
narrow gap between the disks. The disks are separate at a distance of 2 h and possess inner
and outer radii as a and b, respectively. The physical problem is such that the fluid entrance is
allowed from the inner cylinder at r ¼ a and the flowing fluid is let to exit at the outer
cylinder r¼ b. The axisymmetric flowmotion and heat transfer in the cylindrical coordinates
(r, u, z) taking place in the rotating frame of reference are given by the subsequent governing
equations:

1
r

ruð Þr þ wz ¼ 0;

uur þ wuz � v2

r
� 2Xv ¼ � 1

r
pr þ � urr þ 1

r
ur � u

r2
þ uzz

� �
;

uvr þ wvz þ uv
r

þ 2Xu ¼ � vrr þ 1
r
vr � v

r2
þ vzz

� �
;

uwr þ wwz ¼ � 1
r
pz þ � wrr þ 1

r
wr þ wzz

� �
;

uTr þ wTz ¼ k
rcp

Trr þ 1
r
Tr þ Tzz

� �
:

(1)

The terms multiplied by 2 on the left-hand side come from the Coriolis effects. Note that a
few typographical errors in Batista (2011) can be witnessed while checking the relevant
momentum equations. The flow field in equation (1) is equipped with the velocity vector
(u, v, w) acting in the radial, circumferential and axial directions. The flow has constant fluid
properties of density r, kinematic viscosity �, thermal conductivity k and specific heat cp.
Moreover, p is the pressure and T is the temperature inside the gap region of the disks. It
should be remarked that, due to the flow geometry adopted for the system (1), the
circumferential velocity should be added the componentXr and the pressure should be added
the component 12 rX

2r2 to get the total quantities in the inertial reference frame, as also stated
in Batista (2011). The complementing boundary conditions are then given by:

Source: Author’s own work

Figure 1. Flow between narrow disks co-rotating at angular velocityX about the axial axis z
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u r; � hð Þ ¼ lu r; � hð Þz; u r; hð Þ ¼ � lu r; hð Þz;
v r; 6 hð Þ ¼ 0; w r; 6 hð Þ ¼ 0;

T r; 6 hð Þ ¼ c
r
;

(2)

where l is the slip factor in the radial direction, c is a wall temperature constant and the
temperature boundary constraint offers a radially decaying temperature scenario from the
inlet to outlet positions. This is in line with physical intuition such that the hot fluid entering
into the tube (or rotor) exits the tube as cooled down.

As inferred from Batista (2011), it is adequate to introduce a constant flow rate at the tube
exit r¼ b to close the above equations in the manner:

Q
2pb

¼
ðh
� h

u r; zð Þjr¼ b
� �

dz: (3)

Tomake the system dimensionless, the following set is used Batista (2011):

z ¼ hz*; r ¼ br*;
u ¼ bXu*; v ¼ bXv*; w ¼ hXw*;

p ¼ rb2X2p*; T ¼ c
r
H:

(4)

Substituting the set in (4) into equations (1)–(3), and further dropping the stars, we obtain the
dimensionless set of equations:

1
r

ruð Þr þ wz ¼ 0;

uur þ wuz � v2

r
� 2v ¼ � pr þ 1

l2
e2 urr þ 1

r
ur � u

r2

� �
þ uzz

� �
;

uvr þ wvz þ uv
r

þ 2u ¼ 1
l2

e2 vrr þ 1
r
vr � v

r2

� �
þ vzz

� �
;

uwr þ wwz ¼ � 1
e2

pz þ 1
l2

e2 wrr þ 1
r
wr

� �
þ wzz

� �
;

u � 1
r
H þ Hr

� �
þ wHz ¼ 1

Prl2
e2 Hrr � 1

r
Hr þ 1

r2
H

� �
þ Hzz

� �
;

u r; � 1ð Þ ¼ Lu r; � 1ð Þz; u r; 1ð Þ ¼ � Lu r; 1ð Þz;
v r; 6 1ð Þ ¼ 0; w r; 6 1ð Þ ¼ 0;
H r; 6 1ð Þ ¼ 1:

(5)

In equation (5), we have the dimensionless gap ratio parameter:

e ¼ h
b
; (6)

which is assumed to represent narrow gaps permitting the Navier’s slip Navier (1823), the
slip parameter:

L ¼ l
h
; (7)
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and the Reynolds number:

Re ¼ l2 ¼ h2
X
�
: (8)

Further describing a volume flow rate coefficient Cw ¼ Q
b� into equation (3), it turns out to

be:

eCw

2pl2
¼
ð1
� 1

u 1; zð Þdz: (9)

It should be emphasized that the model given in equations (1) through (9) conforms exactly
to that given in Batista (2011) in the absence of velocity slip and thermal field (except the
typos found in Batista (2011)). Moreover, the experimental investigation in Schosser et al.
(2019) shows that for the mass flow rate 12.6 and the Reynolds number 1402, the flow
between two co-rotating disks is already turbulent. Also, the experiments in the latter and the
analysis in Batista (2011) reveal laminar flow for Reynolds numbers less than 500. This is
highly likely to be the range of validity of the steady-state approach. In addition, the
specification of the temperature boundaries at the walls of the rotating disk as given by
equation (2), with their dependence on the radial position is one of a special imposition,
enabling us not to have to make further assumptions. Since r changes from inner (a/b< 1) to
outer (1) locations, such a boundary constraint would imply physically that the hot fluid
entering into the tube (or rotor) exits the tube as cooled down. On the other hand, if constant
wall temperatures at the walls are imposed as in isothermal walls or if adiabatic conditions
are applied, then further boundary conditions for temperature in the r-direction, i.e. the fluid
entrance at r¼ a and exit at r¼ b have to be considered.

3. Series solutions
To obtain formal series solutions for equation (5) and further to gain insight into the limiting
behavior, we expand the flow, pressure and temperature functions with the small perturbation
parameter k ¼ e

r [in compliance with the adoptions of Batista (2011) for the flow and
pressure quantities] in the following forms:

u ¼ e
X1
n¼ 0

c
0
n zð Þk2nþ 1;

v ¼ e
X1
n¼ 0

vn zð Þk2nþ 1;

w ¼ 2
X1
n¼ 0

n þ 1ð Þcnþ 1 zð Þk2nþ 4;

p ¼ e2 p0lnr þ
X1
n¼ 0

pnþ 1 zð Þk2nþ 2

 !
;

H ¼
X1
n¼ 0

Hn zð Þk2n:

(10)

We note that cn(z) in equation (10) is due to the stream function definition in cylindrical
coordinate system (u ¼ r�1cz, w ¼ -r�1cr), and p0 is a constant pressure to be determined.
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A typo regarding w expansion also exists in Batista (2011). On substitution of equation (10)
into equations (5) and (9), we get the leading and first-order system of differential equations:

v
00
0 zð Þ ¼ 2l2c

0
0 zð Þ;

c
000
0 zð Þ ¼ l2 p0 � 2v0 zð Þ� �

;

v
00
1 zð Þ ¼ 2l2c

0
1 zð Þ;

c
000
1 zð Þ ¼ � l2 2p1 zð Þ þ 2v1 zð Þ þ c 02

0 zð Þ þ v20 zð Þ
� �

;

p
0
1 zð Þ ¼ 0;

H
00
0 zð Þ ¼ 0;

H
00
1 zð Þ ¼ � 1 þ Prl2c

0
0 zð Þ

� �
H0 zð Þ; (11)

complemented with the boundary conditions:

c
0
0 � 1ð Þ ¼ Lc

00
0 � 1ð Þ;

c
0
0 1ð Þ ¼ �Lc

00
0 1ð Þ;

v0 6 1ð Þ ¼ 0;

c0 1ð Þ � c0 � 1ð Þ ¼ Cw

2pel2
;

H0 6 1ð Þ ¼ 1;
c1 6 1ð Þ ¼ 0;
c

0
1 � 1ð Þ ¼ Lc

00
1 � 1ð Þ;

c
0
1 1ð Þ ¼ �Lc

00
1 1ð Þ;

v1 6 1ð Þ ¼ 0;
H1 6 1ð Þ ¼ 0:

(12)

The higher order terms (n� 0) satisfy:

v
00
nþ 2 zð Þ ¼ � 4 n þ 2ð Þ n þ 1ð Þvnþ 1 zð Þ þ 2l2c

0
nþ 2 zð Þ

þl2
Xnþ 1

k¼ 1

2k ck zð Þv0
nþ 1� k zð Þ � vk zð Þc0

nþ 1� k zð Þ
� �

;

c
000
nþ 2 zð Þ ¼ � 4 n þ 2ð Þ n þ 1ð Þc0

nþ 1 zð Þ � 2l2 n þ 2ð Þpnþ 2 zð Þ þ vnþ 2 zð Þ
� �

�l2
Xnþ 1

k¼ 0

2k þ 1ð Þc0
k zð Þc0

nþ 1� k zð Þ � 2kck zð Þc00
nþ 1� k zð Þ þ vk zð Þvnþ 1� k zð Þ

� �
;

p
0
nþ 2 zð Þ ¼ 2

l2
n þ 1ð Þ 4n n þ 1ð Þcn zð Þ þ c

00
nþ 1 zð Þ

� �
� 4

Xn
k¼ 1

k n � 1 � 2kð Þck zð Þc0
n� k zð Þ;

H
00
nþ 2 zð Þ ¼ � 1 þ 4 n þ 1ð Þ n þ 2ð Þð ÞHnþ 1 zð Þ � Prl2 1 þ 2 n þ 1ð Þð ÞHnþ 1 zð Þc0

0 zð Þ
�Prl2

Xn
k¼ 0

1 þ 2kð ÞHk zð Þc0
nþ 1� k zð Þ � 2 1 þ kð Þckþ 1 zð ÞH0

n� k zð Þ
� �

;

n � 0ð Þ;
(13)
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complemented with the boundary conditions:

cnþ 2 6 1ð Þ ¼ 0;
vnþ 2 6 1ð Þ ¼ 0;
c

0
nþ 2 � 1ð Þ ¼ Lc

00
nþ 2 � 1ð Þ;

c
0
nþ 2 1ð Þ ¼ �Lc

00
nþ 2 1ð Þ;

Hnþ 2 6 1ð Þ ¼ 0;
n � 0ð Þ:

(14)

As a result, the task is next to evaluate the above system of differential equations consecutively
with the input parameters e, l, Cw and L. Having solved the boundary-value problems in
equations (11)–(12), the leading-order solutions [matching exactly with those in Breiter and
Pohlhausen (1962) and Batista (2011) in the case of no-slip flow conditions] are found as:

c0 zð Þ ¼ c0;0 þ c0;1coshlzsinlz þ c0;2sinhlzcoslz þ c0;3coshlzcoslz þ c0;4sinhlzsinlz;

p0 ¼ Cw cos2l þ cosh2l þ Ll � sin2l þ sinh2lð Þð Þ
pel 2Ll cos2l � cosh2lð Þ þ sin2l � sinh2lð Þ ;

v0 zð Þ ¼ l2p0 � c
000
0 zð Þ

2l2
;

H0 zð Þ ¼ 1;

(15)

where:

c0;1 ¼ � coshl � cosl þ 2Llsinlð Þ þ sinlsinhlð Þp0
2l cos2l þ cosh2l þ Ll � sin2l þ sinh2lð Þð Þ ;

c0;2 ¼ � coslcoshl þ 2Llcosl þ sinlð Þsinhlð Þp0
2l cos2l þ cosh2l þ Ll � sin2l þ sinh2lð Þð Þ ;

c0;3 ¼ 0;
c0;4 ¼ 0;

(16)

followed by the first-order solutions:

c1ðzÞ ¼ c1;0 þ c1; 1coshlzsinlzþ c1;2sinhlzcoslzþ c1;3coshlzcoslzþ c1;4sinhlzsinlz

þa1lzcoshlzcoslzþ a2lzsinhlzsinlzþ a3ðsinh2lz � sin2lzÞ;

p1 ¼ ð24Ll2cosh4la3 þ 16lsinh4la3 þ 2Llcosh2lp20 þ sinh2lp20 þ 4Ll3cosh4lc20; 1

þ2l2sinh4lc20;1 þ 4Ll3cosh4lc20; 2 þ 2l2sinh4lc20;2 þ 2lcoslð2ð4ð2þ LÞlcoshl

� 2Llcosh3lþ 2sinhlþ 8Ll2sinhl � sinh3lÞa1 þ 2ð2sinhlþ 4Llðcosh3l � 2lsinhlÞ

þ3sinh3lÞa2 þ p0ð� ð2Llcosh3lþ 2sinhl� þ sinh3lÞc0;1 þ ð2Llcosh3lþ sinh3lÞc0;2ÞÞ

� 4Ll2cos4l
�
6a3 þ lðc20;1 þ c20;2Þ

�
� 2lsin4l

�
8a3 þ lðc20;1 þ c20;2Þ

�

þ2lsinlð� 2ðð� 2þ 8Ll2Þcoshlþ 3cosh3lþ 4Llsinh3lÞa1
� 2ðð2þ 8Ll2Þcoshlþ cosh3lþ 4ð2þ LÞlsinhlþ 2Llsinh3lÞa2

International
Journal of
Numerical

Methods for Heat
& Fluid Flow

263



þp0ð� 2coshlc0;2 þ ðcosh3lþ 2Llsinh3lÞðc0;1 þ c0;2ÞÞÞ

þ2lcos3lð� 2Llcoshlð2a1 þ 4a2 þ p0ð� c0; 1 þ c0; 2ÞÞ

þsinhlð� 6a1 þ 2a2 þ p0ðc0;1 þ c0;2ÞÞÞ � 2lsin3lðcoshlð2a1 þ 6a2 þ p0ð� c0;1 þ c0;2ÞÞ

þ2Llsinhlð� 4a1 þ 2a2 þ p0ðc0;1 þ c0;2ÞÞÞ

� sin2l 96Ll2sinh2la3 þ p20 þ 4lcosh2l 16a3 þ l c20;1 þ c20;2
� �� �� �

þ2lcos2l �Lp20 þ 2sinh2l 16a3 þ l c20; 1 þ c20; 2
� �� ��� �

.
ð8ð2Llcos2l � 2Llcosh2lþ sin2l � sinh2lÞÞ;

v1ðzÞ ¼ � 2l2p1 � l2v20ðzÞ � l2c0
02ðzÞ � c1

000ðzÞ
2l2

;

H1ðzÞ ¼ 1
2
ð1 � z2 þ Prlð� coslcoshlc0; 1 þ coszlcoshzlc0;1 þ sinlsinhlc0;1

� sinzlsinhzlc0;1 þ coslcoshlc0;2 � coszlcoshzlc0; 2 þ sinlsinhlc0; 2

� sinzlsinhzlc0;2 þ zcoshlsinlc0;3 � coshzlsinzlc0; 3 þ zcoslsinhlc0; 3

� coszlsinhzlc0; 3 þ zcoshlsinlc0;4 � coshzlsinzlc0;4 � zcoslsinhlc0; 4

þcoszlsinhzlc0; 4ÞÞ; (17)

where

c1;0 ¼ 0;

c1;1 ¼ ðcoslð4Llsinlðl � coshlsinhlÞ þ coslð� 2ð1þ LÞlþ 2Llcosh2lþ sinh2lÞÞa1
þsinhlð4Llcoshlðlþ coslsinlÞ þ ð2lð1þ Lþ Lcos2lÞ þ sin2lÞsinhlÞa2
þðcos3lð2Llcoshl � sinhlÞ þ sin3lðcoshlþ 4LlsinhlÞ
þcoslð� 6Llcoshlþ 4Llcosh3l � 6sinhlþ sinh3lÞ
þsinlðcosh3lþ 2Llð3sinhlþ sinh3lÞÞÞa3Þ
=ð2Llcos2l � 2Llcosh2lþ sin2l � sinh2lÞ;

c1;2 ¼ ðcoshlð� coshlð� 2ð1þ LÞlþ 2Llcos2lþ sin2lÞ þ 4Llðl � coslsinlÞsinhlÞa1
� sinlð4Llcoslðlþ coshlsinhlÞ þ sinlð2lð1þ Lþ Lcosh2lÞ þ sinh2lÞÞa2
þðcos3lð4Llcoshlþ sinhlÞ þ sin3lðcoshl � 2LlsinhlÞ
þcoslð2Llð� 3coshlþ cosh3lÞ þ sinh3lÞ
� sinlð6coshlþ cosh3lþ 6Llsinhlþ 4Llsinh3lÞÞa3Þ
=ð2Llcos2l � 2Llcosh2lþ sin2l � sinh2lÞ;

c1;3 ¼ 0;

c1;4 ¼ 0;

a1 ¼ 1
8
p0ðc0;1 þ c0;2Þ;

a2 ¼ 1
8
p0ðc0;1 � c0;2Þ;

a3 ¼ � 1
10

lðc20;1 þ c20;2Þ:

(18)
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Table 1. Quantitative comparisons with data in Batista (2011) within parenthesis

n umax zmax �vmin zmin

1 197.279 (197.2) 0.962828 (0.9628) 652.923 (652.9) 0.888485 (0.8885)
2 185.903 (185.9) 0.960532 (0.9605) 690.414 (690.4) 0.883208 (0.8832)
3 184.356 (184.4) 0.960618 (0.9606) 707.791 (707.8) 0.881751 (0.8818)

Source:Author’s own work

(a) (b)

(c) (d)

Source: Author’s own work

Figure 2. (a) Radial flow u, (b) circumferential flow v, (c) axial flow w and (d) pressure distribution at
the centerline p(0)
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Although not given here due to its lengthy expressions, the next-order term H2(z) was also
calculated analytically and used in the series form in equation (10) in further computations.

The third-order solutions are cumbersome and naturally complex to evaluate analytically.
Therefore, they are obtained by solving the corresponding third-order equations numerically
from the system (13)–(14) setting n¼ 0. Such a procedure is obligatory, as also highlighted
in the no-slip fluid flow research in Batista (2011).

4. Results and discussion
To justify the foregoing analytical perturbation results, we initially made a raw comparison
with the experimental input list Cw¼ 100, l¼ 21.1289, e¼ 0.133665 and r¼ 0.54955 given
in Batista (2011) for the special case of no-slip. We should note, as aforementioned, that only
the third-order approximations are treated numerically, with analytical expressions for the

(a) (b)

(c)

Source: Author’s own work

Figure 3. l ¼ 1. (a) Radial flow u, (b) circumferential flow v and (c) pressure distribution at the
centerline p(0). For style of the curves, please refer to the text
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first and second orders. The accuracy of such an approach was also verified in Batista (2011).
Table 1 is to provide a reinforcement of the accuracy of present work. When compared to
Figures 2–5 presented in Batista (2011), Figure 2(a)–(d) and Table 1 exhibit excellent
qualitative and quantitative agreements. It is noticed that the scaling in velocity components
was adopted to comply with the quantities in Batista (2011), which in turn complies with the
results of Crespo del Arco et al. (1996), too.

To assure the convergence of the series in equation (10) for the parameter range
studied within the present research, we next demonstrate a sample in Figure 3(a)–(c)
incorporating the impacts of slip for the chosen parameters e ¼ 0.1, r ¼ 0.5, l ¼ 1 and
Cw ¼ 10. Up to third-order truncation is permitted again in the perturbation series.
Precisely, the dotted curves correspond to the first-order solutions, while the unbroken
curves to the second-order and the dashed curves to the third-order solutions. Such a

(a) (b)

(d)(c)

Source: Author’s own work

Figure 4. l ¼ 5. (a) Radial flow u, (b) circumferential flow v, (c) axial flow w and (d) pressure
distribution at the centerline p(0)
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laminar flow regime pertinent to small Reynolds numbers with parabolic velocity
profiles was also recently visualized experimentally in Schosser et al. (2019) under
no-slip assumption. The second and third order flow contributions are indicating a
clear and plausible convergence, whereas the convergence is roughly confined to the
domain between the inlet and outlet radial locations r [ [0.2, 1] for small slip
parameters, as clear from the midway pressure distribution in Figure 3(c). The effects
of slip on the radial and tangential velocity components in Figure 3(a) and (b), are to
reduce the maximum velocities and to flatten the radial velocity profile. The actual
peripheral velocity component should be assessed by further adding e r ¼ 0.05 to v(z)
shown in Figure 3(b). Hence, the fluid revolving with the disk system close to the disk
surface starts revolving in the opposite direction as the midway is approached.
Another insight to gain is that the range of applicability of the series solution (10) in

(a) (b)

(c) (d)

Source: Author’s own work

Figure 5. l ¼ 21. (a) Radial flow u, (b) circumferential flow v, (c) axial flow w and (d) pressure
distribution at the centerline p(0)

HFF
35,1

268



the radial coordinate gets enhanced as more effective slip is taken into account, see
Figure 3(c). The actual pressure should be considered by adding the extra term 1

2 e
2r2 to

the calculated p in the figure.
The velocity and pressure profiles from the second-order series truncation in equation (10)

in the creeping flow limit yield the following polynomial solutions:

l2

e
u zð Þ ¼ 3Cw

þ
560p r þ 3Lrð Þ2 1 þ 2L � z2ð Þ
�

þCw 5 þ 45L þ 98L2 � 3 11 þ 7L 11 þ 20Lð Þð Þz2 þ 35 1 þ L 5 þ 6Lð Þð Þz4 � 7 1 þ 3Lð Þz6
� �

eÞ
.

4480p2 r þ 3Lrð Þ3
� �

;

l2

e
v zð Þ ¼ 0;

l2

e
w zð Þ ¼ � 3C2

wz � 1 þ z2ð Þ 5 þ 45L þ 98L2 � 2 1 þ 3Lð Þ 3 þ 7Lð Þz2 þ 1 þ 3Lð Þz4
� �

e

2240 1 þ 3Lð Þ3p2r4
;

l4p zð Þ ¼
3Cwe � 9Cw 2 þ 7L 2 þ 5L 1 þ Lð Þð Þð Þe � 280p r þ 3Lrð Þ2lnr

� �
1120 1 þ 3Lð Þ3p2r2

: (19)

In addition, when L is set to zero, equation (19) leads to the no-slip solutions:

l2

e
u zð Þ ¼ � 3Cw � 1 þ z2ð Þ 560pr2 þ Cw 5 � 28z2 þ 7z4ð Þe

� �
4480p2r3

;

l2

e
v zð Þ ¼ 0;

l2

e
w zð Þ ¼ � 3C2

wz � 5 þ z2ð Þ � 1 þ z2ð Þ2e
2240p2r4

;

l4p zð Þ ¼ � 3Cwe 9Cwe þ 140pr2lnrð Þ
560p2r2

;

(20)

that perfectly agree with those expressions given in Sengupta and Guha (2012) and Beans
(1966). Notice that parabolic channel flow is achieved when further the thickness e ! 0 to
give:

l2

e
u zð Þ ¼ 3Cw 1 þ 2L � z2ð Þ

8pr 1 þ 3Lð Þ ; (21)

refer to the solution in Schosser et al. (2019) for the no-slip case.
Having confidence in the accuracy and convergence of the perturbation series solutions

(10), we can carry on now investigating effects of combinations of physical parameters on
the flow, pressure and temperature fields with the third level truncation in the series (10) for
the range of parameters studied here. It should be recalled that the number of terms in the
series may need to be increased further for the convergence for other set of parameters
(particularly as the inlet location is very small), which is beyond the scope of the present
analysis. Figure 4(a)–(d) exhibit the velocity and pressure distributions for the parameters
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e ¼ 0.1, r¼ 0.5, l¼ 5 and Cw ¼ 10. As compared to the low Reynolds number flow regime
in Figure 3(a)–(c), the parabolic shape deforms considerably, and the radial and
circumferential flow develop mainly adjacent to the disk surfaces. The middle region of the
disk almost settles down. The axial velocity component has smaller magnitude as compared
to the others. Slip strictly suppresses the momentum layer, apart from the disk surface region
where the slip is applied, as physically expected. Besides the acceleration influence of the
slip for the radial velocity of the fluid particles next to the wall, it also changes the direction
of angular rotation completely, as clarified in Figure 4(b), after adding the quantity 0.05 to v
(z). The reduction in pressure with larger slips leads to less axial velocity of fluid particles.
Also, to conserve the mass balance, the fluid particles drawn toward the disk surfaces are
driven radially outwards.

Figure 5(a)–(d) reveal a higher Reynolds number together with the slip effects at l ¼ 21
(Re¼ l2). Aviscous boundary layer inevitably forms next to the disk walls, in parallel to the

(a) (b)

(c) (d)

Source: Author’s own work

Figure 6. l ¼ 51. (a) Radial flow u, (b) circumferential flow v, (c) axial flow w and (d) pressure
distribution at the centerline p(0)
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physical expectation. Increase in the Reynolds number and the slip let the tangential fluid
velocity tend to the rotational speed of the disk surface, hence almost a rigid-body rotation is
observed. The viscous pumping action confines the flow phenomenon to the vicinity of the
disks and by decreasing the flow and pressure quantities, with more pronounced effect on the
axial velocity of the fluid particles.

Figure 6(a)–(d) demonstrate themost thin viscous sublayer at the Reynolds numberRe¼ l2¼
512. We should note that at this high Reynolds number the flow may have already gone into the
turbulent stage (subject to the experimental verification), and these solutions are then questionable,
only capturing a qualitative representation. Absolute/convective type instabilities may then
dominate the system, seeViaud et al. (2008).

The influences of slip parameter on the radial wall velocity u(�1) and wall shear rate u0
(�1) are afterwards anticipated in Figure 7 at the parameters of Batista (2011). The slip
absolutely increases the wall velocities of the particles, and it yields a reduction in the wall
shear. This outcome is also in line with the results of slip on the laminar jet flow
Turkyilmazoglu (2019).

As for the effects of slip/no-slip on the thermal layer, the creeping flow thermal limit gives
rise to the second-order approximation:

H zð Þ ¼ C2
wPr � 1 þ z2ð Þ � 38 � 4533Pr � L 418 þ 34935Pr þ 504L 2 þ 3 59 þ 50Lð ÞPrð Þð Þð

�
þ 82z2 þ 2L 331 þ 672Lð Þ þ 3 1 þ 3Lð Þ 589 þ 112L 19 þ 15Lð Þð ÞPr� �

z2

� 1 þ 3Lð Þ 50 þ 543Pr þ 56L 2 þ 21Prð Þð Þz4 þ 3 1 þ 3Lð Þ 2 þ 15Prð Þz6Þe2

Source: Author’s own work

Figure 7. Wall velocity and shear stress for the data of Batista (2011).
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þ 224Cw 1 þ 3Lð Þ2pPr � 1 þ z2ð Þe 10r2 � 5 � 12L þ z2ð Þð

þ 3 � 83 þ 22z2 � 3z4 þ 40L � 5 þ z2ð Þð Þe2Þ

þ 8960 1 þ 3Lð Þ3p2 8r4 � 4r2 � 1 þ z2ð Þe2ð

þ 3 5 � 6z2 þ z4ð Þe4ÞÞ=71680 1 þ 3Lð Þ3p2r4; (22)

and further L! 0 yields:

H zð Þ ¼ C2
wPr � 1 þ z2ð Þ � 38 � 4533Pr þ 82 þ 1767Prð Þz2 � 50 þ 543Prð Þz4

��
þ 3 2 þ 15Prð Þz6Þe2 þ 224CwpPr � 1 þ z2ð Þe 10r2 � 5 þ z2ð Þð

� 3 83 � 22z2 þ 3z4ð Þe2Þ þ 8960p2 8r4 � 4r2 � 1 þ z2ð Þe2ð

þ 3 5 � 6z2 þ z4ð Þe4Þ
�.

71680p2r4: (23)

The natural temperature solution of unity will appear if further the gap thickness tends to zero.
Thermal fields are seen in Figures 8(a), (b) and 9(a), (b) for the selected physical

parameters. Temperature profiles are parabolic regardless of the slip and Reynolds number,
though the shape is slightly affected adjacent to the walls. As a consequence, the particles are
carried through the tube at a higher temperature away from the disk surface. Reduction
impact of slip on the momentum layer has also the similar influence on the temperature field,
with a lesser order of magnitude though.

Eventually, the centerline temperature H(0) and wall temperature gradient H0(�1) are
shown in Figure 10(a) and (b), for e ¼ 0.1, r¼ 0.5, Cw¼ 1 and Pr¼ 1, with varying l against

(a)

Notes: (a) λ = 1; (b) λ = 5

Source: Author’s own work

(b)

Figure 8. Temperature field for e¼ 0.1, r¼ 0.5,Cw¼ 1 and Pr¼ 1

HFF
35,1

272



L. The results are in parallel to those shown in the previous figures. Intriguingly, heat transfer
from the surface is reduced both as l and L are increased, overlapping with the findings in Kim
et al. (1994). This is as a result of fluid getting cooled down within the disks by the action of
these parameters, refer also to Turkyilmazoglu (2019) for a similar outcome on the slip wall jet.

5. Conclusions
This study uses an analytical approach to examine the impact of radial velocity slip on the
flow and temperature field of an incompressible, viscous fluid flowing between parallel,

(a) (b)

Notes: (a) λ = 10; (b) λ = 21

Source: Author’s own work

Figure 9. Temperature field for e¼ 0.1, r¼ 0.5,Cw¼ 1 and Pr¼ 1

(a) (b)

Notes: (a) Centerline temperature; (b) wall temperature gradient

Source: Author’s own work

Figure 10. Temperature field for e¼ 0.1, r¼ 0.5,Cw¼ 1 and Pr¼ 1
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