. 

Inhalt: Einführung in die Benutzung, Termumformungen, Listen, Tabellen und Funktionen, Lösen 
von Gleichungen, Lineare Algebra und Gleichungssysteme, Grafiken, Analysis, Einfache Pro-
gramme, Installation auf PCs, Befehlsübersicht, Lösungen der Aufgaben. 

®  Maple  V  Release  2  by  M.  Moiler (Addison-Wesley  Verlag Deutschland), ISBN 3-89319-635-8 
(1994). 

Eine Einführung und Leitfaden für den Pratiker. 500 Seiten. 

Dieses Buch, dass ursprunglich für Mathematica geschrieben war, ist eine sehr umfassende Ein-
führung in  Release  2. Die Gliederung in zahlreiche überschaubare Kapital macht das Buch als Lehr-
buch und als Nachschlagwerk geeignet. Systematisch und mit realitätsnahen Beispielen wird im weit-
eren Verlauf auf verschiedene Anwendungsgebiete von  Maple  eingegangen. Jedes Kapitel endet mit 
einer knappen Syntaxzusammenfassung. Sie werden dabei von der Definition eigener Funktionen, 
dem Vereinfachen mathematischer Ausdrücke, und dem Lösen von Gleichungen und Gleichungssys-
temen bis zu Integration, Differentialgleichungen,  Fourier-  und  Laplace-Transformation geführt. 
Auch auf die ausgezeichneten Grafikfähigkeiten von  Maple,  das Programmieren in  Maple  und das 
Erstellen von  Maple-Dokumenten mit LATEX wird eingegangen. 

Dabei werden auch die Probleme mit  Maple  nicht verschwiegen. Ein eigenes Kapitel beschreibt 
typische Bedienungsfehler und ihre Ursachen. Eine Gegenüberstellung von  Maple  und Mathematica 
sowie eine kurze Beschreibung der Besonderheiten der Windows-Version von  Maple  runden das 
Buch ab. 

® Mathematik lernen mit  Maple  V  by  W. Werner, (ELBI-Verlag GmbH), ISBN 3-929694-03-4 (1993). 

Ein Lehr- und Arbeitsbuch für das Grundstudium mit zahlreichen Beispielen und Übungen sowie ein-
er Kurzeinführung in  Maple  V. Dieses Buch ist ein Lehrbuch für Mathematik. Die Beispiele werden 
mit  Maple  gelöst. Auch für die Übungsaufgaben kann  Maple  verwendet werden. Circa 500 Seiten. 

Inhalt: Mengen, Logik, Summen und Produkte, Trigonometrische Funktionen, Vektorrechnung, 
Natürliche Zahlen und vollständige Induktion, die reellen Zahlen, die komplexen Zahlen, Abbildun-
gen und Funktionen, Folgen und Grenzwerte, Reihen, Potenzreihen, Grenzwert einer Funktion, Dif-
ferenzierbare Funktionen, Taylorpolynom  and  Taylorreihe, Integralrechnung, Gewöhnliche Differen-
tialgleichungen,  Laplace-Transformation, Matrizen und lineare Gleichungssysteme, Determinenten, 
Ausgleichsrechnung, Eigenverte und Eigenvektoren, Einführung in  Maple  V. 

® Maple  V Software für Mathematiker  by  H. Gloggengieber (Markt & Technik), ISBN 3-87791-439-X 
(1993). 

z 

® Computeralgebra mit  Maple by  M. Kamminga-van Hulsen  (Academic  Service), ISBN 90-6233-923-9 
(1993). 

® Self-Tutor  for  Computer  Calculus Using Maple by  D.C.M. Burbulla  and  C.T.J.  Dodson, (Prentice  
Hall  Canada Inc.),  ISBN 0-13-063926-5 (1993). 
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It's here, it's good, it's solid. It's available for the Macintosh, the PC (DOS + Windows), DEC Alpha 
(OSF/1), and most Unix platforms. It is the most thoroughly tested version of Maple yet, having gone 
through approximately 3 months of alpha-testing and 3 months of beta-testing. 

Maple V Release 3 brings new capabilities and improvements in all areas of Maple. This includes en-
hancements to the user interface, worksheets, graphics, mathematics, and the Maple language and system. 
Release 3 also includes a new share library with many application worksheets and a demo directory with 
introductory tutorial and application worksheets. We've summarized the most important new facilities and 
changes below. 

When you get Maple V Release 3, you'll receive a not-too-technical document called the "Release 
notes" which summarizes all the important changes in Release 2 and Release 3. A complete summary of the 
changes and improvements in Release 3 is provided on-line under ?updates, v5 .3 and also as a Maple 
worksheet. Enjoy the new version of Maple and remember to take a look at what's in the new share library. 

User Interface 
Export to LATEX 

Perhaps the most useful new tool with Maple is this simple facility for outputting Maple worksheets as 
LATEX files. It includes a faithful rendering of Maple mathematical expressions with line breaking for large 
expressions. 

Keyword Search 

Forgotten the name of a Maple command? Looking for Maple routines for solving problems in such and 
such an area? Then just type in the topic or keyword and Maple will search its on-line help database for all 
Maple commands that mention the word. A simple and very useful facility. 

Subscripts and Assumed Variables 

Subscripted variables now print as subscripts and assumed Greek variables print as Greek variables! 

> assume(theta>0): a[i]*theta+a[i+1] = 1—theta; 

ai®-  + ai+ 1 = 1-0- 

Toolbars  for Windows 

The Windows version of Maple V Release 3 includes special toolbars for the worksheet and plot win-
dows. The user can change font sizes, change axes styles, change surface drawing styles, etc., with a simple 
mouse click. 

I  Institute für W issenschaft]iches Rechnen, ETH-Zentrum, CH 8092 Zürich,  Switzerland.  
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Graphic 

There are now 5 new options for point styles in plots, namely, BOX, CROSS, DIAMOND, CIRCLE and 
POINT. There are several new line style options including DASHED, THICK, THIN, DOTDASHED, etc. 
Font options (type, style, and size) have been added for text regions in plots. For example: 

> p1 := plot( sin(x)/x, x=-2*Pi..2*Pi ): 
> approx := convert( series( sin(x)/x, x=0, 10 ), polynom ): 
> p2 := plot( approx, x=-2*Pi..2*Pi, style=POINT, symbol=DIAMOND ): 
> plots[display](pl,p2, title=`Taylor approximation`, titlefont=[TIMES,R0MAN,18]); 

Taylor approximation 

i.e 
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Plotting Discontinuities 

A new option to plot has been added to search for discontinuities algebraically so that the resulting 
plot does not interpolate across discontinuities and singularities. 

Radical Simplification 

Good news! Problems with sqrt simplifications have been addressed. What were the problems? Ma-
ple simplified sqrt (x^2) to be x and sqrt (x*y) to be sqrt (x) *sqrt (y) automatically. These 
transformations are not always valid, for example when x and y are negative. Of course, simply turning off 
these simplifications is not satisfactory because users want these transformations to be done when provably 
correct, e.g. when x is known to be positive. 
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> radicals := [ sgrt(a^2), sgrt(4*a^2*y), (a^4*y)^(1/3) ]; 

radicals := [JaP, 2 a2y, (aay)  1/3] 

Simplifying the power of a in these examples can be done by either using the symbolic option to 
sgrt or simplify or combine, or malting appropriate assumptions. For example: 

> simplify(radicals,radical,symbolic); 

[a, 2a.,l.Y, a (ay) 1/3] 

> assume(a>0); 
> simplify(radicals,radical); 

[a-, 2a-,Fy, a-  (a-y) 1/3] 

Various new facilities for simplifying nested radicals have been added. Simple nested square roots are 
de-nested where possible by sgrt and simplify, and the more powerful  radnormal  command is pro-
vided. 

> sgrts := [ sgrt(2*I), sgrt(4+2*sgrt(3)), sgrt(2*(3-sgrt(2)-sgrt(3)+sgrt(6))) ]; 

sqrts:= [1+1,~3+1, J6-2J2_-2 F3+2~661 

> readlib(radnormal)(sgrts); 

[1+I,F3+1,-1+F3+ 3.16_,3_ 

New Integration Capabilities 

Indefinite integration has been extended to handle classes of special functions (e.g. Bessel functions). 

> Int( x^9*BesselY(3,x^2), x ) = int( x^9*BesselY(3,x^2), x ); 

1 
f x9BesselY(3, x 2 )dx = 2x8 BesselY(4, x2) 

This second example shows a Hermite reduction: 

> f := exp(-z)/z^2/(z^2+6*z+6)^2: 
> Int(f,z) = int(f,z); 

e(-z) 1 e(-z) (2 + 5z + z2) 1 
f z 2  (z 2  + 6z + 6) 2 d — — 12  (z2 + 6z + 6) z + 12Ei(l, z) 

Also, there are extensions to the classes of definite integrals that Maple can handle: 

> Int( t^(-1/3)*ln(t)*sgrt(1-t), t=0..1 ); 

f 1  ln(t) ~_I— t 
o tl/3 

dt 

> simplify (value( ") ) ; 

9~C-42y+77t~-631n(3)-42 Ì'C6JJr~3JFl3J~ ~ 
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Two new algorithms for solving linear ODE'S of order higher than 2 have been implemented. Maple is 
using these methods to reduce the order of an ODE so that other methods for handling first and second order 
ODE's can be applied. In the example below the new algorithm is able to find the exponential solution. 

> ode := (-2*x^2+x+n^2)*y(x)+(4*x^2-2*x-n^2)*diff(y(x),x)+ 

(-3*x^2+x)*diff(y(x),x$2)+x^2*diff(y(x),x$3); 

2 3 

ode:= (-2x2 +x+n2 )y(x)+ (4x2- 2x — n2)(a -y(x))+ (-3x2 +X)(aa2 y(X))+x2(5X3 y(x)) 

> dsolve(ode,y(x)); 

y(x) = —C1 ex  +—C2 exfBesselJ(n, x)dx +—C3 exf B esselY(n, x)dx 

In the special case n=1 these integrals can now be computed. Another new capability is the possibility 
of outputting the solution of an ODE as a basis of independent solutions as shown in this example. 

> n := 1; 

n := 1 

> dsolve(ode,y(x),output=basis); 

[ex, exBesselJ(0, x), exBesselY(0, x)] 

The DESol Data Structure 

This is a new data structure to represent the solution of a differential equation when an exact analytical 
solution cannot be found. This permits the user to manipulate a differential equation symbolically, e.g. by 
differentiating it, computing a series, etc. Here is an example: 

> de := DESol( diff(x(t),t,t) = g/1*sin(x(t)), x(t), x(0)=0 ); 

de := DESol( {( ~t2 

2 

x(t))—
gsin~x(t))

},  Ix(t)1, {x(0) = 01 ) 

> series(de,t=0); 

1 gD(x)(0) 1 gD(x)(0) (— D(x)(0)2  + g) 
D(x)(0)t + 6 l t3  + 120 l t5  + O(t6)  

Multivariate Factorization over GF(q) 

Polynomial factorization over finite fields has been extended to handle multivariate polynomials. In this 
example we factor a polynomial in x and y over GF(9). The finite field is represented by polynomials ovbr 
GF(3) modulo the given polynomial below. This representation is quite general and permits very large finite 
fields. 

> a1ias(a1pha=Root0f(x^2+2*x+2)): 
> f := x^3+alpha*x^2*y+alpha^2*x*y^2+(2*alpha+l)*y^3; 

f:=x3 +ax2y+OC2xy2 + (2a+1)y3  

> Factor(f) mod 3; 

(y+ (a+2)x) (y+(xx) (y+2(xx) 

N 
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The s t a t s package has been completely redesigned. The functionality is broken down into subpack-
ages which are listed when the s t a t s package is loaded. 

> with(stats); 

[describe, fit, importdata, random, statevalf, statplots, transform] 

The basic data structure of the stats package is the statistical list. It is a list of values which may contain 
ranges and weighted values. For example: 

> s11 [1,3,8,7,8,9,3,10,5,6,81; 

sll := [1, 3, 8, 7, 8, 9, 3, 10, 5, 6, 8] 

> s12 :_ [1,3..5,7,6..9, Weight(2,5), 6, Weight(7..10,2)l; 

s12 := [1, 3 .. 5, 7, 6 .. 9, Weight(2, 5), 6, Weight(? .. 10, 2)] 

> describe[meanl(sll), describe[meanl(s12); 

68 35 

11' 8 

There are many new distributions supported, facilities for computing random variates, data fitting rou-
tines, and many utility plotting routines. Mere we plot 100 random points from two normal distributions with 
mean 0 and standard deviation 1 against each other. 

> with(statplots); 

[boxplot, histogram, notchedbox, quantile, quantile2, scatterld, scatter2d, 
symmetry, xscale, xshift, xyexchange] 

> N01 := random[normald(0,111: X :_ [N01(100)1: Y := [N01(100)1: 
> splot := scatter2d(X,Y): bplot := boxplot[5](Y): nplot := notchedbox[5](X): 
> plots[display]( splot,xyexchange(bplot),nplot, view=[-6..6,-6..61 ); 

6- 

4-- 

2-- 

-'4 a 

_q 

-6 



Maple. V. Release 3 

Language and System 

A protection facility has been added to prevent the user from accidentally assigning to Maple system 
variables. For example, the names list  and lhs are now protected. Attempting to assign to them will re-
sult in an error. For example: 

> lhs := x^2-1; 

Error, attempting to assign to `lhs` which is protected 

Names may be protected with the protect function and unprotected with the unprotect function. 

Global Statement 

Procedures may now include an optional global statement which follows the local statement. 

> proc(n) local y; global A; 
y := 1; for  i  to n do y := x*y; A[i] y od; 

end; 

Warning,  `i`  is implicitly declared local 

proc(n) 
local Y,  i;  
global A; 

y := 1; for  i  to n do y := x*y; A[i] := y od 
end 

In this procedure, n is explicitly declared as a parameter, y is explicitly declared as a local variable, and 
A is explicitly declared as a global variable. The variables  i,  and x are not explicitly declared. In previous 
versions of Maple the variables  i  and x would be implicitly declared global variables. In this example, this 
is almost certainly a mistake as  i  should be a local variable. In the new version of Maple we see that  i  is 
implicitly declared local and the user is told about this implicit declaration. The rules for what is implicitly 
declared local are:  

(i) the variable appears on the left hand side of an assignment statement, or: 

(ii) it is used as an index to a for loop or seq statement. 

Fortran Command 

The fortran function now accepts an optional argument mode = <modetype> where the mode 
type must be one of single (the default), double, complex, generic. This controls how Maple func-
tion names are translated. Various other improvements have been made including outputting of vectors and 
matrices in row major order. For example: 

> A := array(symmetric,l..2,1..2,[(1,1)=ln(x),(2,1)=sin(x)]): 
> fortran(A,mode=generic,optimized); 

t2 = sin(x) L 

A(1,1) = log (x) 

A(1,2) = t2 
A(2,1) = t2 
A(2,2) = undefined 

12 
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New Share Library 
The new version of the share library that comes with Release 3 contains: 

1. About 25 applications packages and 75 applications routines; 

2. Over 50 applications worksheets and 20 educational worksheets in the sciences, engineering and 
mathematics; 

3. About 25 additional PostScript, TEX and LATEX documentation files. 

In this version of the share library we have divided the share library up into the following subject areas 
to make it easier for the users to find what they are looking for and provided a contents listing for each area 
with the given ? command: 

Algebra 
Analysis (Calculus) 
Automatic Differentiation 
Combinatorics 
Engineering 
Graphics and Geometry 
Linear Algebra 
Dumber Theory 
Numerics 
Programming 
Science 
Statistics 
System Tools  

?share,algebra 
?share,analysisor?share,calculus 
?share,autodiff 
?share,combinat 
?share,engineer 
?share,graphicsor?share,geometry 
?share,linalg 
?share,numtheory 
?share,numerics 
?share,programming 
?share,science 
?share,statistics 
?share,system 

Also new is an alphabetical index of the contents (see ?share, index). Additionally, the new 
readshare command simplifies the loading of routines and packages from the share library. For example, 
to load the g f un package that is in the calculus directory of the share library: 

> with(share): 

See ?share and ?share,contents for information about the share library 

> readshare(gfun,calculus); 



The Maple Shave (Applications)  Library 

The Maple share library is a means for the distribution of Maple routines, packages, worksheets, and 
other Maple materials written by Maple users to the Maple community. The share library is distributed with 
each new version of Maple (professional version only, not the student version) but we also maintain an elec-
tronic version (updated quarterly) which is available via anonymous ftp at the following sites 

Internet number Symbolic address Machine location directory 

129.132.101.33 neptune.inf.ethz.ch  Switzerland maple 

129.97.140.58 daisy.uwaterloo.ca  Canada maple 

192.93.2.54 ftp.inria.fr  France Lang/maple 

192.16.184.250 canb.can.nl  Rolland pub/maple-ftplib 

Please read the file README there. For users who do not have access to the internet, the share library is also 
distributed via electronic mail from CAN in the Netherlands. To access it, send a mail message containing 
the text "send info' to maple-net lib@can . nl . Instructions will be mailed back to you. 

The share library distributed with Maple V Release 3 contains approximately 50 Maple worksheets, 75 
routines, and 25 packages, over double that of Release 2. We have included a special command read-
share to make it easier to load routines and packages from the share library. Also, ?share [ index] 
gives you an alphabetical index of the facilities into the share library for quick inspection, and 
?share [contents ] points you to more detailed topic indexes. For example, ?share [ statistics ] 
lists all facilities in statistics. 

See ? share [ cont rib] for instructions for submitting Maple code or worksheets to the share library. 
Submissions must be made by electronic mail to make it feasible for us to assist authors in testing, preparing 
documentation, and maintaining the code. Questions about contributions should be sent to Dr. Michael 
Monagan at monagan@inf . ethz . ch . 

M,.. ,.,. 

The following worksheets are available for Release 2 and Release 3. 

doubpend.ms  - uses the ODE package to approximate the solution to the differential equation asso-
ciated with a double pendulum, i.e. a pendulum attached to a pendulum. The motion of the double 
pendulum is then animated. 

education (science) - These seven worksheets show different capabilities of Maple in solving seven 
problems in science at the educational level. For further details, see the article by Scott et al. in this 
issue. 

1. bohratom.ms  (chemistry): shows Maple solving three non-linear equations symbolically arising 
from semi-classical mechanics, namely the Bohr theory applied to the hydrogen atom. 

14 
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2. chemegn.ms  (chemistry): uses Maple's  i  solve command to balance the coefficients in a chem-
ical reaction. 

3. heatcap.ms  (statistical mechanics): obtains the mean energy and heat capacity of an Einstein solid. 
Maple is used to compute a symbolic infinite sum and compute symbolic limits. 

4. Maxgas.ms (statistical mechanics): uses Maple to find the most probable speed of the Maxwell-
Boltzmann distribution. This involves differentiation and solving a simple non-linear equation. 

5. planck.ms  (statistical mechanics): uses Maple to compute a definite integral, the Stefan-Boltz-
mann Law (of Blackbody radiation). 

6. quantopt.ms  (quantum optics): uses Maple to symbolically integrate a triple integral and simplify 
the resulting formula. 

7. wheatsto.ms  (basic electronics): uses Maple to solve six linear equations (derived from applying 
Kirchoff's laws to the "Wheatstone Bridge" electrical circuit) symbolically for the currents which 
are functions of the resistances R1, R2, R3, R4, R5. 

® flash.ms  —flash calculations are used to determine the phase condition of a mixture at a specified tem-
perature and pressure. Such computations lie at the heart of many process engineering calculations 
and are of central importance in many other applications as well (oil reservoir simulation for exam-
ple). 

® group.ms  — an application of Maple's group package to answering various questions about the small 
Rubik's cube. 

® lapack.ms  — on the front cover of the LAPACK User's Guide is a 6 by 6 matrix whose entries are the 
letters L A P A C K appearing in a particular pattern. This worksheet shows how we can use Maple's 
symbolic linear algebra tools to find out exactly what is so special about this matrix. 

® logistic.ms — solves the logistics law of population growth F= a P - b PZ. Given 3 populations P(10), 
P(tO+5), and P(ZO+2*8) Maple can solve for a and b. 

® logmap.ms  — explores the period-doubling bifurcation sequence of the discrete logistic map. Al-
though numerical tools can be used, we believe it is useful to examine the polynomial algebra here 
in some detail. 

® McConnel.ms  — a Maple worksheet on how to use matrix algebra, in particular matrix exponentials, 
for the symbolic solution of a system of first order differential equations in biochemistry, namely the 
McConnell equations. The McConnell equations are used to analyze data obtained from solute-cell 
transport experiments using the nuclear magnetic resonance (NMR) technique. 

® parfrac.ms  — shows how to use Maple to perform each step of a partial fraction decomposition for 
rational function integration. 

® pendulum.ms  — models the motion of a pendulum in a fluid as a second order ODE, solves the ODE 
analytically using Maple, and then plots the motion for different fluid resistances. 

® phase.ms  — simple Thermodynamic Calculations including bubble and dew point determination, cre-
ating and plotting phase diagrams, flash calculations, etc. 

® shottraj.ms  — uses Maple to solve symbolically and plot the solution of a second order ODE which 
describes the motion of a bullet shot straight up into the air. 

The following Maple routines and packages are available; the superscript indicates for which release of Ma-
ple V they are available. 

® pade21,2,3 — computes a generalized Pade approximation of f l (x), ..., fn(x) at x p. 

In 
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• intpak1,2,3 _ an interval arithmetic package. 

® IntSolve1,2,3 — an integral equation solver. 

® fft, fht2,3  — Maple routines for the calculation of the bast Fourier and Hartley transforms. 

® fields 1,2,3 — let N be a field extension of L, a field extension of K, such that N is finitely generated over 
K. This package uses Grobner basis methods to calculate the transcendence degree of NIL and the de-
gree [N:L] if the field extension is algebraic, and related questions. 

® sffge1,2,3 — reduces a matrix of polynomials to upper triangular form and (optionally) computes the 
determinant. This routine is designed specially for sparse matrices. 

® genus 2,3  — (an update to the integral basis package) for computing the genus of an algebraic curve. 

® trans 1,2,3 — update includes special numerical versions of the approximation algorithms to use the per-
formance of the hardware floating point arithmetic. 

• ratinterp1,2,3 _ computes the rational function which interpolates given data points. 

® kinetics 1,2,3 _ Maple procedures for determining the system of differential equations, the associated 
conservation laws, and some of the species that have a zero steady state of a reaction scheme. This 
update includes a better algorithm plus notational changes. 

• MatPade2,3  — Maple procedures to compute matrix-type Pade approximants. 

16 
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In this month's column, we answer three common programming questions that users have often asked, and 
we begin a discussion on simplification and the problem of zero recognition which we will continue in the next 
issues of the MTN. Testing whether an expression is equal to zero, and simplification are perhaps the two most 
important issues facing all computer algebra systems. They are complicated issues both from a system design 
point of view, and from the algorithmic point of view. Let us begin with the programming questions. 

_, , l'I ..' .~ 
'.., 

,.: ^ ` .. ~ . • ~, i ~ ,Iq ~Ji 

A user asked why the following didn't work: 

> f .= x*sin(x); 

f := sin(x) x 

> diff(f,x); 

x cos(x) + sin(x) 

> g .= x -> , 

That is, the output of g(1) is "nothing". What the user clearly wanted to do was to assign to g the function 
x -> x*cos (x) +sin W. So why didn't Maple do the obvious thing?! Well, consider this program: 

> diff (f,x) ; 

x cos(x) + sin(x) 

> h := proc(g) int(g,x); " end, 

Now, does the " in the h procedure refer to the derivative computed in the session? Or does it refer to 
the previous value int (g, x) ; in the procedure? Of course it refers to the value of int (g, x) ; in the 
procedure. When you input a procedure either using the proc ... end notation or the arrow notation, 
the body of the procedure is NOT executed. It is only executed when the procedure is called. Hence when 
the g procedure is called, since " has no value, NULL is returned. 

That leaves us with the user's problem: "How can I create a procedure from a formula?" The answer is 
to use the unapply function as follows: 

z 
> diff (f,x) ; 

x cos(x) + sin(x) 

> g := unapply (", x) ; 

g := x —> x cos(x) + sin(x) 

> g(1); 

cos(1) + sin(1) 

1 Institute für Wissenschaftliches Rechnen, ETH-Zentrum, CH 5092 Zürich,  Switzerland.  
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Sc®  ing Rules for Procedures 
A user recently asked why the following program didn't work: 

> tryl proc(x:list) local v; 
v x[nops(x)]; 
map(y->y/v, x); 

end: 

Note: the construct y->y/v is Maple shorthand for the procedure pro  (y) y/v end. What is the pro-
gram meant to compute? The input to the program is a list of values x. It assigns v the last value in the list 
x. The map statement is meant to return a new list where the values in the list x have been divided by v. For 
example, if the input is: 

> x := [16,2,4,8]; 

x:=[16,2,4,g]  

then the try  program is supposed to return: 

where all entries have been divided by g. Instead, the program returns: 

> tryl(x); 

r 1 1 1 lj 
16 

V, 2v' 4v' g v 

The problem is that the variable v in the procedure y->y/v does not refer to the local variable v in the 
try1 procedure. What does it refer to? In Maple, because the v in y->y/v is neither a local variable (there 
are no local variables) nor a parameter (y is the only parameter), it refers to the global variable v (the one in 
the Maple session). In some other languages, e.g. Pascal, the v variable would refer to the local v variable 
in the try  procedure. Note, the Maple people are right now considering changing Maple to be like Pascal 
on this issue of "scoping rules for variables". Mere are several ways to solve the problem now: 

> proc(x:list) local v,y; 
v := x[nops(x)]; 
[seq(y/v, y=x)]; 

end 

This solution solves the problem by avoiding the use of a nested procedure. It is therefore the fastest solu-
tion. Note, in the seq function here, the variable y iterates over the elements of the list x. Here is another 
solution: 

> proc(x:list) local v; 
v := x[nops(x)]; 
map((y,v)->y/v, x,v); 

end 

This solution avoids the problem by passing the value v as an additional parameter to the map function?Yet 
another solution: 

> proc(x:list) local v,y; 
v := x[nops(x)], 
map(unapply(y/v,y), x); 

end 

18 
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What does unapply (y /v) do? First, the argument y/v is evaluated. In our example, the result is the 
formula y/8 . Now the unapply command creates a procedure from the formula y/g with y being a param-
eter: 

> unapply(y/8,y); 

Thus this solution solves the problem by creating a procedure with the value of v in the procedure. The final 
solution is a general way to simulate nested scoping in Maple. It relies on the ability to be able create new 
procedures by substituting for dummy names into a procedure. We don't claim that this is an elegant solu-
tion! however ... 

> proc(x:list) local v,f; 
v x[nops(x)]; 
f subs(DUMMY='v', y->y/DUMMY); 
map(f,x); 

end 

Instead of using the procedure y->y/v, the desired procedure is created by substituting the global variable 
DUMMY for the name of the local variable v into the procedure. It is not necessary to put quotes around the 
local variable v in this example. Without quotes, the value of v (g in our example) would be substituted for 
DUMMY. We would end up with the same solution as the unapply solution. 

Programming erators and Rules 
A user was trying to define standard statistical operators for expectancy, variance, covariance and asked 

how to implement Cov, a covariance operator in Maple. Note, it is not necessary that you know any statistics 
or even care about statistics to learn from this example. Let a be a constant, and X, Y, Z be random variables. 
We are given the following properties below for the Cov operator: 

1. Cov(a,X) = 0 

2. Cov(X,X) = Var(X) where Var is the variance operator 

3. Cov(a X,Y) = a Cov(X,Y) (linearity) 

4. Cov(X+Y,Z) = Cov(X,Z) + Cov(Y,Z) (distributivity) 

5. Cov(X,I) = Cov(Y,X) (commutativity) 

and we want to apply them to "simplify" an expression involving these operators. What do we mean by 
"simplify" here? We mean apply the given rules in such a way that the input expression is transformed into 
a standard form. For example, on input of: 

Cov(x,x+2y+z)  

after applying the properties from left to right, we want to obtain the result: 

Var(x)+2Cov(x,y)+Cov(x,z) 

In the previous issue of the MTN, we showed how to program simplifications like this. Our code makes 
use of the map and s e 1 e  t commands. To simplify our Maple code, I have written this utility function 
HasConstants: 

HE 
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> # This boolean procedure determines if a product has any constants 
# If it does, it assigns the parameter C the product of those constants 

HasConstants := proc(x:`*`, C:name) local c; 
c := select(type,x,constant); 
if c <> 1 then C := c; true else false fi; 

end: 

Cov := proc(X,Y) local C; 
if type(X,constant) then 0 
elif type(Y,constant) then 0 
elif X = Y then Var(X) 
elif type(X,`+`) then map(Cov,X,Y) # distributivity 
elif type(Y,`+`) then map(Cov,Y,X) # distributivity 
elif type(X,`*`) and HasConstants(X,'C') then C*Cov(X/C,Y) # linearity 
elif type(Y,`*`) and HasConstants(Y,'C') then C*Cov(X,Y/C) # linearity 
elif sort([X,Y)) _ [Y,X] then Cov(Y,X) # commutativity 
else 'Cov'(X,Y) 
fi 

end: 

Observe that each rule or property has become one or two conditions followed by an action. This is coded 
as a single Maple  i  f statement. If no rule is applicable the unevaluated expression ' Cov' (X, Y) is re-
turned. The quotes here are to prevent an infinite recursion. 

Mote also that the property distributivity has been implemented using the map command. If X is of sum 
of terms, i.e. X = X  + X2  + ... + X

n
, then: 

map(Cov, X, 1) ~ Cov(X,,i) + Cov(X2,Y) + ... + Cov(Xn,1) 

What is Maple's goal when I input an expression? The answer in one word is "simplify" it. Everything 
that Maple does can be viewed in this light. Le, Maple can be viewed as a formula transformer where the 
user is happy when the output is simpler than the input. Even an integral can be viewed as a simplification. 
For example, consider: 

> int( x2/(x2-a2), x ); 

I 1 
x + 2aln (x — a) — 2aln (x + a) 

In what sense is this output "simplified"? It is simplified in the sense that the integral sign (f) has been re-
moved. Suppose we try to solve the system of equations: 

> solve({x
3
+y3_1 x4-y4=1),{x,y)); 

Maple returns this: 

{y=0,x=1}, {y=%1,x=7/4%1+5/4%14 +3%15-9/4%12-7/4%13 +2} 

%1 .= IZoot0f(4_Z6-6_Z3  + 4 +3_Z5  +3_Z) 

In what sense has this been simplified? The variables x,y have been isolated to the left hand sides of the 
equations. Notice that Maple did not completely solve the equations. The solutions have been left in an im-
plicit form as the roots of a degree 6 polynomial. Consider the following table of expressions (table 1). All 
these expressions equal zero. Well, strictly speaking the ones containing integrals equate to constants. And 
the ones containing square roots equal zero assuming we are choosing the positive root or the "principle 
branch". Let's input them into Maple and see what happens: 
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1. j4- -2 6. /6--j2-  j3- 

2. 3+4i-2—i 7• 4+2,F3—«f3-1 

3 x3 / 2 —xf 8• x+1 3 —x x+1— x+1 

4. sin (—x) + sin (x) 9. e-- 1 
e 

5. x—ln(1+x)—J 
f 

~ 
1+x 

2 
10. In x3 +1) —

f 

3x +2 x+1 
dx 

2x3 +2 x3 +1x+2 

Table 1 

el := 0 

e2 := 0 

e3 := 0 

e4 := 0 

e5 := 0 

> e1 := sgrt(4)-2; 

> e2 := sgrt(3+4*I)-2-I; 

> e3 := x^(3/2)-x*sgrt(x); 

> e4 := sin(-x)+snn(x); 

> e5 := x-1n(1+x)-int(x/(x+1),x); 

> e6 := sgrt(6)-sgrt(2)*sgrt(3); 

e6 := 6 1/2  — 2 1/23 1/2 

> e7 := sgrt(4+2*sgrt(3))-sgrt(3)-l; 

e7 := (4 +2 31/2) 1/2 — 3  1/2 — 1 

> e8 := sgrt(x+1)^3-x*sgrt(x+1)-sgrt(x+1); 

e8 := ( 1 + x) 3/2  — x ( 1 + x) L2  — ( 1 + x) 1/2 

> e9 := exp (-x) -1 /exp (x) ; 

1 
e9:= exp(—x) — exp(x) T 

> r := sgrt(x^3+1): 
> e10 := ln(x+r)-int( (3*x^2+2*r)/(2*x^3+2*r*x+2), x ); 

3x 2  + 2 (x 3  + 1)  v2 
e10 := In (x + (x3  + 1) 1/2) — f2x3  + 2 (x3  + 1) 112X  + 2dx 

Maple determines that the first 5 are zero. We say that the first 5 were automatically simplified to 0. Why 
didn't Maple simplify the latter 5 to 0? Can Maple simplify the latter 5 to 0? There exist several commands 
in Maple to simplify formulae. The simpli fy command is the command most users will be familiar with. 

21 



Maple Tips 

The expand and normal commands also simplify formulae. The normal command, possibly the most 
important command in Maple, provides a "normal form" for "rational expressions". What is a normal form? 
What are rational expressions? We'll get to that later. bet's try the simplify  command: 

> for  i  from 6 to 10 do simplify( e.i ) od; 

0 

21/2  (2+3 1/2 ) 1/2 — 31/2 — I 

0 
0 

In x+ 1 + x 1/2  x2  — x+ 1 1/2  — J  I/2 3x
2  + 2(x3  + 1) v2 

dx 
( ( ) ( ) ) x +(x3 +I) 1/ x+1 

It would appear that s imp 1  i  f  is not powerful enough to recognize that the nested square root expression 
is zero. Actually, there is a function in the Maple library called  radnormal  which can de-nest radicals, 
and hence simplify this to zero. The integral e10 is a case where Maple really just can't do it. 

In this discussion, we are going to view all of Maple as a simplifier. Think of the integration command 
int as a simplifier. It is no different from the sqrt command or the sin command or the Cov operator 
that we implemented previously. When Maple gets an integral as an input, it tries to simplify the integral. If 
it can get rid of the integral sign, then it has succeeded. 

We want also to emphasize the issue of zero recognition. This is crucial because if we fail to recognize 
a zero, we may erroneously divide by zero or conclude that a system of equations is unsolvable. The follow-
ing examples will help motivate the discussion further. 

> int( (sqrt(6)-sgrt(2)*sgrt(3))*exp(x3), x ); 

J  ( 61/2 — 21/2 31/2 ) exp(x3) dx 

> simplify("); 

Co 

Maple could not initially compute the integral because it did not realize that the integrand is equal to 0. It 
has a hidden zero. But it can simplify the integrand to 0 using the s imp 1  i  f y command. A second example: 

> egns :_ (x=O,x=sgrt(6)-sgrt(2)*sgrt(3)); 

egns :_ { x = 0, x = 61/2 — 21/2 31/2 } 

> solve(egns,(x)); 
> 

In this example, we fooled Maple so that it could not find the x=0 solution. Once we can hide a zero, it is 
not hard to force Maple to divide by it. 

> 1/((sgrt(6)-sgrt(2)*sgrt(3))+x); 

1 
61/2 — 21/2 31/2 + x 

> series(",x); 

%1 %12x + %113x2 — %114 x3 + %115 x4 — %116x5+ O(x6) 

%I 61/2 — 21/2 31/2 

> simplify("); 

Error, (in radsimp) division by zero 
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It is apparent from these three examples that none of the commands int, solve nor series use the 
simplify  command. If they had, they would have eliminated the hidden zero F - F2 j3-  expression. 
What do they use to simplify their inputs? I hope the reader is intrigued at this point and will learn as we 
answer the following questions in the coming issues of M'TN: 

1. What simplifications are automatic? 

2. What simplifications are provided by expand, normal and simplify? 

3. When can routines like solve and int fail or give wrong answers because they fail to recognize 
a zero? 

4. What assumptions are made when simplifications are done? 

5. Can 1, and if so how, extend Maple's simplification knowledge? 
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Simplification is difficult. For computer algebra systems, the problem is to make simplifications which 
are both `correct' and `useful'. The good news is that Maple is becoming more 'correct'. It no longer makes 
transformations as carelessly as it used to. For instance, Maple V Release 3 does not automatically simplify 

,/~~ -->x or Jx_y—aFxI'y. 

These incorrect transformations were made automatically in previous versions of Maple. That is, Maple 
made these simplifications as soon as it saw these expressions, without any instructions from the user to do 
so. This gave rise to many bugs in the cases where x and y can be negative. 

More than just automatic simplification has since been improved. The commands simplify  and 
combine are now more careful about applying these and other transformations. 

The bad news is that Maple is now less helpful. Preventing incorrect simplifications is good. But this 
change to Maple means that correct simplifications have also been `turned off' and Maple is now `scared' 
to return answers because they might be wrong. 

This is where the assume facility comes in. It can be used to tell Maple that x> 0 so that the above 
transformations can be `legally' made. Maple's assume facility is based on the ideas and algorithms de-
scribed in [6, 7]. Other systems (such as Macsyma) also have assume facilities. In [1], a description is giv-
en of an implementation of assumptions and simplifications of the absolute value function in Reduce. This 
present article is meant as an informal introduction to the use and philosophy of assume, and not as a de-
tailed technical reference. 

~ • ~ ~ ~.~.~ ..:' ~ ~ ~ ~  

The assume facility is meant to address several issues. The first is that without assumptions on the val-
ues of certain parameters in your equations and formulae, Maple can make no rigorous progress in simpli-
fying or evaluating functions. For example, without assuming that x > 0, we cannot correctly simplify the 
expression Jx2  to x. (In this paper, we will assume all variables are real unless stated otherwise. Think of 
this as a `default assumption'.) In the `bad old days' (Maple V Release 2 and earlier) Maple would oversim-
plify ~ to x . This led to dreadful bugs. 

Consider Table 1, which compares Maple with Reduce and Mathematica on some problems containing 
the parameter a. We see that the first two entries in the Maple V Release 2 column are wrong, for at least 
some values of a. Entries three and four are correct. Further, the third one tells the user that the answer de-
pends on the sign of a. The fourth one suggests that Maple can almost get the answer. The last example is 
of course also correct, but it is not helpful. Does this means that Maple just can't compute this integral? 

Mathematica's behavior is essentially similar. The first two answers are, like Maple's last answer, cor-
rect but not helpful. The square root has not been simplified. The last two answers, like Maple's first two 
answers, are wrong for some values of a.  

i  This article was written during a visit of RMC to ETH Zürich. This visit was supported by G. H. Gonnet, and indirectly 

made possible by the Organizing Committee of the IASTE Summer School "Let's Face Chaos through Non-linear Dynamics" at 
the University of Ljubljana. 
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Problem Reduce Maple V R 2 Mathematica 2.2 Maple V

;, 

 R 3 

~l
ll
a` 
;; 

a a ~/ a` 
~~ 

la` ~ 

(1 + a) Zyz (1 + a) ~ ~ ( l + a) ~ Z_ (a + 1) Zyz (a + 1) Zyz 

limx __>  _ax NA signum(a)oo indeterminate signum(a)— 

f e-atdt  NA limt ~,~e-at  
a + 

a 
ä+ limt ~-e-at 

f
o 
 e-al ~dt NA f

o 
 e-at ~tdt 

IF [4/3] 
a4i fo e-at  ~tdt 

Table 1 

The incorrect square root simplifications have been removed in Maple V Release 3, but this means in 
some sense that Maple is now less helpful than it was before, because it is too `scared' to make simplifica-
tions even when they might be correct. In order for the system to make the desired simplifications, we need 
to assume that, for example, a >_ 0, or a > 1 , or that a > 0. 

The second reason for including an assume facility is that Maple can make even more simplifications 
than it did in the `bad old days', if it knows that certain quantities are positive (for example). So in some 
sense, it is an `efficiency' issue as well as a `correctness' issue. The sooner simplifications can be made, the 
more likely it is the system will return with a useful solution. One can also expect that the computation will 
proceed more quickly. 

Finally, an assume facility is needed because for a great many analysis problems, as opposed to algebra 
problems, we need to include geometric information to get a solution at all. 

How do we use Assume? 
Using assume is simple. We issue one of the commands 

> assume(<inequality>); 
> assume(<variable>,<property>); 

if we wish to make new assumptions about a variable. We issue one of the commands 

> additionally(<inequality>); 
> additionally(<variable>,<property>); 

if we wish to add to Maple's knowledge of the properties of a variable without disturbing what Maple al-
ready knows. How does this information help Maple? Consider the following examples. 

> assume(a>0); 
> assume(n,integer); 
> additionally(n>0); 

> Re(a); 

N 

E 
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Notice that Maple prints a with a tilde (or `twiddle'). This is meant to remind you that assumptions about a 
have been made. We see below that Maple is able to make simple deductions about the signs of expressions 
from the assumptions we have made. 

> signum(a); 

> frac(n); 

> signum(n*(n+1)); 

U 

Maple's if statement does not know about the assume facility. 

> if n>0 then n>0 else n<=0 fi; 

Error, cannot evaluate boolean 

The about command can be used to tell us what information has been assumed. 

> about (a); 

Originally a, renamed a` : is assumed to be: 
RealRange(Open(0),infinity) 

The following Maple library functions know about assumptions that have been made.  

Signum, csgn, abs Im, Re frac, trunc, ceil,  floor  

These routines directly query the assume facility. They use the low-level routine isgiven to query the 
assume facility, and encode some other `smarts'. This routine is less powerful than the similar routine is, 
but is guaranteed to return an answer in a bounded amount of time. 

As an example, if signum is given a as an argument, it will ask if isgiven (a, positive) , and 
also if isgiven (a, negative) . It also uses the rule 

signum( xl  +... + X   )= 1 if signum(x~) = 1 

Other Maple commands like sqrt, int and limit make use of the assume facility indirectly by using 
these functions. For example, we have 

> assume(a>0); 
> sgrt(a^2); 

a 

> sgrt((1+a)^2*x*y); 

(1 + a-) lx—y E 

> limit(a*x,x=infinity); 

00 

> int( exp(-a*t), t=O..infinity ); 

i  

0 

IC 
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> int( exp(-a*t)*t^(1/3), t=O..infinity ); 

2 7c JJ 

9a-4/317 2 
~ 

It is somewhat unfortunate that the twiddle in the a--4/3  might be mistaken for a minus sign. The routines 
int, limit, and sqrt needed to know in these examples if a > 0. They discover this information by test-
ing if signum (a) =1. Similarly, we would like to simplify sin(n 70 to 0 when n is known to be an integer. 
Though not implemented yet, this could be done by asking if  Im  (n) = 0 and f rac (n) = 0. 

The Maple philosophy for assume is that it is better if programs `concentrate' their use of assume by 
confining interrogation of the assume facility to a limited number of routines. This makes maintenance of 
programs easier, in the face of possible future changes to assume. 

Let us now consider a slightly more complicated example, taken from [5]. We consider the computation 
of the metric for prolate spheroidal coordinates, which is the coordinate change 

x = aN (~2— 1) (1 —112) cos~ 

y = a j (~2 — 1) (1 —Tl2) sin~ 

z=a~i1, 

where a >— 0, 1 <— ~ < —, —1 <— rl  <— 1 , and ~ is real and may be taken on the range 0 <— 0 < 2n. 

To compute the metric, we first compute the Jacobian matrix of this transformation, and the volume el-
ement in the new coordinates is (from multivariate calculus) the absolute value of the determinant of this 
Jacobian. We will have dV = I det (.n I d~ d31 d~. These coordinates will be positively oriented if det (.n > 0, 
and this is sometimes important to know. 

> with(linalg):  

Warning: new definition for norm 
Warning: new definition for trace 

> T := [a*sqrt((xi^2-1)*(1-eta^2))*cos(phi), 
a*sqrt((xi^2-1)*(1-eta^2))*sin(phi), 
a*xi*eta]; 

7 :_ fa j( 2 -1) (1—~2)cos$,a (~2-1)  (1-92)sin$,a 71] 

> J := jacobian(T,[xi,eta,phi]): 
d := simplify(det(J)); 

3 2 3 2 d:= - a ~ +R 'I"1 

Now we can make our assumptions. 

> assume(a>0); 
> assume(xi>=1); 

z 
> assume(eta>=-1); additionally(eta<=1); 
> assume(phi,real); 

Now we can ask if det Q) is positive or negative: 

> signum(d); 

signum (—a-3~-2  + a-3,9-2) 

This fails because signum is not powerful enough to do this. The signum command uses the isgiven 
command rather than the is command which is expensive. However, we can test d ourselves using the is 
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command, which is a more powerful test. This routine is not used by signum because of efficiency con-
siderations. 

> is(d<=0);  

true 

For a final example, consider trying to decide if a function f(x,y) is convex. This problem occurs in the 
calculus of variations (and in other contexts). If we wish to write a calculus of variations package in Maple 
(see [2, 3]) it turns out to be handy to automatically decide if f is convex. This can be done by seeing if the 
Hessian matrix of second partial derivatives off is positive semidefinite (or negative semidefinite if we are 
looking for concavity). We begin the example below with some assumptions on x and y, which are supposed 
to reflect some known restrictions. 

> assume(x,real); 
> assume(y,real); 
> additionally(x<0); 
> additionally(x<y); 
> additionally(x<-y); 

Now we see if the following matrix is negative semidefinite. 

> A := matrix([[x,y],[y,x]]); 

A:= 
X- 

y 

y x` 

> definite(A,'negative_semidef'); 

x-:5 0 and — x-2  + y-2 <_ 0 and x-  <_ 0 

> is("); 

true 

We see that the linear algebra routine de  inite returns a boolean expression that is true if and only 
if the input matrix is definite (of the type specified). We can ask is if this expression is true or false. 

When •o we need to assume things, and how •.o we know? 
The best way to proceed with assumptions is to make them first, if you know them. If you know that 

< 1 , then tell Maple so before you begin your computations. This may save you lots of time wasted won-
dering why Maple didn't give you a useful answer. 

However, you may not know that you need to make an assumption. In that case, Maple makes some 
attempts to hint that you need to do something--currently, Maple's ability to tell you what it needs to find 
out is less than ideal, but progress is being made. The best clues that Maple gives at the moment are shown 
below. z 

1. Maple returns an unevaluated limit for an integral. For example, 

> int( exp(-s*t),t=O..infinity); 

e (-Sr) 1 
lim — + — 

s s 

This unevaluated limit hints that Maple can make some progress but needs to know more (for exam-
ple, that s > 0) before it can properly evaluate the limit. 
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2. Maple refuses to simplify the answer. For example, 

> exp(ln(x)); 

X 
> ln(exp(x)); 

In (ex ) 

In the first case, Maple knows that no platter what branch of the logarithm you take, exp(ln(x)) = x 
and this simplification happens automatically. In the second case, however, if x is complex then 
ln(exp(x)) = x + 2,Rik where k is the unwinding number of x. Maple should not simplify this unless 
told that, for example, x is real_ This type of return is difficult to distinguish from an inability on Ma-
ple's part to do the computation. 

3. Maple returns an unevaluated signum or csgn function. Incidentally, the function csgn deserves 
to be better known. It is a generalization of the signum function to the complex plane, and allows 
nice encodings of information about functions with branch cuts. See ?csgn for details. 

> sgrt(4*q^2); 

2,W 

> simplify("); 

2csgn(q)q  

Consider again the integral 

> integrate( exp(-u*t)*t^(1/3), t=O..infinity ); 

J 
~e 

(-0 t1/3dt 
0 

We have seen that Maple can do this integral if we tell Maple that u > 0. The main problem with this in 
more complicated examples is that often you won't know what you need to assume. For example, consider 
trying to solve y" + ay' + by = 0. This equation has oscillatory solutions if a 2  — 4b < 0, and so expres-
sions containing a division by y might conceivably need to know the sign of a 2  — 4b (which did not appear 
in the input). If you are not well grounded in the theory of differential equations, how are you to tell in ad-
vance the right assumption to make? If no assumptions are made, then the computation may simply stop, 
and you may conclude that Maple can't do the computation at all. 

There are several possible solutions to this problem that are currently being explored by Maple and other 
computer algebra systems. 

The `pass the buck to the user' approach. When in doubt, ask the user. This solution is used by 
Macsyma. It works nicely for the integration example above. The user would be asked a simple ques- 
tion like x 

> is u positive, negative, or zero ? 

However, we have elsewhere seen examples where the question is not whether a is positive, negative, 
or zero, but whether a huge formula over a page long is positive, negative or zero. Worse, the question 
may contain symbols that did not appear in the user's original input (admittedly this reflects poor pro-
gramming, because any intermediate variables must have some meaning in terms of the user's origi-
nal variables). In these cases you really have no idea what to answer. A Macsyma user once told us 

e 
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that one should "just answer `positive', that usually gives you the answer you want." This is not very 
satisfactory, and one expects that at least some automation is possible here. 

2. The 'compute all solutions' approach. The computer algebra system might compute all solutions. 
If the answer depends on whether u is positive, negative or zero, then the computer algebra system 
should give all three answers. For example, we might be satisfied with the following answer for the 
integral 

> int( exp(-u*t), t=O..infinity ); 

piecewise( 0 < u, 1/u, infinity ) 

This appears to be an attractive solution. It works well in simple examples like the ones in this article. 
But this approach becomes hopeless in more complicated cases where the number of cases that need 
to be examined blows up. [Combinatorial growth in the number of answers as the number of param-
eters increases is the norm.] Additionally, determining what the different cases are may be a harder 
problem than solving the cases. There is also a potential for disaster in returning all the solutions like 
this. For example, we had better not divide by 

piecewise( 0 < u, 1/u, infinity ) - 1/u 

This expression is zero if u > 0. This complicates the (already difficult) zero-recognition problem. 
Actually, at this point in a computation, the computer algebra system must split the computation into 
two paths. This approach forces a major redesign of the computer algebra system if it is going to han-
dle this correctly. 

3. The 'encode all solutions' approach. This approach is essentially the same approach as the previous 
one but instead of formally returning a piecewise function consisting of several cases, a single for-
mula encoding the cases with the aid of the signum or csgn function is returned. Maple sometimes 
uses this approach. Again, this works well for simple examples but it fails for exactly the same rea-
sons as described above in more complicated cases. 

4. The 'proviso' approach. Another approach, which we believe to be the right approach, is the `pro-
viso' approach, where Maple will make an appropriate assumption, record it, and proceed to get as 
simple an answer as possible [4]. Later the user can check to see what assumptions were made. If the 
assumptions made were not the desired assumptions, the user can repeat the computation by first 
making the desired assumptions. This approach solves the problem when the user doesn't know or 
forgets to make the right assumptions, and it solves the problem for the computer algebra system of 
having to compute potentially a huge number of cases. 

We outline here some ideas for improving the assume facility. 

1. Put `global' assumed domains for variables in place: the default should be that all variables are real. 
Thus ~x_2  should simplify to signum(x)x or JxJ . One should be able to specify instead that all vari-
ables are complex, or all integers, or all positive, or that all variables are purely formal or `symbolic' 
and have no value, or only `nice' values. In this case, any simplification which is valid for any value 
is acceptable. 

2. Implement a `proviso' mechanism which will tell the user directly when assumptions are necessary, 
and which assumptions are necessary. If intelligently designed, it will also lessen the need for the user 
to make assumptions explicitly. The simplest way to implement it would be to make assumptions on 
variables during the computation. For example, when computing 

f- 
 ellldt the integration routine that 

0 
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tests whether u is positive would assume, if u contains parameters and no assumptions have been 
made, that u is positive. The user would see 

> int( exp(-u*t), t=O..infinity ); 

1 

U_ 

The twiddle reminds the user to check: 

> about (u); 

Originally u, renamed u-  . 
is assumed to be: RealRange(Open(0),infinity) 

3. The use of the twiddle character to show that assumptions have been made is ugly and error prone. It 
can be mistaken for a minus sign, and different assumptions are displayed in the same way. The user 
interface needs to become more sophisticated here. A better solution would be to display the assump-
tions made beside the output expression, perhaps in this way: 

> int( exp(-u*t), t=O..infinity ); 

I 
- where u > 0 u 

Concluding Remarks 
The current assume facility in Maple is a step in the right direction. It is not complete, or even partic-

ularly robust, and it is not used consistently. But it allows correct computation of solutions to problems that 
were beyond Maple until recently, and will improve. 
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Simulation studies of discrete event models almost always require the use of random observations from 
empirically or theoretically specified distributions. There are a variety of methods (see, for example, Chap-
ter 4 of Marian and Dudewicz [3]) of producing such observations from random numbers (i.e., random ob-
servations from the uniform distribution on the (0, 1) interval). To simulate Poisson arrivals into a queueing 
system, for example, requires the generation of exponentially distributed inter-arrival times, tl ,t2,...,tk  which 
can be obtained through 

ti  = A ln(ri) for i=1,2,...,k (1) 

where rl , r2, ...,  rk  are random numbers and ~. is the parameter of the exponential distribution. 

Note that the use of (1) guarantees appropriate randomness qualities of t l ,t2,...,tk  only if rl,r2' ...,rk  ex-
hibit randomness qualities. Thus, the need to generate high-quality random numbers is crucial to simulation 
studies that model stochastic processes. Since it is impractical to use true random numbers such as those 
produced by a physical process (e.g., numbers from a geiger counter measuring background radiation), com-
puter simulations use pseudo-random numbers generated by some algorithm. Following common conven-
tion, we will use the term random numbers to refer to pseudo-random numbers. 

In this paper we give a detailed analysis of rand ( ) , the random number generator that is embedded in 
Maple, and make some suggestions for obtaining independent streams of random numbers. 

. • ; .. ~~ l :, 

The rand O generator, developed by Michael Monagan for the Maple library, belongs to the class of 
linear congruential generators that are characterized by 

X
i+1

—aX!  + c (modulo m) for i=1,2,... (2) 

where the modulus m, the multiplier a, the increment c and the seed X0  are positive integers with 0<_ a , c, 
X0  < m. Specific choices of a, c and m can produce excellent generators (URN12 and URN30, pp. 115-115, 
[3]) as well as very poor ones (URN7 and URN10, pp. 114-115, [31). rand ( ) uses m = 999999999989, 
a = 427419669081, c = 0 and a defaulted X0=1, stored as the global variable _s eed. Detailed discussions 
of congruential random number generators are available in [3] and [4]. 

~ . ! ' . • . ~ ., ~,,  

The quality of a random number generator is generally based on the factors discussed below 

! ! f 

By necessity all congruential random number generators have periods less than or equal to m. By a result 
due to R. D. Carmichael (see Knuth [4], p. 19), when c = 0 the maximal period is achieved if X0  is relatively 

1  Supported by the Denison University Research Foundation. 

2 Department of Mathematical Sciences, Denison University, Granville, Ohio 43023. Email: karian @ denison.edu  and 

goyal_r @ denison.edu  
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prime to m and a is a primitive element modulo m. Furthermore, for prime modulus, m, Knuth (p. 20, [4]) 
gives the following criterion for a maximal period of m-1: 

a(m-t)lq  ~ 1 (modulo m) for all q E Q (3) 

where Q is the set of prime divisors of m-1. Since rand ( ) uses a prime modulus, its period could be as 
large as m-1 = 1012-12. The Maple procedure MaxPeriod (a, m) , available through the stats subdirectory 
of the share library, is based on (3) and can be used to verify that this is indeed the case. 

Many recently proposed congruential generators take advantage of the 32-bit architecture of modern 
computers and use m=232  or m=231-1 (a prime). The m=231-1 generators, with maximal period of 231-2 = 2 
x 109, have been exhaustively investigated by Fishman and Moore [2]. The period of rand O is about 500 
times that of the m=231-1 generators. 

STATISTICAL RANDOMNESS 

Although the period is an important consideration, statistical randomness qualities, which are indepen-
dent of the period, are even more important. Consider, for example, the case a=c=1 which, for X0  = 1, gen-
erates the sequence 1, 2, .... Our judgement of the quality of a generator is based on its performance on a 
battery of 19 statistical tests implemented in the TESTRAND3  package which is described in detail in [1]. 
We briefly describe the most basic of the  TESTRAND  tests, the chi-square on chi-square test for uniformity. 

Let the interval (0, 1) be partitioned into k equal-sized sub-intervals. (liven a set of n random numbers, 
let e. and o., respectively denote the expected and the observed frequencies of the random numbers in the 
i-th sub-interval. Then, 

k 

D = (o` — e `)2 (4) 
I 

e. 
t= ~ 

has an approximate chi-square distribution with k-1 degrees of freedom. Clearly, if the set of n numbers is 
truly random, then D must be small. The randomness hypothesis is rejected if D exceeds the 100(1-(x)th per-
centile, i.e., D > X2 (k — 1), where a is the significance level of the test. In practice, if D exceeds the 95th 
percentile the generator is rejected. This is the usual chi-square test for uniformity. If the above test is per-
formed on many batches of numbers, even a good generator would be rejected about 5% of the time. This 
is undesirable because it excludes sequences with large variations typical of true randomness. 

The chi-square on chi-square (or CSCS) test solves this problem by considering a large number of D's. 
Let D1,D2,...,D1000  be the X2  statistics for 1000 batches of 10000 numbers each. Then each D

I.,  i  = 1, ..., 1000 
has an approximate chi-square distribution with k-1 degrees of freedom. The set of D.'s can be tested with 
the uniformity of distribution test with, say, 100 sub-intervals, whose boundaries are the 1%, 2%, ..., 99% 
points of the chi-square distribution with k-1 degrees of freedom. The CSCS statistic is then calculated as 
in (4). The CSCS test is stronger than the usual chi-square test and we recommend its use in all situations. 

z 
The CSCS statistics that result from the 19  TESTRAND  tests are compared to the 95th and 99th per-

centiles of the chi-square distribution with 99 degrees of freedom; these values are 123.225 and 134.642, 
respectively. Following the standards established in [3], a generator would be disqualified if any one of its 
19 CSCS values exceeds the 99th percentile, or two or more of them exceed the 95th percentile. As can be 
seen from Table 1, all 19 CSCS statistics for the rand ( ) generator are below the 95th percentile mark, in-
dicating that rand ( ) passes every statistical test in the  TESTRAND  package. Only 3 of the 35 generators 

3 A random number generation and testing package available from The Ohio State University and Denison University. 
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considered in [3] performed this well; this puts rand () in the company of the best generators that are in 
common use. 

`fable is  TESTRAND  Results for rand ( ) 

TEST CSCS TEST CSCS 

UDISTB 86.8 COUPON D=5 104.2 

COUPON D=S, FR(100*R) 119.6 COUPON D=10 105.4 
GAP BELOW MEAN 91.2 GAP ABOVE MEAN 114.0 
GAP (0.333, 0.667) 80.0 PERMUTATION 3's 80.2 
PERMUTATION 4's 108.4 PERMUTATION 5's 118.6 
POKER (HAND 4, PART. 4) 87.0 POKER (HAND 5, PART. 6) 101.2 
POKER (HAND 5, PART. 4) 93.2 RUNS UP R 119.8 
RUNS UP FR(10*R) 122.6 RUNS UP FR(100*R) 92.2 
SERIAL PAIRS 3x3 86.8 SERIAL PAIRS 10x10 108.2 
SERIAL PAIRS 20x20 111.0 

• . ~. .- ~ . .,  

Let u1, u2, ..* be a sequence of random numbers produced by a linear congruential random number gen-
erator. Then the points (u I,  u2, "" ut), (u2, u3, "' ut+I ), (u3, u4, ..., ut+2),  ... must lie on a finite number of equally 
spaced parallel  hyperplanes  in t-space. The spectral test is based on vt, the number of such  hyperplanes,  or 
equivalently, on d t  = llvt, the inter-planar distance. For a given multiplier, a, the more  hyperplanes  there are, 
the better distributed the t-tuples are in the t-dimensional unit cube. For this reason, we look for maximal vt  
or minimal d t  for t=2,3,.... The best possible dt  is (see [3], pp. 107-108) 

_ 1 
dt, min ( (tl m) I t— 1) ( 5) 

Thus, r =d Id which is always greater than 1, can be used to measure the relative quality of the multiplier. 
Of course, the closer r  is to 1 the better. 

We implemented a spectral test algorithm that determines rt. spectral () , the Maple procedure for 
this algorithm (Algorithm S, pp. 98-100, [41), is available from the stats subdirectory of the share library. 
rand ( ) , when tested with spectral ( ) produced 

r2=1.75, r3  = 2.20, r4 2.87, r5=2.89, r6 3.66. 

On the basis of comparisons with other congruential generators (see pp. 106-112, [3]), we consider values 
of r  < 4 to be very good. 

To appreciate the significance of r , consider the case of t=3. For m=999999999989, the maximum num- 
ber of  hyperplanes  possible is t  

1 
= ( 999999999989 x 3!) 1 /3  — 1 = 18170. (6) 

dt, min 

Since r3=2.20 when a=427419669081, we are assured that at least 11(r d ) = 8259 planes are needed to 
capture the 3-tuples that result from rand ( ) . 

3 3,min 
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In a related but different approach, Knuth (see p. 102, [4]) gives a test criterion based on 

nr/2v t 

_ t 

(t/2) im'  (7) 

which is the volume of the ellipsoid 

(Xlm—x2a—...—xtat-1)2+x2 p ... ~x` Cv~ , (8) 

Knuth uses this volume as a measure of the likelihood of certain points with integer coordinates being in the 
ellipsoid (8). The specific test criterion stated by Knuth (pp. 102, [4]) is 

We might say that the multiplier a passes the spectral test if µt  is 0.1 or more for 2 <_ t <— 6, and 
it "passes with flying colors" if [Lt  >— 1 for all these t. 

Our use of spectral ( ) on rand O 's multiplier yielded 

1,l 2 = 2.05, 1t3= 2.37, µ4=1.75, p5= 3.10, µ6=1.51, 

making rand ( ) a definite "high flyer." 

~ ~ ~ > _ ~ , ~ ~.~ ~   

The rand ( ) generator has a large period, good statistical qualities, and does very well on the spectral 
test. We recommend its use in almost any study that requires random numbers. There are, of course, excep-
tions; linear congruential generators would not be appropriate in cryptology since the parameters of the gen-
erator can be easily determined from a sufficiently long sequence of numbers. 

It is worth noting that Monagan chose a=427419669081 solely on its performance on the spectral test. 
In fact, Knuth specifically states (p. 89, [4]) 

... not only do all good generators pass [the spectral] test, all generators now known to be bad 
actually fail it. Thus it is by far the most powerful test known, and it deserves special attention. 

However, we are aware of a number of congruential generators (e.g., m=231-1, a=1078318381) that do very 
well on the spectral test but fail several statistical tests in  TESTRAND.  

We also draw the user's attention to a misinterpretation that can result from rand ( ) 's help message 
which states that rand ( ) produces 12-digit positive integers. This would imply that to obtain random num-
bers on (0,1) one needs to divide rand ( ) 's output by 1012. however, rand ( ) actually produces numbers 
between 1 and 999999999989, and dividing by 1012  would cause a slight bias. 

~_70M  

In complex models, where independent and parallel processes need to be simulated, it is often desirable 
to have multiple independent streams of random numbers. Additional generators of good quality can be ob-
tained as follows: 

1. Choose a large prime as modulus, possibly the one used by rand ( ) . 

Choose a multiplier a, which gives maximum period. This can be done by picking an integer b > m 

and using a: =numtheory [primroot I (b, m). A particular a could also be tested by using the 
MaxPeriod O function that returns true if the chosen multiplier gives a maximal period and false 
otherwise. 

3. Perform the spectral test on the multiplier-modulus combination chosen. If it fails the test then repeat 
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from step 2. 

4. Perform tests for statistical quality, such as the  TESTRAND  tests. If the generator does not perform well 
on these tests, repeat from step 2. 

We performed the above for m=999999999989, the modulus of rand () , and after rejecting two multipliers 
found the multiplier a=745580037424 that gave rise to a generator of quality comparable to rand O . The 
Maple interaction that lead to the construction of this generator is given below. 

> with (share): 

> readshare(spectral, stats): 

> m 999999999989: 

> a 745580037422: 

> maximal := false: 

> while not maximal do 

> a := a+1: 

> maximal MaxPeriod(m, a) 
> od: 

> [m, a] ; 

[999999999989,745580037424] 

> spectral(m, a, 6): 

t = 2, v = 565058.251600 , v2  = 319290827665.000000 , d = 0.000002 , 

µ = 1.003082 , r = 2.502773 

t = 3, v = 8917.721514 , v2  = 79525757.000000 , d = 0.000112 , 

µ = 2.970642 , r = 2.037539 

t = 4, v = 899.735517 , v2  = 809524.000000 , d = 0.001111 , µ = 3.233920 , r = 2.458905 

t = 5, v = 200.232365 , v2  = 40093.000000 , d = 0.004994 , µ = 1.694220 , r = 3.263156 

t = 6, v = 81.847419 , v2  = 6699.000000 , d = 0.012218 , µ = 1.553561 , r = 3.645558 

After two iterations of the while loop, MaxPeriod ( ) returned true for a=745580037424 and 
m=999999999989. The spectral test for this set of m and a for dimensions 1 through 6 produced 

r2=2.50, r3=2.04, r4=2.46, r5=3.26, r6=3.65 

and 

µ2 1.00, µ3= 2.97, µ4=3.23, µ5=1.69, µ6=1.55. 

Like rand O , this generator also passed all of the statistical tests of the  TESTRAND  package. 

~~, • ~~~w ~ 
13 

We wish to thank Michael Monagan for information on rand ( ) and a number of helpful suggestions 
for improving this paper. Thanks are also due to Stan Devitt for his assistance. 
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Gaia is a computer algebra package that helps counting and drawing random combinatorial structures 
of various sorts. It is an implementation of the calculus developed by Ph. Flajolet, B. Van Cutsem and the 
author in [5]. Given a combinatorial specification and an integer n, it draws a random object uniformly 
amongst all size n structures. It applies to all decomposable structures, either labelled or unlabelled, includ-
ing trees of various kinds, surjections, set partitions, permutations, functional graphs of many sorts. 

Some applications of random generation are:  (i)  analyzing the average case complexity of algorithms 
by making simulations to guess or to check analytic results, (ii) checking the correctness of programs by 
feeding them with random inputs, (iii) getting ideas about some parameter of a class of objects, for example 
the height of trees or the number of connected components of graphs, (iv) simply drawing a random object. 

Uniform random generation is difficult because there is generally no closed formula for the number A„ 
of data structures of size n, and secondly most methods require an explicit bijection with integers modulo 
An  , but such a bijection is known only in a few cases (for example permutations and integer partitions, see 
the combinat package). 

The main idea underlying the Gaia system is first to transform the specification of a combinatorial class 
into a standard specification restricted to atoms and union, product, pointing constructors; then the standard 
specification is translated into counting and drawing procedures using some well-defined templates. This 
ensures a really uniform random generation in O(n log n) arithmetic operations in the worst case, after a 
0(n 2) preprocessing to compute the counting sequences up to size n. 

This article explains how to define a class of decomposable combinatorial structures with Gaia, how to 
count the number of structures of a given size, how to generate a random structure and how to use it. Details 
about the algorithms used will be found in [5] and [6]. 

Once you have properly installed Gaia as a Maple package (see the section `Installing the package' 
below), it is very easy to generate a random object, for example a random binary tree: 

& maple 
> with(gaia): 
binary_tree ( B = Union(Z, Prod(B,B)) }: 
draw(binary_tree,unlabelled,B,7); 

Prod(Prod(Z, Prod(Z, Prod(Prod(Prod(Z, Z), Z), Z))), Z) 

> draw(binary_tree,labelled,13,5); 

Prod(Prod(Prod(Z[2], Prod(Z[5], Z[1])), Z[4]), Z[3]) 

I  Inria Lorraine, Nancy, France, Paul.Zimmermann@loria.fr. This work was partly supported by the ESPRIT Basic Research 

Action No. 7141 (ALCOM 11). 
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The command with (gaia) loads the package, then one defines the grammar for binary trees, one draws 
an unlabelled tree of size 7 and a labelled one of size 5. The first two arguments of the draw command 
define a combinatorial specification, that is a grammar and a labelling type (see the section `Defining a 
combinatorial specification' below). The third argument indicates the type of object to be generated (the 
specification may define several types) and the last one the desired size. 

The function count is similar to draw, except it gives the number of objects of a given size: 

> count(binary_tree,labelled,B,33); 

482219923991114978843459072919892677776312893440000000 

~~; ' • . ;~.... .!; ~.~a` ..' •''_ V•, r`"' 

A class of decomposable combinatorial structures either contains only one object, or is built from sim-
pler classes by means of constructors. The elementary classes are Epsilon, which denotes an object of size 
zero, and Z, which denotes an object of size one. The available constructors are: 

Atom object of size 1 (Z is a predefined atom) 

Union(A, B, ...) disjoint union of the classes A, E, ... 

Prod(A, E, ...) product of the classes A, E, ... 

Set(A) all sets whose elements are in A 

Sequence(A) all sequences with elements of A 

Cycle(A) all directed cycles with elements of A. 

For the constructors Set, Sequence and Cycle, it is possible to add some restrictions on the cardinality: for 
example, Set(A, card >_ 1) means all non empty sets whose elements are in A, Sequence(A, card 5 3) means 
all sequences of at most three elements of A, and Cycle(A, card = 5 ) means all cycles of five elements 
from A. 

A specification is a grammar and a labelling type, which is either `labelled' or `unlabelled'. In the la-
belled universe, each atom has a unique label, which is an integer from 1 to n, where n is the size of the 
whole object. In other words, the labels define a total order on all n atoms. In the unlabelled universe, there 
is no label. The grammar itself is a set of productions of the form A = (rhs), where A is the name of the class 
being defined, and (rhs) is an expression involving elementary classes, constructors and other classes. Be-
low are some grammars and the corresponding combinatorial objects they define in the labelled universe. 

{A = Prod(Z,Set(A)) ) 

{B = Union (Z,Prod(B,B))) 

{ C = Prod (Z,Sequence(C))) 

{D = Set(Cycle(Z))) 

{E = Set(Cycle(A)), A=Prod(Z,Set(A))I 

IF= Set(Set(Z,card -::f 

{G = Union (Z,Prod(Z,Set(G,card = 3 )))) 

{H = Union (Z,Set(H,card > 2 ))) 

{L = Set(Set(Set(Z, card >_ 1),card >_ 1))) 

IM = Sequence(Set(Z,card > 1))) 

non plane trees 

plane binary trees 

plane general trees 

permutations 

functional graphs 

set partitions 

non plane ternary trees 

hierarchies 

3-balanced hierarchies 

surjections 
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A non plane tree (type A) is a root node (Z) to which are attached some subtrees that may take any position 
around the root, thus forming a set; the set may be empty, and this gives a terminal node, that is a leaf. For 
example, 

2 

/ I \ 
1 6 4 

/ \ 
3 5 

2 

and /I\ 
6 4 1 

5 3 

represent the same labelled non plane tree. In plane binary trees (type B), the number of subtrees is restricted 
to be two or zero, and they are ordered. Thus we get the grammar B = Union(Z,Prod(Z,B,B)), or simply B = 
Union(Z,Prod(B,B)) if we do not count internal nodes. A plane general tree (type C) is similar to a non plane 
tree except the subtrees are ordered (now the two pictures above represent two different plane trees), thus 
we just replace the Set by a Sequence construction in the grammar of A. 

For permutations (type D), we could represent a permutation on { 1 ... n) by the sequence of its images 
Gl ., an' for example the sequence 6,2,5,1,3,4 would represent the permutation a1=6, a2=2, a3=5, a4=1, 
a5=3, a6=4. This would give the grammar D = Sequence(Z). But usually it is more convenient to work on 
the cycle decomposition, for example (1 6 4) (2) (3 5) for the above permutation, which is defined by D = 
Set(Cycle(Z)). This last grammar is in some sense "more precise", the construction Set(Cycle(®)) being 
equivalent to Sequence(®) for labelled objects. 

Functional graphs (type E) are graphs of functions on { 1 ... n 1. Such a function f has two kinds of points: 
cyclic points  i  such that some iterate off on  i  goes back to  i,  such as 4, 8, 10, 11, 14 on Figure 1, and other 
points, which are non-cyclic. Starting from any point, and iterating the function, we attain necessary a cyclic 
point in a finite number of iterations (this is the trick used in Pollard's algorithm to find a factor of an inte-
ger). The set of points that go to the same cyclic point is a non plane tree (type A). 

Figure 1: The graph of x —> x2  + 12 mod 17 

A partition of a set is exactly a set of non-empty sets, the latter being defined by Set(Z,card >_ 1 ), thus we 
get the grammar of E Non plane ternary trees (type G) are defined like non plane trees, except the number 
of subtrees is either 0 or 3 in the above grammar, we simplified PIod(Z,Set(G,card = 0 )) into Z. A hierar-
chy (type H) is similar to a non plane tree too, but unary nodes are forbidden, thus the number of subtrees 
is either zero or greater or equal to two. Three-balanced hierarchies (type L) are balanced non plane trees 
(all leaves are at the same level) of height exactly 3. Finally, a surjection (type ltd from { 1 ... n ) to a totally 
ordered set is equivalent to a sequence of non empty sets (the integers with image the smallest element are 
in the first set, those with image the second smallest one are in the second set, and so on). 
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Other combinatorial objects are defined by the following grammars in the unlabelled universe. 

{A = Set(Sequence(Z,card >_ 1)) } integer partitions 

{E = Sequence(Union(YZ)), Y=Atom } binary sequences 

{ C = Cycle(S et(Z, card >_ 1 )) } necklaces 

{D = Prod(ZSet(D))I rooted unlabelled trees 

{ E = Set(Cycle(D)), D=Prod(Z,Set(D)) } random mappings patterns 

IF= Union(Z,Set(F',card = 2 ))} non plane binary trees 

{G = Union(Z,Set(G,card = 3 ))} non plane ternary trees 

I = Union(Z,Set(H,card >_ 2 ))} unlabelled hierarchies 

IM = Sequence(Set(Z,card >_ 1 ))} integer compositions 

It should be noticed that the same grammar may define different kinds of objects. As an example, 
Sequence(Set(Z, card >_ 1 )) defines surjections in the labelled universe, but integer compositions in the unla-
belled universe. 

Here again, the specifications are explained as follows. An integer partition, for example 
17=12+3+1+1, is equivalent to a set of boxes of integer length, with repetitions allowed: 
{ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑, ❑ ❑ ❑, ❑ , ❑ } . Such a box is simply a non empty sequence of atoms: 

Sequence(Z,card >_ 1 ). A necklace (type C) is a cycle of non empty sets of beads. By the way, let us remark 
that a set of beads Set(Z, card >_ 1 ) is equivalent to a sequence of beads Sequence(Z, card >_ 1 ) in the unla-
belled universe. 

Rooted non plane trees D have exactly the same grammar than in the labelled case. Similarly, random 
mappings patterns (type E) are the "skeletons" of functional graphs. Trees and hierarchies (types F, G and 
Fl) are defined like in the labelled case. 

Figure 2 shows two objects of size 1000 generated using Gala: the first one is the binary search tree cor-
responding to a random permutation of size 1000 (type D in the labelled case), the second one is a plane 
binary tree. The left drawing was produced using a special-purpose Maple routine, and the right one was 
obtained using the algorithm described in [11] (Gaia only produces a Maple expression, it does not include 
any graphical instruction). These examples show some values of interest that could be examined on combi-
natorial objects: the height of different kinds of trees, the number of sets in a random set partition, or the 
number of terms in a random integer partition, the distribution of degrees in general trees, the number of 
cycles in a permutation, etc. 

A binary search tree of size 1000. A binary plane tree of size 1000. 
(D=Set(Cycle(Z))),labelled (B=Union(Z,Prod(B,B))),labelled 

Figure 2: Two random objects generated by Gata. 
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Using and printing objects generated by Gala 
All objects produced by Gala are valid Maple expressions. They are either names (possibly labelled) 

representing atoms, or inert functions for all constructors. Thus you can access the components of an object 
with the usual Maple functions op, nops. For example, the following function computes the size of an ob-
ject: 

> size := proc(e) 
if type(e,epsilon) then 0 
elif type(e,name) then 1 
else convert(map(procname,e),`+`) 
fi 

end: 

We can check it rapidly: 

> size(draw(binary_tree,unlabelled,B,20)); 

20 

If you want your objects to be printed another way than the default, you can easily do it by redefining the 
functions gaia/print /xxx where xxx is a constructor. Take for example Cayley trees, which are print-
ed by default as follows: 

> Cayley := {A = Prod(Z,Set(A))},labelled: 
draw(Cayley,A,4); 

Prod(Z[2], Set(Prod(Z[1], EmptySet), Prod(Z[4], Set(Prod(Z[3], EmptySet)))))  

If you want to use Maple curly-bracket notation instead, just redefine Baia /print /Set for general sets 
and gai a /print / EmptySet for empty sets: 

> `gaia/print/Set` := () -> {args}: 
`gaia/print/EmptySet`  
draw(Cayley,A,4); 

Prod(Z[1], (Prod(Z[3], ( ( ), Prod(Z[2], 11)1), ( ( ), Prod(Z[4], ( ))) )) 

Notice that the gaia/print/xxx functions do not only modify the way objects are printed like the 
print/xxx functions of Maple, but really modify the internal structure of the objects (and consequently 
user-defined functions like size above may have to be redefined accordingly). This behaviour enables one 
to work further with random objects. 

For example, suppose we want to analyze the height of unlabelled binary trees. We first write a he  i  ght 
function: 

> height := proc(b) 
if type(b,name) then 0 else 1+max(height(op(1,b)),height(op(2,b))) fi 

end: 

and we are ready to experiment and compare to the actual result of 2 ~7_cn + O(n 1/4 + E) from [4, Theorem E 
p. 2001. We plot for different sizes the average height over 100 random binary trees: 

> s:=NULL: 
for n in [10,20,50,100,200,500,1000] do 

1:=seq(height(draw(binary_tree,unlabelled,B,n)),i=1..100); 
s:=s,[n,stats[average](1)] 

od: 
exper:=plot([s],n=10..1000,style=POINT): 
theor:=plot(2*sgrt(Pi*n),n=10..1000): 
plots[display]({exper,theor}); 
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Similarly, one could analyze the path length of binary trees, the number of cycles in a random permu-
tation, the number of connected components of a random functional graph, the number of elements in a set 
partition or an integer partition, the average node degree in a random hierarchy, and so on. 

~` .• . '~: .. ~ ',. 
A lot of combinatorial structures encountered in the literature are decomposable, that is expressible by 

a specification in Gala. For example we saw in the section `Defining a combinatorial specification' that 
a functional graph on { 1 ... n) is a set of cycles, each cycle being made of non plane trees; a functional di-
graph on { 1 ... n } is similar, except the cycles must have at least two elements. We can easily check the fig-
ures given in [9, p. 70]: 

> sys:={F=Set(Cycle(D)),D=Prod(Z,Set(D)),FD=Set(Cycle(D,card>=2))},unlabelled: 
seq(count(sys,FD,n),n=1..11); 

0, 1, 2, 6, 13, 40, 100, 291, 797, 2273, 6389 

> seg(count(sys,F,n),n=1..11); 

1, 3, 7, 19, 47, 130, 343, 951, 2615, 7318, 20491 

Another beautiful example was suggested by Volker Strehl. We consider bicolored functional graphs on 
{ 1 ... n), where each point has a color, either blue or red, and has at most one ancestor of each color. The 
corresponding specification is the following, with  Ab  (resp.  Ar)  denoting trees with a blue (resp. red) root, 
and E denoting bicolored functional graphs. 

> Sys :=  {Ab  = Union(b,Prod(b,A),Prod(b,Ab,Ar)),  
Ar  = Union(r,Prod(r,A),Prod(r,Ab,Ar)), 
A = Union(Ab,Ar), 
A2 = Union(Prod(r,Ab),Prod(b,Ar)), 
C = Cycle(Union(A2,b,r)), 
E = Set(C), 
b = Atom, 
r = Atom}, labelled: 

seq(count(sys,E,n),n=0..9); 

1, 2, 12, 120, 1680, 30240, 665280, 17297280; 518918400, 17643225600 
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The numbers found are exactly (2n) ! /n! up to n=9. It is left as an exercise to the reader to check if this is 
true for every n. This is a typical example of research in combinatorics: defining with Gata a particular kind 
of objects, computing the first numbers, looking for an explicit formula or for similar sequences in Sloane's 
book [12], and perhaps deriving a bijection with other combinatorial objects. 

The list of combinatorial constructors given above is not complete. In fact, the system itself uses two 
other constructors, Theta and Int. The construction Theta (A) produces objects of type A with one 
atom having a special mark, and Int (A) simply erases the mark in the objects of type A. Thus the con-
structor Int is only valid for marked objects. These two constructors are used in the standard form of com-
binatorial specifications (see [5] for more details). As an example, the standard form of the labelled speci-
fication A=Set (B) is: 

> standardform({A = Set(B)),labelled); 

[T1 = Prod[Set](T0, A), T2 = Int(TI), A = LJnion(EmptySet, T2), TO = Theta(13)l 

which means that (an object of type) A is either the empty set or T2, T2  being an object of type Tl  without 
the mark, T  being the product of TO  and A, and TO  being a marked object of type B. 

In the unlabelled case, the standard specification uses a third constructor, the generalized diagonal 
Delta defined in [6]: 

> standardform(A = Set(B),unlabelled); 

{T1 = Delta[Set](TO), T2 = Prod[Set](TI, A), TO = Theta(1$), T3 = Int(T2), 
A = LTnion(EmptySet, T3)} 

These three constructions Theta, Int and Delta allow to define a wider class of structures. The follow-
ing specifies for example unrooted non plane trees (the reader is not necessarily supposed to understand the 
specification, which is based on the notion of similar node defined in [9]). 

> sys:={T=Prod(Z,Set(T)),t=Int(Union(T,Prod(T,Delta[Set(2)](Theta(T))), 
Delta[21(Theta(T))))),unlabelled: 

sum('count(sys,t,n)*x^n',n=1..10); 

x + x2 + X3 + 2x4  + 3x5  + 6x6  + 1 lx7  + 23x8  + 47x9  + 106x10 

A lot of examples in the book of Harary and Palmer can be checked in the same manner, like in those of 
Comtet [3], Goulden and Jackson [7] and Eollobäs [2]. 

. x~` ' ~ . .: •  

For those who have an access to Internet, the Gaia package is available by anonymous ftp from the ma-
chine ftp. inria.  fr:  2  

& ftp ftp.inria.fr  
Name (ftp.inria.fr:zimmerma): anonymous 
Password: <your e-mail address> 
ftp>  cd  INRIA/Projects/algo/gaia 
ftp> bin 
ftp> get gaial.l.tar.Z 
ftp> quit 

uncompress gaial.l.tar.Z 
tar xvf gaial.l.tar 

2 The following instructions assume you are working within a Unix-like environment. 
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This will create the following files: gaia . mpl, gfun . mpl, gaia . test and README . tex. Then you 
must create a Maple ".m" file from the files gaia . mpl and gfun . mpl. To do this, type: 

maple -s -q < gaia.mpl 
maple -s -q < gfun.mpl 

You have now two files gaia . m and g fun . m. To be able to load the Gaia package easily from Maple, add 
in your . mapleinit file (in your home directory) the line: 

libname :_ `/users/eureca/zimmerma/Gaia`,libname: 

(/users/eureca/zimmerma/Gaia is the directory where the file gaia.m lies). Once you have cre-
ated the file gaia . m and updated your . mapleinit file, just check that all works properly: 

maple -q < gaia.test 
Total time= 215.133 

0 ITMrere . -  

Due to the exponential growth of the coefficients, the more expensive operations are those that deal with 
those huge numbers (the number of unlabelled binary trees of size 1000 has 597 digits). For this kind of 
computation, Maple is not as efficient as some specialized libraries like GMP [8], BigNum [10] or  Pari  [1]. 
An interface with these multiprecision libraries is in preparation. It works as follows: in Maple, you type: 

> compile(binary—tree,unlabelled,gmp,`foo.c`);  

and this creates a C program f oo . c that generates random unlabelled binary trees, using the multiprecision 
library GMP The generation of random objects is about ten times faster with the C interface. The trees on 
page 41 were generated in about 10 seconds each using this C interface. Please contact the author for more 
information on this. 

Once a random object was generated, Gaia is not able to generate the next one, like the function 
nextpart of the combinat package. This ability would be very useful, because it would enable one to 
list all objects of a given size. Unfortunately, as already said in the introduction, this would require an ex-
plicit bijection between objects of size n and integers modulo An. This seems to be awkward with the meth-

ods of [5, 6]. 
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Kinematic and Power-Flow Analysis 
of L.  i  y , ic Gear Dri,,vcs 
Nicol, Pio ~e/fiorei, Ettore Pennestri? ancff~®sario Sir~atra3  

Kinematic and power-flow analysis of epicyclic gear drives are basic tasks during the design of speed 
reducers. Classical textbooks on mechanical engineering (e.g. [2]) contain sections on this topic. The au-
thors of this article developed methodologies and software for the analysis of gear drives [3], [4] and [5]. 
The aim was to provide the designer with simple and ready-to-use tools [6], [7], [8], and [9]. 

A first Pascal code for the kinematic and static force analysis was presented in 1989 [6]. Then, a general 
approach to power-flow analysis was developed [3] and also a second Pascal code completed [7]. 

However, only numerical solutions could be obtained. Traditionally high level languages as FORTRAN, 
Pascal and C have been mainly used in mechanical engineering, as real number processors. In other words, 
both the input and the output sets were supposed to be real numbers. 

The implementation of analysis methodologies in Maple language makes it possible to automatically 
derive the solutions in an algebraic symbolic form. In our analysis the input phase consists of supplying the 
adjacency matrix of the graph corresponding to the kinematic structure under analysis. The Maple-generat-
ed outputs are the expressions for kinematic and power-flow analysis. For this reason the developed pro-
gram allows a systematic comparison between different drive topologies [10]. 

The formulas deduced show how each gear ratio is related to overall speed reduction and power distri-
bution inside the loops of the epicyclic gear train. It has been shown [5] that the amount of circulating power 
has a great influence on the mechanical efficiency of the speed reducer. Hence, the Maple program herein 
presented can conveniently support the engineer during the design of energy efficient gear drives. 

The adopted methodology is based on the correspondence between labeled graphs and epicyclic gear 
trains. 

Graph theory traditionally begins in 1736, when Euler introduces a graph related to the K6nigsberg 
Bridges problem [1]. In this problem, an optimal path across a series of bridges on the Pregel river must be 
found in such a way that all the regions, two islands and two banks, are visited and each bridge is crossed 
only once. Now, each region may correspond to a vertex, while each bridge to an edge connecting two ver-
tices. Euler found that the solution was impossible for that case and stated the condition for the existence of 
a solution. Graph theory has been considered as a very flexible and powerful tool in many fields as, for ex-
ample, Physics, Economics, Chemistry, Electrical Engineering, Network theory, Optimization, and even 
Psychology. Among the various applications we find the very well known ones of Kirchhoff to electrical 
networks and of Cayley to the enumeration of chemical isomers. 

A graph is an abstract object defined as a non-empty set of nodes and pairs of nodes. For the present 
application vertices correspond to links and edges to kinematic pairs. Each edge is labeled with different 
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characters depending on the nature of the kinematic pairs. For example, all the edges corresponding to 
geared pairs are labeled with the character g; the edges corresponding to revolute pairs are hierarchically 
labeled with the letters a, b, c, and so on, depending on their distance from the root vertex (i.e. frame link). 
As for the above mentioned hierarchical distribution of the turning pair labels, it must be pointed out that 
the removal of all the geared edges converts the graph into a spanning tree. In fact, by adding a single geared 
edge to that tree one obtains a graph with only one circuit. The set of all the circuits related to the spanning 
tree by the corresponding geared edge is therefore called set of fundamental circuits. 

The correspondence between labeled graph and mechanisms is particularly convenient for the analysis 
of planetary gear trains. An elementary epicyclic train corresponds to a fundamental circuit and the relative 
gear carrier link can be automatically recognized as the transfer vertex of that circuit. The transfer vertex is 
the only vertex of the circuit which is incident to turning pair edges having different labels (see Figure 1). 
This makes possible the automatic generation of a system of linear equations for the kinematic analysis of 
a complex gear drive. In particular, such a system of equations is generated by writing down the Willis' for-
mula for each gear pair (i.e. for each elementary train) [2]. Conversely, the power flow analysis is performed 
with the aid of a flow diagram (see Figure 2). In such a diagram, blocks (i.e. boxes), nodes (i.e. dots) and 
flows (i.e. plane lines) are represented. Blocks correspond to elementary epicyclic trains, nodes to links, and 
flows to powers flowing between the extremes of the lines (i.e. blocks or nodes). Each block has three gates: 
first mating gear (i.e. first end of the geared edge), second mating gear (i.e. second end of the geared edge) 
and gear carrier (i.e. the transfer vertex). 

Since we have already solved the problem of finding the transfer vertices, we can build a graph whose 
vertices and edges respectively correspond to blocks (or nodes), and flows. The algebraic system of linear 
analysis equations can be set up by writing down a power balance equation for each node and two equations 
which relate the flowing powers to the gear ratios and the angular velocities. If one gate of the block is con-
nected to the frame link then only one equation needs to be considered. References [3] and [4] report on 
such equations. 

This second system of linear equations can also be solved in a symbolic form respect to the unknown 
power flowing through each line [3]. 

B3 ]ifl 

C2 4 ~ 
INPUT 

Li __ 

J32 Ci 5 
I
6 3 ~ 

I I 
, 2 

OUTPUT 

5 G2  2 a  3 
— • 

GI b c G4 

Input link 

® Output link 

Q Frame link 

a, b, c: Turning 
pairs levels 4 6 

Figure 1: Epicyclic geat drive (left) and corresponding graph (right) (1st speed). 
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Description of the program 
The proposed methodology has been implemented in Maple and the following step-by-step procedure 

developed. 

1. Input phase. 

2. Detection of the transfer vertices. 

3. Detection of the set of unknown angular velocities. 

4. Creation of the system of equations for the kinematic analysis. 

5. Symbolic solution of the equations generated at step 4. 

6. Build up of the the graph describing the power-flow (e.g. that depicted on the right of Figure 2). 

7. Detection of the set of unknown powers. 

8. Creation of the system of equations for the power-flow analysis. 

9. Symbolic solution of the system generated at step 8. 

The information requested consists of the number of vertices n and the labeled adjacency matrix A for 
the epicyclic train under estimation. Also to be specified are the frame (i.e. frame), input (i.e. input), and 
output (i.e. output) vertices. With reference to Figure 1, the following input segment was used for the 
analysis of the first speed of the Hydra-Matic THM 440-T'4 [11]. Symbols C1, C2 represent clutches, while 
B1, B2, and B3 are the brakes. In particular, when clutch C1 and brake B1 are actuated the gear train is in 
the first speed. The variable gcont denotes the total number of geared pairs. VTA is a gcontx 3 matrix 
of integers. Each row is composed of three integers: the first two denote the vertices corresponding to the 
mating gear links, while the third is the transfer vertex of the elementary epicyclic train relative to the fun-
damental circuit under consideration. 

> n := 6: 
A := array(1..n,1..n, 
( [ o , o , o , a , g , o ], 
[ o, o, a, a, g, c ], 
[ o, a, o, o, o, g ], 
[ a, a, o, o, b, g ], 
[ g, g, o, b, o, o ], 

[ o , c , g , g , o  , o ] ]): 
tre_span := array(1..n,1..n): 
VTA := array(1..n,1..3): 
frame := 3: 
input := 1: 
output .= 2: 

Step 2: Detection of the transfer vertices 

A single procedure has been written in order to find the transfer vertex for a given gear pair  i  - j and a 
given adjacency matrix tre_span. The procedure is named vtransf and is called as many times as the 
number of gear pairs. 

> vtransf := proc(i,j,tre_span):  

The first stage of the procedure deletes all the geared-pair edges. The character o stands for the null 
label (i.e. no connection for the two vertices). At the end of the segment matrix tre_span becomes the 
adjacency matrix of a spanning tree of the input graph. 
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for floc from 1 to n do 
for jloc from 1 to n do 

if tre_span[iloc,jloc] = g then 
tre_span[iloc,jloc] o 

fi 
od 

od: 

The second stage deletes all the leaves but vertices  i  and j from the tree tre_span obtained at the 
previous stage. By iterating this procedure the unique path connecting  i  and j (i.e. the fundamental circuit 
relative to the gear pair  i  - j) is computed and stored in the matrix tre_span. 

ripeti := true: 
while ripeti do 
ripeti := false: 
for iloc from 1 to n do 
grado 0: 
for jloc from 1 to n do 

if tre_span[iloc,jloc] <> o then 
grado := grado + 1 

fi 
od: 
if grado = 1 then 

if (iloc <>  i)  and (iloc <> j) then 
jloc := 0: 
notrovato := true: 
while (jloc < n + 1) and notrovato do 

jloc := jloc + 1: 
if tre_span[iloc,jloc] <> o then 
notrovato := false 

fi 
od: 
tre_span[iloc,jloc] o: 
tre_span[iloc,jloc] o: 
ripeti := true 

fi 
fi 

od 
od: 

Now, the transfer vertex is the only vertex of the path which is incident to two edges having different 
labels. 

for iloc from 1 to n do 
primavolta := true: 
grado 0: 
for jloc from 1 to n do 
if tre_span[iloc,jloc] <> o then 
grado := grado + 1: 
if primavolta then 

primo := tre_span[iloc,jloc]: 
primavolta := false 

else 
secondo := tre_span[iloc,jloc] 

fi 
fi 

od: 
if (grado = 2) and (primo <> secondo) then 
vertex iloc 

fi. 
od: 
vertex 

end: 
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Figure 2: Power-flow diagram (left) and corresponding graph (right). 

It must be pointed out that the algorithm described is simplified with respect to the general-purpose al-
gorithms for graphs. In fact, the class of graphs under analysis is supposed to hold all the properties de-
scribed in the previous section. General users may find programming convenient with the network package 
offered by the release 2 of Maple. The cited package is another powerful tool which allows creation and 
modification of graphs in a straightforward manner. Commands like new O , cycle O , and com-
plete ( ) immediately create new graphs while addedge ( ) and addvertex ( ) easily modify them. 
Our program was born with the first release of Maple V. however, the procedure vt ran  f ( ) herein pro-
posed seems novel even for the network package cited above. 

Step 3: Detection of the set of unknown angular velocities 

The angular velocities are denoted by the symbols OM1, OM2 , The angular velocity of the frame 
link is set equal to 0. The detection of the set of unknowns is straightforward. In fact, all the angular veloc-
ities but the ones of the frame link (called frame) and the input link (called input) are unknown. 

> varset f}:  
for  i  from 1 to n do varset := varset union fom.i} od: 
varset varset minus fom.frame}: 
varset varset minus tom.input}: 
print(varset); 

Steps 4 and 5: Creation and solution of the system of equations for the kinematic analysis 

The matrix VTA is generated by the following code: 

> gcont 0: 
for  i  from 1 to (n - 1) do 
for j from (i+l) to n do 
if A[i,j] = g then 
gcont := gcont + 1: 
for i1 from 1 to n do 

for jl from 1 to n do 
tre_span[il,j1] A[il,jl] 

od 
od: 
vt := vtransf(i,j,tre_span): 
VTA[gcont,l] := is VTA[gcont,2] j: VTA[gcont,3] vt: 

fi 
od 

od: 
for i3 from 1 to gcont do print(VTA[i3,1],VTA[i3,2],VTA[i3,3]) od; 
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For our example, one obtains: 

MEE.,  

o o o a g o 

o o a a g c 

A :_ 
oa000g 

a a o o b g 

g g o b o o 

ocggoo  

franze := 3  

input := 1 

output := 2 

{ OM2, OM4, OM5, OM6 } 

1,5,4 

2,5,4 

3, 6, 2 

4, 6, 2 

Everything is now ready for the generation and solution of kinematic analysis equations. Rj  i  denotes 
the transmission ratio relative to gear pair j -  i.  

> for m from 1 to gcont do  
i  := VTA[m,1]: j := VTA[m,2]: k := VTA[m,3]: 
egn.m := OM.i - R.j.i * OM.j + (R.j.i - 1) * OM.k = 0 

od: 
OM.frame := 0: 
solutions := solve({egn.(1..gcont)), varset); 

R63 R52 OM 1 (—R63 + R64) R52 OM 1 
solutions := { OM2 = ®M4 = %I ~ %I ' 

OM5 — OM I (— R64 — R63 R52 + R64 R52) OM6 _ _ ( R63 — 1) R52  OMI  } 
— %1 ' 

_ 
%1 

Step 6: Build-up of the adjacency matrix for the graph describing the power-flow 

During the implementation of this phase a further simplification of the original algorithm has been 
adopted. In fact, only a minor of the adjacency matrix of the graph corresponding to the diagram is needed. 
We briefly recall that such a graph, shown at the right of Figure 2, is conceptually different from the input 
graph of the epicyclic train of Figure 1. The simplification is possible because the graph of Figure 2 is a 
bipartite graph. In fact, its vertex set can be partitioned into two subsets containing, respectively, vertices 
corresponding to links and blocks. Each edge of the bipartite graph joins vertices belonging to different sub-
sets. Hence one can arrange a Boolean matrix C having n (i.e. number of nodes or links) rows and gcont 
(i.e. number of blocks or fundamental circuits) columns. Element C [  i,  j ] is true if and only if node  i  is 
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connected to block j. In other words, C is a Boolean look-up table which contains all the informations for 
the construction of the graph relative to the power flow diagram. 

> C := array(1..n,1..gcont): 
for  i  from 1 to n do 
for j from 1 to gcont do 
C[i,j] false 

od: 
od: 
for m from 1 to gcont do 
C[VTA[m,1],m] := true: C[VTA[m,2],m] := true: C[VTA[m,3],m] := true: 

od: 

IM-1 -  M M,",~ UM 

The information stored in matrix C can be used to build the set of unknown powers. Each line of the 
diagram depicting the power distribution is associated with a symbol P.  i  . m, that is the character P with 
two indices, ordinately denoting the node  i  and the block m connected by the line. 

> powerset f): 
for  i  from 1 to n do 
if  i  <> frame then 

for m from 1 to gcont do 
if C[i,m] then 
powerset := powerset union (P.i.m) 

fi 
od 

fi 
od: 
powerset := powerset union (Pout): 

Steps 3 and 9: Creation and solution of the system of equations for the power-flow analysis 

The set of equations relative to the block was created according to the theoretical bases discussed pre-
viously [3 and 4]. 

If none of the adjacent nodes is the frame link then, for each block, two equations are written; otherwise 
only one equation is added. The angular velocities are denoted with 01 , 02 , ... instead of 
OM1, OM2 , ... to avoid automatic substitutions of the values obtained during the kinematic analysis. 

Construction of the group of equations relative to boxes: 

> equcont := 0: 
for m from 1 to gcont do  

i  := VTA[m,1];  i VTA[m,2]; k := VTA[m,3]; 
equazji P.i.m = - R.j.i * P.i.m * ( O.i / O.i): 
equazkj P.k.m = ( (1 - R.j.i) * O.k * P.j.m) / 
equazki P.k.m = ( (R.j.i - 1) * O.k * P.i.m) / 
if C[frame,m] then equcont equcont + 1: 
if frame =  i  then equf.equcont := equazkj 
elif frame = j then equf.equcont equazki 
elif frame = k then equf.equcont equazji 
fi 

else 
equcont equcont + 1: equf.equcont equazji: 
equcont equcont + 1: equf.equcont := equazki 

fi 
od: 

(R.j.i * O.j): 
( O.i): 
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For each node a simple power balance equation is written for all the power flowing from and to that node. 
Input and output power must be also considered during the construction of these equations. 

Construction of the group of equations relative to nodes: 

> for m from 1 to n do 
if m <> frame then 
equcont := equcont + 1: 
termine := 0: 
if m = input then 
termine := termine + Pin 

fi. 
if m = output then 

termine := termine - Pout 
fi. 
for mm from 1 to gcont do 

if C(m,mm) then 
termine termine + P.m.mm 

fi 
od: 
equf.equcont termine = 0 

fi 
od: 
for m from 1 to equcont do print(equf.m) od: 

Finally the system of equations can be solved by using one Maple instruction. The output areas herein re- 
ported show the set of unknowns (called powerset), the system of equations, and the solutions obtained 
for the case shown in Figures 1 and 2. 

> powers := so1ve({equf.(1..equcont)), powerset); 

R51 P1105 
P51 = - 01 

(R51 - 1)04P11 
P41 = 01 

R52 P22 05 
P52 = - 02 

(R5 2  - 1) 04 P22 
P42 = 02 

_ (1 - R63) 02 P63 
P23 - R63 06 

R64 P44 06 
P64 = - 04 

( R64 - 1) 02 P44 
P24 = 04  

s 

Pin+Pll = 0 

-Pout + P22 +P23 +P24 = 0 

P41+ P42+ P44 = 0 

P51+ P52 = 0 

P63 +P64 = 0 
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02 R64 Pin (— R52 —R63 R51 +R63 R52 + R51) 04 Pin (— R51 + R52) 
powers := { P23 = 01 R52 R63 P44 — — ' 01 R52 ' 

04 Pin R5 1R52 — 1 02R64 — 1 Pin—R51 + R52 Pin R5102 
P42 = 

01 R52 
P24=— 

01 R52 , P22 = 01 R52 ' 
, . ~ : 

~~ f 
R64 ;F . R52)  ~,6 

~... " 
,~ 

PI P . . 
.~ . ' 0 R52  

Pin 02(—R63 R52—R64 R51+R64R52) 04 Pin (R51— 1) 
Pout = — 

01 R52 R63 
, P41 — 

01 
, 

P63 —__ R64 Pin (— R51 + R52) 06 
P51— 

 R51 Pin 05 } 
Ol R52 ' 01  

The full listing of the Maple program developed is available upon request. 

The first two authors wish acknowledge financial support from Consiglio Nazionale  delle  Ricerche-
Progetto Finalizzato Robotica, Grant n.93.00930.PF67. 

[1] F. Harary: Graph Theory, Addison-Wesley Publ. Co., Reading, MA, (1972). 

[2] Joseph E. Shigley and John J. Uicker: Theory of Machines and Mechanisms, McGraw-Mill Book Co., 
New York, NY, pp. 305 - 321, (1950). 

[3] Ettore Pennestri: On The Automatic Design Analysis of Gear-Trains, Doctoral Dissertation, Colum-
bia University NY, University Microfilms, Ann Arbor MI, Order No. 9127952). 

[4] Ettore Pennestri and Ferdinand  Freudenstein:  A Systematic Approach to Power-Flow and Static-
Force Analysis in Epicyclic Spur-Gear Trains, ASME Journal of Mechanical Design, 115, pp. 639 - 
644 (1993). 

[5] Ettore Pennestri and Ferdinand  Freudenstein:  The Mechanical Efficiency of Epicyclic Gear Trains, 
ASME Journal of Mechanical Design, 115, pp. 645 - 651, (1993). 

[6] Nicola Pio Belfiore and Ettore Pennestri: Kinematic and Static Force Analysis of Epicyclic Gear 
Trains, Proc. 1st Nat. Conf. on Applied Mechanisms and Robotics, Cincinnati, Ohio, Paper No. 
89AMR-6B, (1959). 

[7] Nicola Pio Belfiore, Ettore Pennestri, and Antonio Belmontesi: An Integrated System for Power-
Flow Analysis and Evaluation of Mechanical Efficiency of Epicyclic Gear Trains, (in Italian), Proc. 
XI Nat. Cong. AIMETA, Sez. Meccanica  delle  Macchine, Trento, Italy, pp. 47 - 52, (1992). 

[S] Ettore Pennestri, Rosario Sinatra, and Nicola Pio Belfiore: Multiple-Speed Planetary Gear Systems 
with Kinematic and Power-Flow Analysis, Internal Report, University of Rome Tor Vergata, Rome, 
Italy, (1993). z 

[9] Ettore Pennestri, Rosario Sinatra, and Nicola Pio Belfiore: A Catalogue of Automative Transmissions 
with kinematic and Power-Flow Analysis, Proc. 3rd Nat. Conf. on Applied Mechanisms and Robot-
ics, Paper No. AMR-93-057, Cincinnati, Ohio, (1993). 

[10] Anders Hedman: Transmission Analysis: Automatic Derivation of Relationships, Proc. ASME Int. 
Power Transmission and Gearing Conf., DE-Vol. 43-1, Scottsdale, AZ, pp. 259 - 266, (1992). 

[11] Lung-Wen Tsai, E.R. Maki, T. Liu, and N.G. Kapil: The Categorization Of Planetary Gear Trains For 
Automatic Transmission According To Kinematic Topology, SAE Technical Paper Series, FISITA 88, 
Washington DC, (1988). 

55 



On Solving  ' McConnell Equations  
Blochei-01stry  

In recent years, in vivo nuclear magnetic resonance (NMR) spectroscopy has allowed us to measure rate 
constants of transport and diffusion across living cell membranes [1-2]. One of the authors (S.M.S.) is in-
terested in a special NMR technique — inversion transfer — to study bacterial systems [3]. The theoretical 
basis for the analysis of inversion transfer experiments is a system of differential equations first formulated 
by McConnell [4]. These equations describe the rate of change of nuclear spin magnetization of a single 
nuclear species which is transferred back and forth between two different magnetic environments (A, B) by 
kinetic processes. In this article we show how the McConnell equations, a linear inhomogeneous system of 
differential equations with constant coefficients, can be solved elegantly by using symbolic matrix algebra 
only, in particular by using matrix exponentials. This method utilizes the special structure of the ODE sys-
tem and therefore is faster and more direct than simply using dsolve, the solver for differential equations in 
Maple. It is also an independent method compared to the solution techniques found in the literature [5-7]. 
In addition, methods of mixed symbolic-numeric type for the determination of the formal parameters in-
volved in the analytical solutions are described. 

This application is presented as a Maple worksheet, a new feature of the graphical user interface in Ma-
ple V Release 2, for creating mathematically live documents. It combines Maple input, output, text and 
graphics in one easily accessible document. The goal of this worksheet is to illustrate the valuable assistance 
of symbolic computation in modeling and solving a special mathematical problem in Biochemistry. 

The McConnell equations as formulated by Led and Gesmar [5] to study chemical exchange rates are 
given as follows 

> eq1 := diff(MA(t),t) = -k[A1]*MA(t) + k[-1]*MB(t) + k[A]; 
eq2 := diff(MB(t),t) = k[1]*MA(t) - k[B1]*MB(t) + k[B]; 

a 
eql := atMA(t) _ — kA1MA(t) + k_ 1 MB(t) + kA  

a 
eq2 := ~tMB(t) = ki MA(t) — kBiMB(t) + kB  

Here, MA(t) and MB(t) describe the time-dependent peak heights of the magnetic resonance signals in A 
and B, respectively. These signals are measured in NMR experiments. The parameters k[1] and k[-1], inter-
preted as indexed names in Maple, characterize the first-order rate constants for the forward and reverse re-
actions. The meaning of the other parameters will become clear in the sequel. From linear algebra we know 
that linear systems of differential equations with constant coefficients can be solved with the help of matrix 
exponentials [8]. To do it in Maple we first have to define the appropriate matrices. 

with(linalg): #load the linear algebra package 
A matrix([[-k[A1], k[-111, [k[1], -k[B1]]]); 
C vector([k[A], k[B]]); 
YO vector([MAO, MBO]); 

Warning: new definition for norm 
Warning: new definition for trace 
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—kA1 k_1 

k 1  —kBl  

C := [kA  kB] 

1'0 := [MAO ME~ 

Applying the Maple function for the evaluation of matrix exponentials leads to the following solution 
of the inhomogeneous ODE system: 

> F := multiply(exponential(A,t), YO): 
f := s -> multiply(exponential(A, t-s), C); 
P :_ [Int(f(s)[1], s=O..t), Int(f(s)[2], s=0..t)]; 

f := s —4 multiply(exponential(A, t - s), C) 

[~-21  I':= (— kA%3 %1 — kAkAl %2 + kAkAl %3 + k,yksi%2  — kAkB1%3 
0 

—kA  0101%2+2k_1 kB%2-2k_1 kB%3 )/ %lds, 

1 
2 (— 2k 1 kA%2 + 2k1 kA%3 + kB%3 °Io l + kBkBl %2 — kBkB1%3 

0  

—k BkAl  %2 + kB  kAl  %3 + kB  % 1 %2 ) / % 1 ds I 

%1 := kA1 — 2kAI kB1 + kBl + ̀ lk  l k l 

%2 :— e( 1/2(k
A~+kB~+ %1)(t-s)) 

%3:= e\
-1/2(kAi  +kB1  - %1) (t-s) ) 

Mere, the % label signifies common subexpressions in the output, a way Maple makes output more compact. 
The matrix exponential of a d x d square matrix A is defined by: 

1 1 1 
exp(A) = I+A+2iA2+T_iA3+ ... +niA"+... 

where I is the identity matrix and the matrix series on the right hand side can be considered as a d2  (scalar) 
series, one for each of the elements of exp(A) [8]. Now, the solution of the inhomogeneous ODE system is 
obtained by adding the solution F of the corresponding homogeneous ODE system and the particular solu-
tion P. 

> S1:= add(F, map(value,P)): 

It should be noted that the solution of the equivalent one dimensional ODE is found in a formally iden-
tical manner. The correctness of the one dimensional solution is easily verified. 

> exp(a*t)*y0 + int(exp(a*(t-s))*c, s=O..t): 
evalb(expand(diff(",t) = a*" + c)); 

true 
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If matrix A is invertible then the solution of the inhomogeneous ODE system can be computed with ma-
trix algebra only. We have: 

> AC multiply(inverse(A), C): 

S2 add(multiply(exponential(A,t), add(Y0, AC)), -AC): 

Again, this direct solution can be motivated by the one dimensional case: 

> dsolve((diff(y(t),t)=a*y(t)+c,y(0)=y0), y(t)); 

Y(t) _ —~$e(at)(
a

+y0~  

Comparing the solutions S 1 and S2 yields: 

> map(simplify, add(S1,-S2)); 

Next, we introduce physical boundary conditions to obtain a special solution. Let MeA and MeB denote 
the unperturbed equilibrium magnetizations of A and B respectively, i.e. the limits of MA(t) and MB(t) for 
t -> +infinity. These limits are given by the components of the constant vector -AC in solution S2, provided 
that both eigenvalues of A are negative. 

> MeA = -AC[1], MeB = -AC[2); #(*) 

kAkBi + k-iks kAkl + kakAi 
MeA = 

kAikat —k-lkl , 
MeB 

= kAlksi — k-I kl 

Solving for k[A] and k[B] yields: 

> solve(("), (MAJ, k[B])); 
assign("): 

{kA  = — k_1MeB + kA1MeA, kB  = McB kB1 — k1MeA} 

Inserting these expressions into the system of ODES and collecting coefficients results in the following sys-
tem of equations: 

> eql collect (eql, [k[All, k[-1]]); 
eq2 collect (eq2, [k[B11, k[1]]); 

a 
eql := atMA(t) _ (— MA(t) + MeA) kAl  + (MB(t) — MeB) k_1  

a 
eq2 := atMB(t) _ (— MB(t) + MeB) kBl  + (MA(t) — MeA) kl  

Now, the inhomogeneous ODE system is transformed to a homogeneous system by 
MA(t) —) MA 1(t) + MeA and MB(t) ---> MB 1(t) + MeB 

a 

> newegl:=eval(subs(MA(t)=MA1(t)+MeA, MB(t)=MB1(t)+MeB, eql)); #(**) 
neweg2:=eval(subs(MA(t)=MA1(t)+MeA, MB(t)=MB1(t)+MeB, eq2)); 

a 
neweql := atMAl(t) _ —MA 1(t)kAl +MB 1(t)k_1  

a 
neweq2:= atMBl(t) _ —MBl(t)kBI +MAI(t)kl  
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For the solution of this system we use matrix exponentials again. 

> timel time(): 
Y1 vector([MA10, MB10]): 
fundsys multiply(exponential(A,t), Y1): 
# adding the boundary values 
linsol add(fundsys, vector([MeA, MeB])); 
timel time() - timel; 

linsol:= [-2  (—MA10%3 %1 —MAIOkAI %2 +MAlOkAI %3 +MAIOkBI %2 —MAlOkBI %3 

—MA10 %1%2+2k_IMB10%2-2k-1MB10%3)/ %lds+MeA 

1 
2(-2kIMA10%2+2kIMA10%3+MB10%3 %1 +MB10kB1%2—MZ$lOkBl%3 

—MB10kAl%2+MB10kAl%3+MB10 %1%2)/ %lds+MeB I 

%1 := kAl — 2kAlkB1  + käl  + 4k_lkt 

%2:= e 
~-1 / 2(kA,+kB,+ %l)t) 

%3:= e 
(-1/2(kAi +kB,- %l )t) 

timel :=.310 

Thus, under condition (*) the solution of the original inhomogeneous ODE system is simplified to a sum 
where one term is the solution of the homogeneous ODE system (**) and the other term, usually the partic-
ular solution, is constant. Applying the collect function recursively to each component of the vector linsol 
provides a compact analytical solution of the following general form: 

MA(t) = C1 '~ exp(laml * t) + C2 * exp(lam2 * t) + MeA 
MB(t) = C3 * exp(laml * t) + C4 * exp(lam2 * t) + MeB 

> linsol := map(collect, linsol, [%2, %3, MA10, MB10]); 

1 (—kA1— %1 +kBl)MA10 k-IMB10 (-1/2(kA,+kB,+ %i)t) 
linsol := 2 %1 

— e 
%1 

1 (— kBI  + kAl  — %1) MA10 — k-IMB 10 (-1/2(kA, +kB1  - %1 
+ e + MeA 

)t) 
— 

2 %1 %1 

—
kIMA10

+ 
 1 (kst—kAl+ %1)MB10 

e
(_1/2(kA,+kBI + 

%1 2 %1 

+ kIMA10
+ 

 1

2 

 (kA1—ks1+ %1)MB10 
e
(_1/2(kA,+kB,- %1)t)+Me

B 
%1 %1 ~ ~ 

%1 := kA1 -2k   Alksl + kBl  + 4k tkt 

It is easily verified that the parameters laml and lam2 are the eigenvalues of the coefficient matrix of 
the homogeneous ODE system. We have: 

> eigenvals(A); 
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1 1 1 
—2kA1- 2kB1 +2 k21-2kA1kB1+kB1+4k_Ikl, 

--- 
-2k A1- 2k  BI —  2 

k~ l  — 2kAlksl  + kB1  + 4k I k l  

Next, we solve the homogeneous ODE system (**) by applying the Maple function dsolve, the solver 
for differential equations in Maple. 

> time2 timeO: 
start MA1(0) = MA10, MB1(0) = MB10: 
fcns {MA1(t), MB1(t)}: 
dsol dsolve({newegl, neweg2, start}, fcns): 
assign(dsol): 
#adding the boundary values 
dsol vector([MA1(t) + MeA, MB1(t) + MeB]): 
time2 time() - time2; 
speedup := time2/timel; 

time2 := 23.810 

speedup := 76.80645161 

Thus, dsolve needs much more time to find the solution compared to the method using the matrix ex-
ponentials. This is explained by the more general algorithms used in dsolve which work for nonlinear equa-
tions and may not be efficient for homogeneous linear systems. The time (in seconds) was measured on a 
RS/6000-321-1 workstation. Comparing the result of dsolve with that found by using matrix exponentials 
yields: 

> map(simplify, add(dsol, -linsol)); 

If we define the parameters: 

> MA10 := MAO - MeA: MB10 := MBO - MeB: 
k[A1] := 1/T[A1] + k[1]: k[B1] := 1/T[B1] + k[-l]- 

we get analytical solutions for MA(t) and MB(t) which depend on the eight parameters MAO, MBO, MeA, 
MeB, T[A1], T[Bl], k[1], k[-1]. Mere, 1/T[Al] and I/T[B1] denote the relaxation rates of the spins in the 
two sites, whereas MAO and MBO denote the initial values of MA(t) and MB(t) at time 0. Usually, the pa-
rameters involved in MA(t) and MB(t) are determined by a nonlinear least-squares analysis, i.e. by fitting 
the model parameters to experimental data for MA(t) and MB(t) obtained at different values of time [5-7]. 
The symbolic evaluation of the Jacobian matrix, required for the numerical fit program, is readily done with 
the help of the Maple procedure jacobian. For the translation into optimized FORTRAN code and the gen-
eration of a driver program for the fitting routine we used Macrofort [9], a Maple package for FORTRAN 
code generation. The numerical parameter-fitting itself is accomplished by the ACM algorithm NL2SOL 
[10] which is based on the Levenberg-Marquardt algorithm and which needs analytic Jacobian matrices,  as 
input. The Macrofort program is capable to construct complete and ready to compile FORTRAN code for a 
given set of functions and parameters. 

Now, for plotting the functions MA(t) and MB(t) we substitute special fitted values obtained from NMR 
data to investigate transport processes in a special biological system [3]. 

> k[1] = 6.6: k[-1] .= 10.5: 
MeA := 153.5: MeB := 78.8: 
MAO := 130.4: MBO := 27.08: 
T[A1] := 1.4: T[B1] := 1.8: 



Solving McConnell Equations 

The parameter values lead to the following negative eigenvalues of matrix A: 

> eigenvals(A); 

-.652671519, -17.71716975 

The given boundary conditions of MA(t) and MB(t) for t -> -infinity are reproduced by: 

> map(limit, linsol, t=+infinity); 

111111 2 :1111111 

> with(plots): 
pl := plot(fseg(linsol[i], i=1..2)}, t=0..5): 
t1 := textplot([4, 79, `MB(t)`], align=ABOVE): 
t2 := textplot([4, 147, `MA(t)`]): 
display(pl, t1, t2); 

The authors would like to thank Edgar Wermuth for his help to find the explict solution in terms of ma-
trix exponentials. Valuable comments of the referee for improving the readability of the article are acknowl-
edged. 
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Modeling  SnUNTransport,  
An Application of :p  

When modeling physical problems by building a scaled version of the real thing, one has to deal with 
the `scaling problem'. This arises because the different quantities in the model are multiples of the original 
quantities, and the factors used come from physical considerations. In principle, all these factors are powers 
of the scaling factor X = lengths in the original divided by lengths in the model. If, for example, we want to 
model rainfall, scaling down linear dimensions is not enough, the viscosity of the air must be scaled, too, 
otherwise raindrops will behave very differently. The scaling factors will usually be derived by physical 
considerations [1]. For most models, however, there will remain `misfits', as not all the desired quantities 
can be made to scale as desired. It is then the art of practical modeling to seek a compromise and extract the 
desired information. 

In our example, an application of snow mechanics [2], the transport of snow by wind immediately above 
the snow cover is an important process for avalanche genesis. This transport is simulated at a smaller scale 
with real snow. Here three similarities are considered: 

1. geometrical, i.e. proportions of lengths are preserved. (height of fence, diameter of snow grains, charac-
teristic length, and others.) 

2. kinematical, i.e. proportions of velocities are preserved. (wind speed, shear stress speed, speed of sound, 
sinking speed of snow grains, etc) 

3. dynamical, i.e. proportions of forces are preserved. (gravitational force, flow resistance of snow grains) 

These similarities cannot be satisfied simultaneously. But by scaling other factors, like densities, pressure, 
Reynolds' number, threshold shear velocity, cohesion, and others, one can find a way to build realistic mod-
els. 

We define the following quantities, where variables in reality will be indexed by P (for prototype), those 
in the model by M: 

® X = geometrical scale factor = lengthsp  / lengthsu  = 30 

® p = density of air snow mixture 

® qs  = transport rate in the `saltation' layer (here the wind picks up snow) 
z 

® u = velocity 

® u* = shear velocity 

® ut* = threshold shear velocity 

1  Federal Institute for Forest, Snow, and Landscape Research, CH-8903, Birmensdorf, Switzerland. hoffmann@ wsl.ethz.ch  
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Modeling Snow Transport 

In [2) it is shown that u* = A u M  , u p(x p) _ ~ uM(x y) , p p(x p) = py(xM) , so that with dx p  = X dxM  
we can derive from the physical definition of 

q,s  = fu(x) p(x)dx  

the scaling equation 

q  = ~3/2
gS 

 
SP M 

(1) 

But from empirical equation describing snow transport, we have a condition conflicting with this, namely 
qs  = Xq, . Thus we know that we cannot satisfy (1) and this condition simultaneously (for general um ). 
But since ü occurs in the defining integral, we can study the behavior of 

qSP 
= %,3/2

qSM ( 2) 

in the vicinity of z=1, say between 0.6 and 1.4, to find for given ;~ and u** , where the transport rate qsP 
will be simulated to within 40%. 

By `looking closely' at (2) we find that it can best be analyzed by defining the following normalizing 
constants a and ß and the variables x, y (, and z from above): 

® CC = FX u,*N  , ß = u,*x  

® x = uPia>o , y = u~/ß>o 

With these abbreviations, (2) can be transformed into the zeros of the function 

f (x, Y, z) = x (x2  — 1) — ~ zY (Y 2  — 1) (3) 

R-M` EN 

We examine the graph of the function (3) f(x, y, z) = 0 for different values of z. Our interest lies in in-
specting the regions between the curves z=zo, 

zo  E 10.6, 0.8, 1.0, 1.2, 1.41 (4) 

in the rectangle 0 < x < 1 , 0 < y < 1 , since other values do not have a physical meaning. From equation (3) 
we get by differentiation 

(3x2 -1)dx—Az• (3y2 -1)dy = 0 (5) 

and, also from (3) by solving for z 

z = ,,~F),Y (Y2  — 1) 

x(x 2 -1) 
T6) 

Let us do some elementary `curve discussion'. Let (x, y, z) be a point in three-dimensional space. By 
elementary considerations we get from (3) and (6) the following loci satisfying (3): 

(0, 0, z) (0, Y, 0) (x, 0, 

(1, 0, z) (1, Y, 0) (x, 1, °°) (%) 

(0, 1, z) (1, 1, z) 

64 

i  



Modeling Snow Transport 

Figure 1: Oblique view of z(x,y), with X=10. 

The following piece of MapleV2 code generates Figure 1, the graph of z in the desired rectangle. 

>1ambda:=10: f(x,y,z):=x*(x^2-1)-sqrt(lambda)*y*z*(y^2-1): 
>ze:=so1ve(f(x,y,z)=0,z): 
>with(plots): str:=convert(lambda,string): 
> # 0.01, 0.99: to avoid infinities of z at y=0, 1 
>plot3d(ze,x=0..1,y=0.01..0.99,axes=NORMAL,view=0..1.5,grid=[50,501, 
> orientation=[40,40],tickmarks=[2,2,2],labels=['x','y','z'], 
> title=`lambda=`.str); 

Restriction of z to the values of (4) gives four special points (z will be dropped in the following): 

(0, 0), (l, 0), (0, 1), (1, 1)  

From (5) we get the loci of special values for the derivative: 

vertical tangents: dx = 0: (x, 1/j3-) 

horizontal tangents: dx = 0: ( l / F3, y) 

saddle points: dx = dy = 0: (1 / J3-, 1 / F3) 

Horizontal (vertical) tangents mean that there is a constant (mis)scaling of q,.P  over a range of u P ( u M ). 
In the vicinity of the saddle point the constant (mis)scaling is found for a broader range of both u P 
and u,*,  . 
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The condition for the saddle point to lie on the graph of z=z0, and the condition that there exists a straight 
solution through (0, 0), prove to be identical, namely 

zo  = 1/A (9) 

This straight line automatically runs through (1, 1). 

With the abbreviation C = I/ ( Fkz) the slopes dy/dx at the special points (8) are 

~ (0,0) = C 

~ (0, 1) = -C/2 

dx (1, 0) _ -2C 

dy 
dx (1, 1) = C 

A qualitative trace of (6) z(x, y) = z0  can now be sketched: For C < 1 the graph will connect the pairs of 
points (0, 0), (1, 0), and (0, 1), (1, 1); for C> 1 the pairs of points (0, 0), (0, 1), and (1, 0), (1, 1) are con-
nected; for C=1 we have the saddle point at the place where the straight line through (0, 0), (1, 1), and the 
curved line through (0, 1), (1, 0) meet. 

The first course to trace the exact curve z=z0  is to take the z values required in (4 ), specify some values 
for y, and solve (3) for x. This procedure proves to be awkward because (3) may have two, one, or zero so-
lutions for the value of y considered. Bookkeeping might be nontrivial. 

The second course is to integrate (5) parametrically, starting from the special points. From (5) we get 

dx = -,Fkz (3y2 - 1) dt, dy = -(3x2 -1)dt (10) 

We integrate for t> 0 numerically, starting from (0, 0) and (1, 1). One of the two curves will pass 
through (0, 1), the other through (1, 0), depending on the value of C, see above. The minus signs were in-
troduced into (10) so that the integration algorithm will start off into the correct direction. The Maple pro-
gram given below implements this procedure. 

In the special case (9) the integration will break down in the vicinity of the saddle point because of 
dx --> 0, dy -> 0 according to (10). Here we use the straight line between (0, 0) and (1, 1) explicitly. The 
second, curved arm of the cross will be generated by starting at (1, 0) and (0, 1), in both cases using dx and 
dy, but without the minus signs. This again will make sure that the lines will run towards the saddle point. 
Some distance before the saddle point we stop and connect the ends with a short broken straight line through 
the saddle point. 
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Technique 
Mere is the MapleV program used for generating Figure 2.  

>showreg  := proc (lambda, wid:array, step:array, PLT) 
># wid, step regulate integration algorithm rkf45 in G 
># lambda=z[3] can be used to show the existence of a saddle point 
> local DX,DY,DfY,fcns,G,ii,kk,P,PS,spExist,sg3,SS,strL,sys,t,ttl,x,y,z; 
> G array(1..2, 1..6): P := array(1..2, 1..6): 
> z array(1..5, [0.6, 0.8, 1.0, 1.2, 1.41): 
> fcns := {x(t), y(t)}: 
> _RELERR := Float(1,-2): _ABSERR :=Float(1,-3): 
> strL:=convert(lambda,string): sq3 := evalf(sgrt(1/3)): 
> PS := plot([0,0, 1,0, 1,1, 0,1, sg3,sg3], style=POINT): #spec. points 
> SS := fps}: 

> DX :_ -sgrt(lambda)*(3*y(t)^2-1): DY := -(3*x(t)^2-1): 
> DfY diff(y(t),t) = DY. 
> for ii from 1 to 5 do 
> sys:= diff(x(t),t)= z[ii]*DX, DfY: 
> G[1,ii1 dsolve({sys,x(0)=O,y(0)=0),fcns,numeric): 
> G[2,ii1 dsolve({sys,x(0)=l,y(0)=1),fcns,numeric): 
> od: 
> if abs(z[3]^2*lambda-1) < 0.001 then spExist:=1 else spExist:=0 fi: 
> if spExist=l then 
> sys:= diff(x(t),t)=-DX, diff(y(t),t)=-DY: 
> G[1,61:=dsolve({sys,x(0)=O,y(0)=1},fcns,numeric): 
> G[2,6]:=dsolve({sys,x(0)=1,y(0)=0},fcns,numeric): 
> P[1,31 := plot([0,0,1,11): 
> PS:=plot([seq(subs(G[1,6](wid[6]*t),[x(t),y(t)]),t=step[1,6]-1),[sg3,sg3], 
> seq(subs(G[2,61(wid[61*t),[x(t),y(t)]),t=step[2,61-1)1): 
> SS:= SS union {PS,P[1,3)}: 
> fi: 
> for kk from 1 to 2 do 
> for ii from 1 to 5+spExist do 
> if (spExist=0) or (ii<>3) then # leave out P13, P23 if spExist=l 
> P[kk,ii]:=plot( map(subs, map(G[kk,ii], [seq(wid[ii]*t, 
> t=O..step[kk,ii])]), [x(t),y(t)] )): 
> SS := SS union {P[kk,ii]): 
> fi: 
> od: 
> od: 
> ttl:=`lambda=`.strL.`, z=1.4..0.6, from y=0 and y=1 inward`; 
> PLT:=plots[display](SS,view=[0..1,0..l],title=ttl): 
>end: 

Here is a sample call. To generate this plot (shown in Figure 2) may take 10 minutes on a 25 MHz 386 
PC-class machine:  

>showreg (10, array(1..6, [0.002, 0.003, 0.0025, 0.0025, 0.002, 0.0005]), 
> array(1..2,1..6,[[290,275,140,180,120,11,[200,320,60,70,65,1]1),`Plot1`): 
>Plot1;  

Here is another sample. This plot of a saddle point is not shown:  

>showreg (1, array(1..6, [0.004, 0.004, 0.006, 0.004, 0.003, 0.005]), 
> array(1..2,1..6,[[290,320,140,320,320,220],[200,320,75,200,220,220]1),`Plot2`): 
>Plot2;  

ME 
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Modeling Snow Transport 

Figure 2: Lines z0  E { 1.4,1.2,1.0,0.8,0.6}, X=10, from y=0 and y=1 inward. 

I thank Rob Corless and Michael Monagan for help via email to navigate through the complexities of 
MapleV, and an unnamed referee for various helpful suggestions. 

[1] G. 1. Barenblatt: Dimensional Analysis, Gordon and Breach Science Publishers, New York, (1987). 

[2] T. Voegeli: Dissertation 10457, ETH Zurich, (1993). 



in Education  Part 11  
Ton  y Scott, Michael onagan1, Richard Pa ve/%2  and Darren ReolferlP 

In the Fall of 1993, many Maple users attended the "Technology in Mathematics Teaching" (TMT) con-
ference at the University of Birmingham and participated in Maple related presentations from Jenny Watson 
of CLECOM Ltd, and Simon Eveson of the University of York. This included interesting panels of teachers 
discussing the impact of the computer algebra system (CAS) on the undergraduate curriculum. 

The first thing that was pointed out is how the CAS could totally change the approach by which a student 
would solve a particular problem. 

An illustrative example is the problem of partial fraction decomposition. We meet this when teaching 
integration of rational functions. Splitting a rational function into partial fractions and then integrating each 
term of the partial fraction decomposition is a simple idea. The problem is the mechanics and algebra re-
quired to actually do a partial fraction decomposition. Even a relatively simple problem, such as this one 

2x4  — 4x3  + 3x2  + 1 
= 2x+x 1 +2(x-1) -2  

X3 — 2x2  + x 

would be a real challenge to most students to get right. Consequently partial fractions are often not covered 
very well. It is not possible to ask students to tackle a realistic problem. However such computations are 
easy for a CAS! This suggests that much of the algebraic manipulation "drudgery" can be deferred to the 
machine allowing teachers more time to spend on concepts. However, these possibilities are tempered if one 
is not familiar with the capabilities of the CAS. This creates a need for problem-solving sessions which 
make optimal use of the available resources within the system. 

In issue no. 7 of this Newsletter [1], we presented an article devoted to the use of Maple as an educa-
tional tool for solving problems in Science. To further illustrate the capabilities of the Maple system as a 
teaching tool, we present another four such educational examples in Physics, Chemistry and Engineering. 
The solutions presented here are in the form of Maple worksheets and range in difficulty from senior high-
school years to sophomore level problems. 

The first example is a straightforward exercise which solves the linear system of equations generated 
by Kirchoff's laws for the well-known "Wheatstone Bridge" of RC circuit theory. This was an extremely 
useful circuit developed in 1543 by Charles Wheatstone and was widely used to determine values of un-
known resistances. What Maple gives us here is formulae (for the solutions) in the parameters RI  to R5  
which denote the resistances in the circuit. 

The next two examples originate from D. McLaughin's article entitled "Symbolic Computation in 
Chemical Education" [2]. The second example is a straightforward problem in statistical mechanics, namely 
the derivation of the Stefan-Boltzmann Law from the Planck Radiation formula. This is handled by Maple's 
capabilities for solving definite integrals [3]. The third exercise consists of getting both the eigenvalues and 
eigenvectors for the electronic structure of molecules in organic (quantum) chemistry, according to the sim-
ple approximation known as Huckel Molecular Orbitals (LIMO) theory. Getting the eigenvalues is a feasible 
exercise for many symbolic systems but getting the correct eigenvalues is a more difficult task. Nonetheless, 

1 Institute  für Wissenschaftliches Rechnen,  ETH-Zentrum, CH 8092 Zürich, Switzerland. 

2 MIT Lincoln Laboratory, Lexington, MA, USA 02173 and Computer Algebra Associates, 23 Berkshire Drive, Winchester, 

MA, USA 01890. 

3 Practical Approach, P.O. Box 1007, Stratford, Ontario, Canada N5A 6W4 
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this particular case presents no difficulties thanks to the eigenvector implementation discussed in issue 8 of 
this Newsletter [4]. Thus, the first three sessions represent very accessible problems one can find in any un-
dergraduate curriculum, all of which are readily handled by Maple. 

The fourth example involves a somewhat more challenging problem, namely solving for the motion of 
a chain sliding off a table [6]. Specifically, the problem consists of a uniform chain of finite length L and 
linear density  which lies in a heap right on the edge of a smooth table and then starts sliding over the edge. 
The question is: what is the acceleration of the chain during the time it is sliding over the edge? Note that 
the mass of the chain which is pulled down by the gravitational force increases as the chain is sliding, so the 
mass here is varying in time. This involves using the general form of Newton's first law and leads to a sec-
ond-order non-linear differential equation which could be quite daunting unless the student makes the right 
assumption about the solution. However, Maple can help guide the student to the solution as shown in the 
worksheet. 

Note that these educational sessions as well as those presented in issue no. 7 are available through the 
share library as discussed previously in the News and Announcements section. 

Special thanks to Grant beady for fruitful discussions and Jenny Watson for her invaluable assistance 
during the TMT conference. 
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Worksheet 1 Wheatstone Bridge 

Physics: RC Circuit Theory 
by Tony Scott and Michael Monagan (see reference 151) 

Consider the following circuit known as the Wheatstone bridge input as a Maple PLOT data structure. 

> bridge := CURVES( 
[[0,2.9],[0,0],[10,0],[10,1],[6,3],[10,5],[10,6],[0,6],[0,3.1]], 
[[6,3],[14,3]],[[10,1],[14,3],[10,5]] ): 

>IRtexts := TEXT( [7.5,2], `R3` ), TEXT( [7.5,4], `R1` ), TEXT( [12.6,4], R21  ), 
TEXT( [12.6,2], `R4 ` ), TEXT( [10,3.2], `R5` ): 

>labels := TEXT([10.3, 11, d), TEXT([10.3,5.21, a), TEXT([5.7,31, b), 
TEXT([14.3,31, c), TEXT([0,6.1],f),TEXT([0,-0.1],e): 

> battery := CURVES( [[-0.75,3.11, [0.75,3.111, [[-0.3,2.91, [0.3,2.9]] ), 
TEXT( [1.5,3], `It`), TEXT( [-0.3,3.3], `+`), TEXT( [-1,3], V), 
TEXT( [-0.3,2.7], `-`), TEXT([9.5,3.1],`-`), TEXT([10.5,3.1],`+`): 

> circuit := PLOT( bridge, IRtexts, battery, labels, AXESSTYLE(NONE), 
TITLE( `Wheatstone Bridge`) ): 

> circuit; # display the Wheatstone bridge circuit 

Wheatstone Bridge 

V c 

e 

Apply Kirchhoff's rule for conservation of current to branch points a,b, and d, where the currents  Il  to 
I5 denote respectively the currents across the resistors Rl to R5: 

> egI1:=It-11-I2=0; 

egIl := It - 11 - I2=0 
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> egI2:=Il-13+I5=0; 

> egI3:=I3+I4-It=O; 

eqI2 := I1 - I3 + I5=0 

egI3 := I3 + I4 - It=O 

Apply Kirchhoff's rule for conservation of voltage (energy) to loops abdefa, acba and bcdb. dote care-
fully the indicated polarities of the various  IR  drops as they are encountered in each traversing loop. 

> egV1:=-Il*Rl-I3*R3+V=0; 

egV1 :_ - 11R1 - I3R3 + V=0 

> egV2:=-I2*R2-I5*R5+I1*R1=0; 

egV2 :_ - I2R2 - I5R5 + I1R1=0 

> egV3:= I5*R5-I4*R4+13*R3=0; 

egV3 := I5R5 - I4R4 + I3 R3=0 

Solve for 6 equations in 6 unknown currents. 

>sols := solve (egI1,egI2,egI3,egVl,egV2,egV3,I1,I2,I3,I4, IS, It) : 

Pick off the solution for I5 

>I5 := subs( sols, I5 ); 

I5 := V(R1R4 - R2R3) / (R5R4R3 + R5R2 R1 + R5R2R3 + R5R4 R1 + R2R4R3 
+ R2R1R3 + R1R4 R3 + R2R4R1) 

I5 is directly proportional to V Now find out what R4 must be to make the current I5 zero in terms of 
R1, R2, and R3 

>solve( I5, R4 ); 

am 

which is the "classic result". As pointed out on p.19 of Brophy's book: in the common version of a 
Wheatstone bridge, resistances R1 and R2 are connected to a switch to give decade values of the ratio 
R2/R1, and R3 is a continuously variable calibrated resistor. Once the bridge is adjusted such that the 
current I5 is zero, then the unknown resistance has to be R3 R2 / R1 as shown by Maple. 
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Worksheet 2® Planck Radiation Formula 

Statistical Mechanics 
by %ny Scott, Mictraei Monagan and Richard Pa veiie (see reference [2I) 

T = temperature k = Boltzmann's constant h = Planck's constant 

Telling Maple that these quantities are positive: 

> assume (h>0) : assume (k>0) : assume (T>0) : 

Getting the Stefan-Boltzmann Law from the Planck Radiation Distribution function: 

>rho := v -> 8*Pi*h*v^3/ (exp(h*v/ (k*T)) - 1) ; 

ichV3  
p:=V S nv 

ek
_
T — 1 

> Energy: =Int (rho (nu) , nu=0.. infinity) = int (rho (nu) , nu=0 .. inf inity) ; 

f ich—  V3 8 X 5k„,4~ 4 

Energy := J ~ h- y = 15 h,..3 

0  ek-T  — 1 

This is the Stefan-Boltzmann Law (of Blackbody radiation). The energy is proportional to T4  and the 
constant of proportionality is: 

>sigma:=coeff(op(2,"),T,4); 

8 7C5k,_ 4 

CF
'=  15 h_3 

This is known as Stefan's constant. 
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Worksheet 3: Huckel Molecular Orbitals (HMO) 

Chemistry: Organic (Quantum) chemistry 
,by Barren Redfern, Richard Pa  volle  and Tony Scott (see reference [21) 

Huckel Molecular Theory provides a simple approximation to the electronic structure of molecules, i.e.: 

1) The eigenvalues approximate the energy spectrum. 

2) The eigenvectors approximate the states. 

>with(linalg): 

The HMO for Butadiene can be represented with the following matrix. 

>matButadiene:=array([[a,b,0,0], [b,a,b,O], [O,b,a,b], [O,O,b,a]]); 

~ r WIN 

matButatliene :_ 
bab0 

Obab 

OOba  

Calculate the eigenvalues, approximating Butadiene's energy spectrum. 

> eigenvals (mat Butadiene) ; 

1 1 1 1 1 1 1 1 
a- 2b+ 2~b, a-2b-2~b, a+ 2b + 2,F5b, a+ 2b- 2  15-b 

Calculate the eigenvectors, approximating Butadiene's energy states. 

> eigenvects (matButadiene, radical) ; 

1 1 1 1 

a—Zb + Z~b, 1, —2b-
2~ b  2b— P5b  

1 b b 1 

1 1 1 1 1 1 

a—Zb-2~b, 1, 2 b+ 2~b  2 b+ 2 ~15-
b 

1— b b 1 

— l  b— l ~ b l b l~b a+2b+2~b, 1, 
1— 

 2 2 --2 —2 
1 

, 
b b 

a+ 2b- 2  ~ b, 1, 1 --2b+ 2~15-b 
-
-2b+2,/5-b 

1 1~ b b 

As you can see, there is one eigenvector corresponding to each eigenvalue. (The actual eigenvectors are 
the lists contained within the sets.) The eigenvectors are identical except for change(s) of sign(s). 

BW  
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Moving on to the next example, the HMO for Naphthalene is represented thus. 

> matNaphthalene:=array([ 

> [a,0,0,0,0,0,0,b,b,0], 

> [0,a,b,0,0,0,0,0,b,01, 

> [O,b,a,b, 0, 0, 0, 0, 0, O] , 
> [0,0,b,a,b,0,0,0,0,0], 

> [0,0,0,b,a,0,0,0,0,b1, 

> [0,0,0,0,0,a,b,0,0,b], 

> [0,0,0,0,0,b,a,b,0,0], 

> [b,0,0,0,0,0,b,a,0,01, 

> [b, b, 0, 0, 0, 0, 0, 0, a, b] , 

> [0,0,0,0,b,b,0,0,b,a]]); 

matlVaphthalene := 

a 0 0 0 0 0 0 b b 0 

Oab00000b0 

Obab000000 

OObab00000 

OOOba0000b 

OOOOOab00b 

OOOOObab00 

b 0 0 0 0 0 b a 0 0 

b b 0 0 0 0 0 0 a b 

OOOObb00ba 

Calculate the the eigenvalues, approximating Naphthalene's energy spectrum. 

> eigenvals(matNaphthalene); 

1 1 
~b

1 1 1 1 I 1 
a—b, a+b, a-2b+ 2~b, a- 2b- 2 , a+ 2b+ 2~ba+2b-2,1-13b, 

1 1 1 1 1 1 1 1 
a-2b+ 2~ba-2b- 2~b, a+2b+ 2~ba+2b-2J5-b 

A specific eigenvector lambda can be computed by solving A x = lambda x or equivalently computing 

the nullspace of the characteristic matrix A - lambda I . For example 

> nullspace(charmat( matNaphthalene, (a+b) )); 

f[00-1-1  00-1-1  1 111 

In 
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Worksheet 4: Chain Sliding off the Edge of a Table 

Physics:Classical  

i~  

This particular problem consists of a uniform chain of finite length (say Q and linear density (say r), 
which lies in a heap right on the edge of a smooth table and then starts sliding over the edge. The ques-
tion is: 

What is the acceleration "a" of the chain during the time it is sliding over the edge? 

The mass of the chain, which is pulled down by the gravitational force, increases as the chain is sliding, 
so the mass in our problem is varying in time. hence, we can't use the old-fashioned F = ma (force 
equals mass times acceleration) here. We must use a more general version of Newton's second law, 
namely: 

F = W(t), p(t) = m(t)v(t) 

which implies that, 

F (atm(t)) V(t) + UVW) M(t) 

We take y=0 as our reference for the table top, and since the chain starts from a rest position t=0 we have: 

v(t=0)=0, y(t=0)=0  

Thus, the mass m(t) is r*y(t) (where the y-axis points downwards). So 

atm(t)  - p(a r''(t) )  

which is also equal to: 

rv(t) 

As well, we can say that F is equal to: 

m(t)g=ry(t)g  
where "g" is the gravitational constant. Therefore our equation of motion for F is: 

ry(t)g=rv(t)2  + a( t)i'(t) 
where v(t) equals 

V(t)  

and a(t) equals 

a2 a 

5t2y(t) = atv(t) 

which is the acceleration. Dividing the above by the density "r", we get the DE we have to solve. 

2 a2  
y(t)~ _ (Va ~ y(t)(  (t)~ at2y(t)) 
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Thus we obtain a second-order NON-linear differential equation which can be quite daunting for stu-
dents, however, with Maple, we can get the solution as shown below: 

>readlib(isolate) : 
>eg := y(t)*g = diff(y(t), t) 2  + y(t)*diff(y(t), t2): 
>ans .= dsolve(", y(t)); 

3 1  
ans  := t = f r) 

Y 
dyl — C2, t = f(1) — 

J3_ y2 
dy2 — _C2 

0 2y13 g+3_C1 0 2y23 g+3_Cl 

So, there is a solution of the form t=y(t). Select the solution corresponding to positive time. Also, at t=0, 
v=0 and y=0: so clearly _C2=0. Thus, our solution is obtained from:  

>res  := t = int( sgrt(3)*y2/sgrt(2*y23*g+3*
C1

), y2=0..y(t) ); 

(r) ~/3Y2  
res  := t = dy2 

0 2y23 g+3_Cl 

We still have one arbitrary constant left. Let's isolate the expression for the velocity: 

>diff(", t): subs(diff(y(t), t)=v, y(t)=y, "); 

1 = 
/3-yV 

J2  + 3_CI 

Isolate the velocity itself and see what happens for small "y": 

> assign (isolate (", v))- 
> V; 

1 2y3g + 3_C1 F3 
3 y 

>series(v, y); 

1 
_ClY 1 + 3 C1YZ +®(Y5) 

This suggests that _C1 must be zero; but since 1/_C1 also appears above, the case _C1=0 is a special 
case: 

>subs(_C1=0, res); 

1  ~ ^/ 3 

t— 0 2 y2 
 ~ dy2 

Here is our solution: 

>isolate(", y(t)); 

1 
y(t) = 6t 2 g 

Here is the velocity: 

>diff(", t); 

V(t) = 3 tg  

Z 
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Here is the acceleration: 

>diff(", t); 

a2 1 

~t2y(t) = 39 

which is a constant in time, and which also is exactly 1/3 of "g". Since we had v(t=0) = y(t=0) = 0 here, 
this is the physical solution. Armed with hindsight, one could then see that the DE resembled the form: 
=> v2  = vo2  + 2*a*y ( a constant acceleration problem ), where vo=0. However, intuition often fails 
when you're dealing with a non-linear DE. Nonetheless, as we have seen, Maple can readily give us the 
correct solution. 

78 



- ;  , 

ASe & ,ocr-  J e Differential EqUEI'`® n: 
w Insights 

Robed J Lopez' 

The separable ordinary differential equation considered in this paper was part of a routine assignment 
extracted from a traditional calculus text during a second semester calculus class based on Maple. Each stu-
dent had a workstation running Maple available during class and on exams, thereby allowing the implemen-
tation of a curriculum that stretched the bounds of the traditional course. While making up the student grad-
er's key for this problem it became clear that using a powerful tool like Maple for such a routine problem 
was inappropriate. The manipulative practice embedded in exercises of this type must yield to more imag-
inative explorations of a higher pedagogic value. This paper is an exposition of how this one problem can 
be extended, via Maple, to become a vehicle of greater mathematical insight. 

The differential equation 

> q := diff(y(t),t) = t^2/(1+3*y(t)^2); 

a t2  
q • aty(t) T + 3y(t)2  

can be solved mentally by separation of variables and two simple integrations. In Maple, this approach is 
implemented with 

> int(1+3*y^2,y)=int(t^2,t)+c; 

1 
y+y3  = ~t3 +C 

whereas using Maple's built-in solver requires 

> q1 := dsolve(q,y(t)); 

gl := y(t) + y(t)3 — 3t3 = _Cl 

In either event the solution is given implicitly as shown in ql. Typically, the exercise ends here. A little al-
gebra to separate variables, and two integrations. Hardly the kind of intellectual activity to create a lasting 
attachment to mathematics. 

But suppose we ask "What does the solution y(t) actually look like?" Does Maple allow us to gain some 
insight into the behavior of y(t)? There are several approaches we might take to visualize the solutions to 
this differential equation. Some of these require exposure to concepts normally taught in the third semester 
calculus and we leave it to the reader to contemplate a calculus sequence where the appropriate tools are 
made available sooner than they typically are. 

A first approach might be a completely numeric solution to the differential equation. If we load Maple's 
DEtools package: 

> with(DEtools); 

[DEplot, DEplotl, DEplot2, Dchangevar, PDEplot, d,fieldplot, phaseportrait] 

I  Department of Mathematics Rose -Hulman Institute of Technology Terre Haute, IN 47803, r.lopez @ rose -hulman,edu 
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A Separable Differential Equation 

we gain access to the DEplot command with which we can produce simultaneously a graph of several initial 
value problems for the given differential equation: 

> DEplot(g,[t,y],0..7,{[0,0],[0,1],[0,2],[0,3],[0,4]],title=`Figure 1`); 

Figure 1 

The resulting graph suggests that each solution might be tending to an oblique asymptote, and in class it is 
possible to get the students to articulate this hypothesis. Moreover, they can even be induced to recall that 
verification of this guess will require showing that the limiting slope of y(t) becomes constant. The time 
spent extracting these insights from the students is more rewarding for the instructor than an equal amount 
of time spent drilling in the manipulations for solving separable differential equations! 

Before tackling the task of verifying the oblique asymptote we present the reader with some alternatives 
for obtaining the above figure. First, we can look at the relationship in q  as an implicit definition of y(t) 
and use Maple's implicitplot command to extract an equivalent graph. Begin by loading Maple's plots pack-
age to access both the implicitplot command and the display command with which we will superimpose the 
individual implicit plots created. 

> with(plots):  

The values of the constant _C1 corresponding to the initial conditions chosen in the DEplot command are 
0, 2, 10, 30, and 68. if we put these values into a list c: 

> c := [0,2,10,30,68]; 

c:= [0, 2, 10, 30, 68] 

we can use a Maple loop to create five implicit plots. 
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> for k from 1 to 5 do 

f.k := implicitplot(subs(—C1=c[k],gl),t=0..7,y=0..6); 
od: 

The colon on the "od" is essential for suppressing printing of the plot data structures generated, and the in-
dividual graphs are shown on one set of axes by: 

> display([f.(1..5)],title=`Figure 2.1 ); 

Figure 2 

L 

We leave the reader to experiment with an approach via contours. If we think of the implicit function in q1 
as z(t, y) defined by the left hand side of qI, then the contours of this surface are graphs of solutions such 
as seen in Figures 1 and 2. Thus, one can interactively manipulate a 3d plot to obtain contours on the surface 
z(t, y) and rotate the surface so a contour map results. Alternatively, one can use Maple's contourplot com-
mand directly. 

We consider now the challenge of obtaining an explicit representation for y(t) and using it to verify the 
existence of the oblique asymptote. Thus, 

> q2 := so1ve(g1,y(t)); 
: 

1 1 1 1 1 1 1 1 1 
q2:= %1 1/3 — 2%l V3  ¢ 6%1 T/7+ 

2IJ31
( 
 %1 v3  4 

 9 

1 1 1 1  
%1 v3  ~ 1 

~ 1 1 1 
— 2 6 %11/3 — 2~ %1 v3  ~ 3%1117-5) 

%1 := 6t3 -F 2—C1 -t 18  4 + 3t6  -d- 18t3_C1 ~- 27_C12  ~ 

1.1 
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There are three solutions, separated by commas, and compressed by the label %1. The second and third so-
lutions contain I = sgrt(-1) so that perhaps just the first solution is real. Let's grab this first solution via: 

> Y := g2[11; 

1/3 
Y := 6t3 + 2_Cl + 1~  Q~ + 3t6  + l8t3_C1 + 27_C12  13J) 

1 1 
3 

6t3 +2_C1+ 1g 4+3t6 +18t3_C1+27_C12 F3 

Note the use of upper case Y as the name for the real solution. This avoids confusion if parts of this work-
sheet are to be re-evaluated later on. Also note how Maple dropped the abbreviation when it "sensed" that 
space was available. 

This is the solution y(t) given explicitly. (We could also construct Figure 1 from Y, which was how stu-
dents did this exploration prior to the availability of Release 2.) There is an oblique asymptote if y'(t) be-
comes constant for large t. 

> L := limit(diff(Y,t),t=infinity); 

1 2/3 1/3 L := 1-818 6 

Well, L appears to be constant but in need of simplification: 

> simplify(L); 

3 32/3 

We have verified the observation that the solutions to the given separable differential equation tend to 
an oblique asymptote. While beyond the scope of the traditional course in integral calculus, this same as-
ymptotic behavior can also be seen from: 

> asympt(Y,t); 

1 131/3  132/3_C1 131/3  C1 ( 1 1 33z/3t 
 _ 3 t +3 t2 +3 --t—i  -+ O gs  

Clearly, the linear behavior dominates as t becomes large, a result again supported by analytical evidence. 
Even more interesting, however, is the question: can the asymptotic behavior of y(t) be predicted solely 
from the differential equation itself? We leave that challenge to the reader, along with an additional stipula-
tion: if the answer to the question is "yes," can it be explained within the framework of second semester 
calculus? 
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Vapor-liquid equilibrium data for two component or binary systems has been compiled by Gmehling 
and ®nken [1]. One of the data sets for benzene - toluene at a pressure of 101325 Pa is summarized below: 

> btdata:=array([[0,0,383.75],[0.1,0.2080,379.35],[0.2,0.3720,375.35], 

[0.3,0.5070,371.75],[0.4,0.6190,368.45],[0.5,0.7130,365.45], 

[0.6,0.7910,362.551,[0.7,0.8570,359.95],[0.8,0.9120,357.351, 

[0.9,0.9590,355.351,[1.0,1.0,353.2511): 

print (btdata); 

0 0 383.75 

.1 .2080 379.35 

.2 .3720 375.35 

.3 .5070 371.75 

.4 .6190 368.45 

.5 .7130 365.45 

.6 .7910 362.55 

.7 .8570 359.95 

.8 .9120 357.35 

.9 .9590 355.35 

1.0 1.0 353.25 

where column 1 of the above matrix is the mole fraction of benzene in the liquid, column 2 is the (measured) 
mole fraction of benzene in the vapor that is in equilibrium with the liquid and column 3 is the measured 
temperature in kelvin. Note that the mole fraction of benzene in the vapor is always higher than the mole 
fraction of benzene in the liquid. 

The prediction of equilibrium between two phases is an important application of thermodynamics. This 
article shows how Maple can be used to perform some simple phase equilibrium calculations. In addition, 
we demonstrate how Maple can be used to create phase diagrams and interpret the data given above. 

~ . ~ i ~~ 
~ ri: ~ ~~ • ~ ~ _.. 

z 
The mole fractions of the i-th component in two different phases in equilibrium with each other are re- 

lated by the following expression: 

> EQM[i1:=y[i1=K[i1*x[i1: EQM[i]; 

y; = Ki  xi  

I  Department of Chemical Engineering, Clarkson University, Potsdam, New York 13699-5705 
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where the K. are the K-values or equilibrium ratios. They are also referred to sometimes as K-constants al-
though they pare probably the least constant property in all of science and engineering. In fact, K-values are, 
in general, complicated functions of temperature, pressure and the composition of both phases. 

It is beyond the scope of this article to discuss in detail the wide variety of models used by thermody-
namicists for calculating K-values. We shall reserve such a discussion for a later article. We shall use some 
specific models for the K-values later when the time comes to carry out some actual calculations. 

In view of the way they are defined, the mole fractions of both phases sum to 1. 

> SumX:=sum(x1i1'i=1..c)=1: Sumy:=sum(y[iJ,i=1..c)=1: Sumx,Sumy; 

C c 

xi =1, yi  = 1 
i=1 i=1 

where c is the number of components in the mixture. 

There are 2c+2 variables in this set of equations: c mole fractions in the x-phase, c mole fractions in the 
y-phase, the system temperature, and the system pressure. There are only c+2 equations, however: c equi-
librium equations and 2 mole fraction summation equations. The number of variables that must be specified 
before we can carry out any calculations is the difference between these two numbers, c. 

Simple phase equilibrium calculations are based on finding the roots of an objective function derived 
by subtracting the mole fraction summation equations. 

> Eqn:=Sumy-Sumx: Eqn; 

i ixi  
yi  — = 0 

i  

In what follows we will assume that the x-phase is a liquid and the y-phase is a vapor. 

The bubble point temperature is the temperature at which the first bubble of vapor forms in a liquid as 
it is heated. To determine the bubble point of a liquid mixture we specify c-1 mole fractions of the x-phase 
and the pressure (or temperature). The mole fraction of component number c may be calculated from the 
summation equation for the x-phase. The remaining equations may then be solved for the mole fractions of 
the y-phase and for the system temperature (or pressure). We eliminate the vapor phase mole fractions from 
the objective function above, noting that the mole fractions of the x-phase sum to 1, to obtain: 

> BPegn:=subs((EQM[i],Sumx),Egn): BPegn; 

c 

Y, xi  — 1 = 0 
i=1 

We will now make a function of this expression for later use. 

fBP:=proc(K,x,components) 
local  i;  
if type(components,'..') then 
sum(K[i1*x[iJ,i=components)-1; 

else 
convert([seq(K[i]*x[i],i=components)],'+')-1; 

fi; 
end: 
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Example 1 - Bubble Point of an Ideal System  
Estimate the bubble point of a mixture containing 20 mole percent benzene and 80 mole percent toluene. 

Assume that the benzene - toluene system may be considered to behave as an ideal system; one where the 
K-values are functions only of temperature and pressure: 

The K-values of benzene and toluene will be calculated using Raoult's law with the vapor pressures 
computed from the Antoine equation [2]. 

> Antoine :_ (T, A, B, C) -> exp(A - B / (T + C)); 

B 

Antoine := ( T, A, P, C) --~ e A T~ c~ 

The Antoine coefficients for benzene and toluene are (recalculated from Gmehling and Onken, 1977) 

> AntA[benzene]:=21.06807; AntB[benzene]:=2948.78; AntC[benzene]:=-44.563; 

AntAbenzene := 21.06807 

Antl3benzene := 2948.78 

AntCbenzene :_ -44.563 

> AntA[toluene]:=21.15917; AntB[toluene]:=3242.38; AntC[toluene]:=-47.181; 

AntA [oluene = 21.15917 

Antl3toluene := 3242.38 

AntCtoluene :_ -47.181 

which give the vapor pressures in pascals if the temperature is in kelvin. 

The K-values may be expessed as follows: 

> component:=[benzene,toluene]: 
for  i  in component do K[i] Antoine(T,AntA[i],AntB[i],AntC[i]) / P: od; 

1 

e
21.06807 - 2948.78 T- 44.563 

benzene P 

1 

e
21.15917 - 3242.38 T- 47.181 

toluene .— P 

We make functions of these expressions for help in later calculations. 

> for  i  in component do Kvalue[i]:=unapply(K[i],T,P); od: 4 

We continue by making a function from the bubble-point equation, incorporating the above expressions for 
the K-values: 

> x:='x': BP2:=unapply(fBP(K,x,component),T,P,x); 

e
(21.06807-2948.78T-44.563)x e

(21.159 17-3242.38 7
7--47.1-81)  x  

tolue benzene ne  
BP2 :_ ( T, P, x) —j 

P 
+ 

P 
— 1 
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where the arguments to the Maple function are temperature (in kelvin), pressure (in pascals), and the mole 
fractions of both components. Note that we have retained the dependence on the mole fractions and pressure 
as well as temperature so that we can use the same function to find the bubble point temperature under other 
conditions. We will need to do this in a later example. 

Maple's f solve command is unable to find a zero to this function unless we tell it roughly where to 
look. To help us locate the zero we plot the function: 

> x[component[1]]:=0.2: x[component[2]]:=1-x[component[1]]: 
plot(BP2(T,101325,x),T=300..400);  

Figure 1 

from which we see that there is a zero somewhere between 370 and 400 K. Now we can invoke the f solve 
command and specify the range in which we know a solution exists. 

> TBP:=fsolve(BP2(T,101325,x),T,350..400): T[bubble]=TBP; 

Tbubble = 375.3696892 

Thus, the estimated bubble point of this mixture is 375.37 K. This result compares quite favorably with the 
measured value of 375.35 K given in the table. The mole fractions of benzene and toluene in the vapor in 
equilibrium with the liquid at this temperature are: 

> y:='y': for  i  in component do y[i]=Kvalue[i](TBP,101325)*x[i]; od; 

Ybenzene = •3747998330 

ytoluene = •6252001673 

The experimental value for the mole fraction of benzene from the table of data above is 0.3720. 
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Dew Point Calculations 
The dew point of a vapor mixture is the point at which the first drop of liquid forms as it is cooled. The 

calculation of the dew point requires the specification of the mole fractions of the vapor (y) phase and the 
system pressure (or temperature). 

> i:='i': DPegn:=subs({x[i]=solve(EQM[i],x[i]),Sumy),Egn): DPegn; 

We will now make a procedure of this expression for later use. 

> fDP:=proc(K,y,components) 
local  i;  
if type(components,`..`) then 

1-sum(y[i]/K[i],i=components); 
else 

1-convert([seq(y[i]/K[i],i=components)],`+`); 
fi; 
end: 

U
111111111 '' 1111111 ri 1 , 

• ~ .. . . ~~ r i 

Estimate the dew point temperature of a mixture of benzene (61.9 mole percent) and toluene (38.1 mole 
percent) at a pressure of 101325 Pa. 

We first make a function of the dew point equation using the Raoult's law K-values we used in the prior 
example. 

> DP2:=unapply(fDP(K,y,component),T,P,y); 

I~P2 .— (T, P, y) -->1 — 
~benzeneP 

_ 
ytolueneP  

e 
21.06807-2948.78T_~~ 

 e 
 21.15917-3242.38~~~ 

As before, we plot this function over a range of temperatures to see approximately where the solution lies 
(see Figure 2). 

> y[component[1]]:=0.619: y[component[2]]:=1-y(component[1]]: 
plot(DP2(T,101325,y),T=350..450);  

Now we can ask Maple to compute a more precise numerical approximation to the dew point tempera-
ture. 

> TDP:=fsolve(DP2(T,101325,y),T,350..450): T[dew]=TDP; 

Tdew = 368.5407080 

The computed estimate of 368.54 K compares well with the measured value of 368.45 K as reported in the 
table of data in the Introduction. The mole fractions in the liquid in equilibrium with the vapor at this tem-
perature are: 

> x:='x': for  i  in component do x[i]=y[i]/Kvalue(i](TDP,101325); od; 

'xbenzene = •3985858047 

xtoluene = .6014141969 

The experimental value of the mole fraction of benzene from the table above is 0.4. 

M 
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rigure Z 

Example - Dew Point Pressure 
The bubble and dew point equations can also be solved for pressure if the temperature is specified. In 

this example we determine the pressure at which a mixture starts to condense at a fixed temperature. 

> y:='y': fDP(K,y,component)=0; 

1 
ybenzenep ytoluenep 

— 
0  

— — 
2 21.06807-2948.78T-44.563 21.15917-3242.38T-47.181 

This expression can be solved explicitly for pressure: 

> Pegn:=P=solve(-",P): Peqn;  

1 

Ybenzene .ytoluene 
1 + 1 

C 21.06807000 - 2948.780000~~1~ ~ 21.15917000 - 3242.380000T- 7.1 ~ 

We make a function of this result: 

> fP:=unapply(rhs(Pegn),T,y): 

and evaluate the function at a temperature of 375 K for an equimolar mixture of benzene and toluene. 

> y[component[1j]:=0.5: y[component[2]]:=1-y[component[1]]: 
P[dew]=fP(375,y); 

I'dew = 110562.9261 

:: 
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Thus, an equimolar mixture of these two components at 375 K will start to condense when the pressure 
reaches 110563 Pa. 

Phase diagrams are a useful method of displaying vapor liquid equilibrium data graphically. We shall 
compute the VL.E curves for the benzene-toluene system that we have used in the above examples. 

Computing the vapor - liquid equilibrium curves involves carrying out a series of bubble point or dew 
point calculations for mole fractions of one component from 0 to l (making sure that the mole fractions of 
both components sum to 1). We have chosen to use bubble-point calculations in the following examples. 
They are easier to perform than are dew point calculations (although there is no essential difference in the 
degree of difficulty when Raoult's law is used to calculate the K-values). These calculations are carried out 
in the following examples. 

In the following sequence of Maple commands we carry out a series of bubble point calculations cov-
ering the range of liquid mole fractions of benzene from 0 to 1. The bubble point temperature is computed 
first and the vapor composition follows from the equilibrium equation. The results are stored in an array for 
later processing. 

> numpts:=31: pts:=array(1..numpts,l..3): 
for k from 1 to numpts do 

x[component[1]]:= evalf((k-1)/(numpts-1)): x[component[2]]:=1-x[component[1]]: 
TBP:=fsolve(BP2(T,101325,x),T,300..410): 
y[component[1]]:= Kvalue[component[1]](TBP,101325)*x[component[1]]: 
pts[k,1]:=x[component[1]]: pts[k,2]:=y[component[1]]: pts[k,3]:=TBP: 

od: 

In order to display the measured and calculated equilibrium data we have created the procedure Txyplot. 
This procedure makes use of the function makepoints which takes as input an array (or matrix) and re-
turns a set of points that can be displayed with the plot comand. 

> makepoints := proc(A,j1,j2,i1,nrows) 
# Procedure to make a list of points for plotting purposes 
# A = matrix or array of data 
# j1, j2 = Column indeces of 1st and 2nd columns extracted from A 
# to make the x and y coordinates of the points. 
# (optional, but jl must be specified if j2 is given). 
# i1 = Index of first row of A for points extracted from A 
# (optional but jl and j2 must be given first). 
# nrows = Number of rows of matrix A to be extracted 
# (optional, and can only be given as the fifth argument). 

local coll, col2, rowl, nrowsA,  i,  lastrow, lrow; 
coll := 1; co12 := 2; rowl := 1; lastrow:=linalg[rowdim](A); 
if nargs > 1 then coll := j1; 

if nargs > 2 then co12 := j2; 
if nargs > 3 then rowl := i1; 

if nargs > 4 then lrow := rowl + nrows - 1; 
if lrow > lastrow then lrow := lastrow; else lastrow := lrow; 

fi; fi; fi; fi; fi; 
[seq([A[i,col1],A[i,co12]],  i  = rowl..lastrow)]; 

end: 

"me 
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The procedure Txyplot is designed to take binary VLE data (both computed and experimental) that is 
stored in a Maple array (or matrix) with three columns: liquid mole fraction of component 1, vapor mole 
fraction of component 1 and temperature. This procedure is easily modified for systems with more than two 
components. 

> Txyplot proc(calcdata, expdata) 
local bubline, dewline, bubdata, dewdata, Txyplotl, Txyplot2; 
bubline makepoints(calcdata,1,3): dewline := makepoints(calcdata,2,3): 
Txyplotl plot((bubline,dewline},0..1,axes=boxed,labels=[`x, y`,`T`]): 
if nargs > 1 then 
bubdata makepoints(expdata,1,3): dewdata := makepoints(expdata,2,3): 
Txyplot2 plot((bubdata,dewdata},0..1,style=point): 

fi; 
if nargs = 1 then Txyplotl; else plots[display]((Txyplotl,Txyplot2}); fi; 

end: 

It is also useful to plot the vapor composition against the liquid composition on an x-y diagram. This is 
done with the procedure yxplot which is similar to Txyplot. 

> yxplot := proc(calcdata, expdata) 
local yxline, diagline, yxdata, xyplotl, xyplot2; 
yxline makepoints(pts,1,2): diagline := makepoints(pts,1,1): 
xyplotl plot((yxline,diagline},0..1,0..1,labels=[`x`,`y`],axes=boxed): 
if nargs > 1 then 
yxdata makepoints(expdata,1,2): 
xyplot2 plot(yxdata,0..1,0..1,style=point): 

fi; 
if nargs = 1 then xyplotl; else plots[display]((xyplotl,xyplot2}); fi; 

end: 
> Txyplot(pts,btdata); 

0  
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Figure 3 shows the calculated bubble-point line (the lower curve) and the calculated dew-point line (upper 
curve) as a function of the mole fraction of benzene (x-axis). The experimental data are shown as isolated 
points. You can see that the data are in good agreement with the calculated curves. 

> yxplot(pts,btdata); 

1 

/ 

8 

6 

r' 
{{'+ 
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~ 
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Figure 4 

Note that the measured data points lie almost exactly on top of the predicted equilibrium line. The close 
agreement between the measured data and the calculated curves is an indication that the benzene - toluene 
system is indeed nearly ideal and that Raoult's law may safely be used to estimate the equilibrium ratios of 
this system. 

1. Repeat each of the first three examples for some of the other data points in the table of data in the 
introduction. 

2. What is the bubble point temperature of the mixture in Example 1 at a pressure of 50000 Pa? At 
200000 Pa? 

z 
3. In this article we have solved three different kinds of phase equilibrium problem: Bubble point tem-

perature, dew point temperature, and dew point pressure. Use Maple to compute bubble point pres-
sures. 

4. Create a set of equilibrium data for the benzene - toluene system at constant temperature. Write a pro-
cedure Pxyplot to display P-x-y diagrams where pressure (rather than temperature) is plotted as a 
function of composition. 

For further reading (as well as a source of many other problems) we recommend the book by  Walas  [3]. 

0. 

0. 

Y 

0. 

0. 
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In this article we have tried to show how Maple can be used to solve some simple phase equilibrium 
problems. We have, of course, only barely scratched the surface of what can be done in this area but lack of 
space prevents us from including additional examples. 

A Maple worksheet version of this article phase . ms is available in the Maple share library. Raoult's 
law only works for a few simple systems such as the benzene-toluene mixture used in the preceding exam-
ples. For nonideal systems like, for example, 2-propanol -water, the I{-values depend on composition and 
we must use different models to evaluate them. An additional worksheet called phase  e ms includes sim-
ilar examples for a nonideal binary system. 

The author would like to thank Alastair Rough for his assistance in the preparation of this article and 
Mike Monagan for advice on Maple coding. 

[1] J. Gmehling, and U. Onken: Vapor-Liquid Equilibrium Data Collection, DECIIEMA Chemistry Data 
Series, DECHEMA, (1977ff). 

[2] R.C. Reid, J. Prausnitz, and B. Poling: Properties of Gases and Liquids, 4th Ed., McGraw-Bill, New 
York, (1957). 

[3] S.M.  Walas:  Phase Equilibria in Chemical Engineering, Butterworth, (1955). 
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Guidelines for Authors 

Any user of Maple who has implemented a useful, elegant, or illustrative solution to a particular prob-
lem is invited to submit a description of his or her solution to the Maple Technical Newsletter. We especially 
encourage authors whose articles have technical merit and are accessible and self-explanatory to the general 
user of Maple. Three classes of articles are published in the Maple Technical Newsletter:  

(i) Articles on Maple functionality. 

(ii) Education-level articles. 

(iii) Articles on Research/Applications. 

Applications in all areas are of interest to the newsletter but the intent (and category) of the article must be 
made very clear by the articles within their articles. The articles of category  (i)  are usually provided by the 
developers of the Maple system. Articles of category (ii) must be as accessible as possible. All articles 
should be roughly 5 to 10 pages long, as they would appear in double-spaced, single column format on 8.5 
x 11 inch paper. It is preferable that the article be submitted in either the form of LATEX code including hard 
copy output or a Maple worksheet file including hardcopy output. It is important that the results obtained 
by the Maple system be reproducible to the general user. In particular for articles of class  (i),  it is recom-
mended that results obtained by the Maple system should be written in the form of an interactive session. 
To this end, the author need only submit Maple instruction sets in verbatim mode, such as, for example: 

> a := int( exp( -x^2 ), x = O..infinity ); 
> evalf (a) ; 
> ... 

and whereby the generated output is converted into LATEX code. Both Maple input and output must be 
shown. To further ensure reproducibility of results, the author must use a standard version of Maple and not 
his or her own customized version. References should be included. 

Guidelines and tools for preparing articles for the Maple Technical Newsletter, as well as LATEX style 
files and sample articles can be obtained via anonymous ftp from the MTN directory of the share library. With 
submission of an article, a short one-paragraph biography from the author(s) including fields of interest and 
a test file containing the Maple input code contained within the submitted article, should be included. Ex-
ceptions to these guidelines must be approved by the editor. 

Our intention is to provide the user with useful detailed "how-to" information of a computational nature. 
Any inquiries or submissions should be directed to the editor Tony Scott at: 

Mathematical Institute 
University of Oxford 
24-29 St-Giles' 
Oxford OX 1-31,13 

x 

tel: +44 (0)865 (2)73556 
e-mail: tcscott@maths.oxford.ac.uk  

or scott@cfa.harvard.edu  
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Gerald Kaiser 
University ®f Massachusetts at Lowell, MA 

This volume is designed as a textbook for an introductory
course on wavelet analysis and time-frequency analysis 
aimed at graduate students or advanced undergraduates in 

science and engineering. It can also be used as a self-study or 
reference book by practicing researchers in signal analysis and 

9 1.5 2 related areas. Since the expected audience is not presumed to 
II 

z 
°g have a high level of mathematical background, much of the 

` 2 — needed analytical machinery is developed from the beginning. L The only prerequisites for the first eight chapters are matrix theory, Fourier series, 
and Fourier integral transforms. Each of these chapters ends with a set of straightforward exercises 
designed to drive home the concepts just covered, and the many graphics should further facilitate 
absorption. Chapters 10 and 1 I consist of original research and are written in a more advanced style. In 
Chapter 10 it is shown that the structure of Maxwell's equations implies the existence of a wavelet 
analysis specifically adopted to electromagnetic radiation. The associated "electromagnetic wavelets" 
are pulses parameterized by their point of origin and their scale, and can be made arbitrarily short by 
choosing fine scales. Furthermore, it is shown that every electromagnetic wave can be composed of 
such localized wavelets. This is applied in Chapter I1 to give a new formulation of radar based on elec-
tromagnetic wavelets. Since this theory is fully relativistic, its description of the Doppler effect is exact. 
In particular, it is three-dimensional, and does not make the usual assumption that the outgoing signal 
has a narrow bandwidth. Thus it should be useful in the construction of ultra-wideband radar systems. 
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