

The area is invariant under the linear mapping that shears a rectangle into a parallelogram, so we might as well restrict the analysis to a rectangle, as shown above.

Let's write and a and b for the rectangle's width and height, h for the length of BQ, and α , β , γ for the areas of the yellow, blue, and green regions. The area of the pink region is also γ .

The length of PE is $\frac{b}{a}h$, and therefore

(eq1)
$$\alpha = \frac{b}{2a}h^2.$$

The triangles ABG and EFG are similar, therefore their areas are proportional to the squares of their heights. The area of ABG is ab/4, and therefore

(eq2)
$$\beta = \frac{ab}{4} \left(\frac{\frac{a}{2} - h}{\frac{a}{2}} \right)^2.$$

The area of the green (or pink) region is

$$(eq3) \gamma = \frac{1}{4}ab - \alpha.$$

We solve this set of three equations for a, b, and γ . We get

$$\gamma = \alpha + \beta \pm 2\sqrt{2\alpha\beta},$$

which happens not to depend on h. We plug in $\alpha=2,\ \beta=9$ and obtain $\gamma=-1$ and $\gamma=23$. So the answer is 23.