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Figure 1. Geometry of the problem.
The corresponding boundary conditions are:

aT

At z=0:u=0v=rQ,T=Ty +L1—,

0z

—Dg 0dC aC (6)
— S C=Cy+ly—
TG, oz w5
As z—o0o:u—0,v—> 0T > Ty, C > Cxo.

where r = x sin(«) denotes the radius of the cone, (u, v, w, T, C) denotes (velocity along x
direction, velocity along y-direction, velocity along z-direction, temperature, nanoparticles
volume fraction), « denotes the cone apex half-angle, By denotes the intensity of the mag-
netic field, p, denotes the density of nanoparticles, (Dg, D7) denotes (Brownian motion
diffusion factor, thermophoresis factor), 7 = prCpr/ppCpp denotes the specific heat ratio,
ppCpp denotes the specific heat of nanoparticles, L1 and L, denotes the coefficients of ther-
mal jump and nanoparticles volume fraction jump, subscripts w and oo denote surface of
the cone and ambient state (far away from the surface).

According to Mallikarjuna et al. [44], Tien [61], Hering and Grosh [62] and Himasekhar
and Sarma [63], the following similarity variables are introduced:

u=xQsinaF(¢),v=xQsinaG(),w=+vvQsinaH(¢)
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6 P.RANA AND G. GUPTA

C—Cseo ¢ = Qsina

AC v
where AT = (Ty — Too) (§) and AC = (Cw — Cso) (§) denote thermal difference and
nanoparticles volume fraction difference, L denotes the slant height of the cone surface, T,
and C,, denote the cone surface temperature and NVF at the base (x = L).Z,F,0,G, ¢,and H
denote similarity space variable, tangential velocity, temperature, azimuthal velocity, NVF,
and normal velocity.

By the virtue of Equation (7), Equations (1)-(6) yield

T— T
P() = z (7)

0(8) = —=

H = —2F (8)
F' = FH+ F? — G> + HaF — Mc{# + Nc6? — Nr¢} )
G’ = G'H + 2FG + HaG (10)
6" = Pr(6’H + 6F) — PrNbo' ¢’ — PrNt(6')? (11)
¢" = LePr(¢'H + ¢F) — %6” (12)

with dimensionless auxiliary conditions

At (—O'F—OG—1H—_Sb¢/
S T Lepr

0=1+Ts0',¢ =1+ Cs¢’ (13)
As £ > x:F>0G—>0606—>0¢—>0

2 .
where Mc = RG—e’Z denotes the mixed convection factor, Re = w denotes the Reynolds

_ _ 3
number, Gr = 940c0sad f?)(TW To)l” denotes the Grashof number, Nc = ﬁ—“)AT denotes

the nonlinear convection factor, Nr = #ﬁf&o) denotes the buoyancy ratio, Ha =
B2 C
pfgﬁ denotes the Hartmann number, Pr = quf denotes the Prandtl number, Le =

MCKW denotes the Lewis number, Nb = % denotes the Brownian motion number,
D

Nt = 2727 denotes the thermophoresis number, Ts = L4 % denotes the thermal slip

TooV

factor, CGs = L, % denotes the solutal slip factor and Sb = % denotes the Stefan
number.
The dimensionless Nusselt number Nur and Sherwood number Shr are given below;

Nur = Re %> Nu, = —6/(0) (14)
Shr = Re™%°Sh, = —¢/(0) (15)

3. Numerical method and validation

The nonlinear differential Equations (8)-(13) are deciphered using the shooting method
featuring the Fehlberg scheme. The boundary value problem (BVP) transforms into initial
value problem (IVP), to this consider the following

F=2Z,F =2 (16)
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F'= 22 — Z2 4 2,23 + HaZy — Mc(Z6 + Nc2ZZ — NrZg) (17)
H= Z3 (18)
H = -2z, (19)
G=24,G = Zs (20)
G' = 2523+ 22124+ HaZ, (21)
0 =20 =2 (22)
0" = Pr{2327 + 2126 — NbZ; 29 — Nt 23} (23)
¢ = 25,0’ = 2o (24

PrNt
¢" = Prle(Z12g + Z329) — _I:/b (2327 + 2126 — NbZ7Z9 — NtZ3) (25)

Sb
Z] = OIZZIZ3 + _Zg = OIZ4 = 1IZS
LePr
Ze=14+TsZ7,Z7,Z8 =1+ (529, Z9 (26)

The above system is solved keeping the length of the domain ¢ as 10, to ensure that
F(Zoo) = 0,G(¢00) = 0,0(Ss0) = 0, and ¢ (Zs) = 0 with accuracy of 107°. The unknown
boundary conditions are determined with Newton'’s Raphson method, the resultant system
is treated with RK-Fehlberg method.

For validation, the RK-Fehlberg scheme results are compared with those obtained by
the Finite Element Method (FEM). So, by applying the variational formulation with linear
element Q¢ = (Ze, Cet1), leads to

AT A2 (A3 (AT [AVIT [{H) {c}!
[A2'] [AZ] [AZ] [A2Y] [AZ]] | (R {c}?
A3 [A32] [AB] (A% A | (G} | = | ()
[AY] [A%2] [A%] A% A% | {0} {c}*
[AST][A%2] [A%] [ASY] [A%%1] L{4) {c)®

where [A"and {c}"(m,n = 1,..,5) are defined as:

Set1 N, Ce1
Ay =f§ Ni—2d¢, Al = 2/{ NiNidg, AP = Aj* = AP = AT =,

dc i
pre /Ce+1 dN; dN; de /‘§e+1 N-Hde de /*fe+1 NENde
! Ce dé‘ dé‘ e I dé‘ Ce n
Cet1 et _
— Ha / NiNide, AS = / NiGNdz, A*
Ce Ce
et Set1 Cet1
= MC/ NiN;d¢ +MCNC/ N,'@de{,Aizjs = —/\/ICNI’/ NiN;d¢,
Le e e
Cet1 dN: dN; fet1  _ Cet1 _dN:
31 _ 432 _ 33 _ e I FN.dr — H_J
A,-j _AU = O,A,-j = [{e dac dc dc 2[{8 N;iFN;dg /{e NiH ac de

et
— Ha / NiNds, Aj* = A% =0,
Se
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Table 1. Comparison of results obtained from three different methods when Ha = Nb = Nt =
02,le=Pr=1,C=Ts=Mc=Nc=Nr=0.1andSb = 1.

Fehlberg method BVP5c FEM

Sb Nur Shr Nur Shr Nur Shr
0.5 0.472037 0.285798 0.472037 0.285799 0.472037 0.285798
1 0.529425 0.283222 0.529425 0.283222 0.529425 0.283222
1.5 0.590571 0.280691 0.590571 0.280691 0.590571 0.280691
2 0.656181 0.279296 0.656182 0.279296 0.656181 0.279296
2.5 0.728343 0.280180 0.728343 0.280180 0.728343 0.280180
Ha

0.2 0.529425 0.283222 0.529425 0.283222 0.529425 0.283222
0.4 0.489130 0.255991 0.489131 0.255992 0.489130 0.255992
0.6 0.454212 0.234084 0.454212 0.234084 0.454212 0.234084
0.8 0.424476 0.216988 0.424483 0.217041 0.424476 0.216988
1 0.399343 0.203834 0.399345 0.203848 0.399343 0.203834

Ce+1 dN: dN: Cet1 N Cet1
41 __ 42 __ p43 __ 44 ! J . _ EN:

e
Se+1 dN; - dN; Set1 dN: —dN;
Prit —6—"dc, A = PrNb iGN e
G A
Nt %+ dN; dN; Se+1 dN: dN:
51 52 53 54 ! ] 55 ! ]
A=A =AY =0T = | a A =‘f; s

Cet1 _de Cet1
— Pr Le/ NiH—=d¢ — Pr Lef NiFN;d¢,
e d¢ e

. 5 dF Cet1 3 dG Cet1 4 do Cet1
G =0,¢ =— NiE G o= Ni% G == Ni% ,
Ce e e

s (N d¢+Nt do \ ) st
P "\d¢ " Nbdz)),,

_ 2 __
where @ = Y ®;N; and ®(F, G, H, 0, ¢) is dependent variable and N; is linear shape func-
i=1
tion. Linearized equations are unraveled by the Gauss elimination method with an aaccu-
racy 1078, Table 1 presents a very good agreement. Flow chart of both Fehlberg method

and FEM is outlined in Figure 2.

4. Interpretation of results

Obtained results are analyzed and discussed in detail in this section. Results are computed
for Hartmann number (0 < Ha < 2), mixed convection factor (0 < Mc < 1.6), nonlinear
convection factor (0 < Nc < 20), Stefan Blowing number (—2 < Sb < 2), thermo-migration
factor (0.1 < Nt < 1.7), Brownian motion number (0.1 < Nb < 1.7), thermal slip factor (0 <
Ts < 2.0), solutal slip factor (0.5 < Cs < 2.5), Prandtl number (Pr = 6) and Lewis number
(Le = 3). 3D surface plots and contour plots are plotted to examine the Nusselt number
and Sherwood number.
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Figure 4. (a)-(e): Consequences of Mc on F(¢), G(¢), H(¢),0(¢) and ¢ () respectively.

force Mc{6 — Nr¢}, the nonlinear convection factor Ncis additional to the buoyancy upright
force,i.e. Mc{6 + Nc6? — Nr¢}. Therefore, the influences of Mc and Nc are qualitatively sim-
ilar. The nonlinear convection mechanism augments the tangential velocity field and can
be used to control the movement of operating liquids.

In Figure 6(a)-(d), the stimulus of Stefan blowing factor (Sb = —2,—-1,0,1,2) on
F(2),H(¢),0(¢) and ¢(¢) respectively are shown. The Stefan blowing factor can be pos-
itive or negative. Sb > 0 represents the evaporation process (blowing), Sb < 0 represents
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Figure 5. (a)-(d): Consequences of Ncon F(¢), G(¢), H(¢), and 6(¢) respectively.

the condensation process (mass suction), and Sb = 0 represents the no Stefan blowing pro-
cess. The evaporation process is found to reduce the velocities (F(¢) and H(¢)). By definition
of Sb = CW_CCOO when we say Sb > 0, the nanoparticles volume fraction species are trans-
ferred from the cone surface to free stream (i.e. evaporation). Reduction in the magnitude
of F(¢),H(2),6(¢) and ¢ (¢) occurs for upsurging positive Sb values, due to an enormous
diffusion of mass from the cone surface to the free stream. However, in the case of the con-
densation process, the magnitude of F(¢),H(¢),0(¢) and ¢ (¢) increases with ascending
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Figure 6. (a)-(d): Consequences of Sb on F(¢), H(¢),0(¢) and ¢ (¢) respectively.

negative Sb values. Our results of the Stefan blowing process are agreed with those of Fang
and Jing [46].

Figure 7(a)-(d) displays representative profiles of tangential velocity (F(¢)), normal
velocity (H(¢)), temperature (6(¢)), and nanoparticles volume fraction (¢(¢)) for distinct
values of the thermophoretic parameter (Nt). An upsurge in Nt leads to a reduction in the
magnitude of the normal velocity (H(¢)), while F(¢), 6(¢), and ¢ (¢) increase with Nt. Since
the thermophoretic factor (Nt) is positively associated with thermal gradient, the thermal
layer thickness enlarges with Nt. Mathematically, since the thermophoretic term (PrNt(6')?)
occurs in the thermal energy Equation (11) with a positive sign, increasing values of Nt
improve the thermal energy field (6 (¢)). Similarly, the term ,'\\I’—éﬁ” in Equation (12) is account-
able for increasing the magnitude of ¢ (¢). The enhanced thermal energy field 6(¢) is liable
for amplification in the tangential velocity (F(¢)) for higher Nt (see Figure 7(a)).

The consequence of the Brownian motion number (Nb) on F(¢), H(¢),6(¢) and ¢(¢) are
revealed in Figure 8(a)-(d). As expected, the thermal energy 6(¢) and tangential velocity
F(¢) upsurge considerably with Nb. But, the normal velocity (H(¢)) and nanoparticle vol-
ume fraction ¢ (¢) were condensed with upsurging values of Nb. The disordered movement
of the nanoparticles helps to produce additional thermal energy in the liquid system and
at the same time strengthens the deposition of nanoparticles outside the system, so it is
responsible for condensation of ¢ (¢). Mathematically, since the Brownian term (PrNbg’¢’)
appears in the thermal energy Equation (11) with a positive sign, increasing values of Nb
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Figure 7. (a)-(d): Consequences of Nt on F(¢), H(¢),6(¢) and ¢ (¢) respectively.

improve the thermal energy field (6(¢)). Similarly, since Nb occurs in the denominator of
the term %9” in Equation (12), increasing values of Nb reduce the magnitude of %9” and
therefore reduces ¢ (¢) considerably. The augmented 6(¢) and the reduced ¢ (¢) are liable
for the amplification of F(¢) for higher Nb through buoyancy force (see Figure 8(a)). From
Figures 7 and 8 one can conclude that the influence of thermophoretic factor is stronger
than Brownian number (Nb) on flow fields.

In Figure 9(a,b), the significance of Ts and Cs on 6(¢) and ¢ (¢) respectively. The thermal
energy 6(¢) and the volumetric fraction of the nanoparticles ¢ (¢) reduce as the Ts and
Cs values increase correspondingly. The nanoliquid near the cone surface skips absorbing
heat energy from the cone surface. Subsequently, the thermal energy field is reduced to an
increase in the Ts values. The effect of Cs on ¢ (¢) is analogous to that of Ts on 0(¢).

Figures 10-15 determine the combined effects of (Nb, Nt), (Mc, Nc), and (Ha, Sb) on
Nusselt number (Nur) and Sherwood number (Shr) using 3D surface and contour graphs.
Figure 10(a,b) depicts that Nur declines with enlarging values of both Nb and Nt, which
indicates that Nur is at its maximum when both Nt and Nb are held at a lower magni-
tude. This trend exemplifies the thermal rise features of nanoliquids, as explained by several
researchers [4,8,10] since alower Nur indicates higher thermal energy in the liquid itself. The
Sherwood number fluctuates nonlinearly through Nb and Nt, as revealed in Figure 11(a,b).
The slightest Shr magnitude is observed when both Nb and Nt are kept minimum, but the
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Figure 9. (a) and (b): Consequences of Ts and Cs on 6(¢) and ¢ (¢) respectively.

largest Shr is observed when Nt is at a high level and Nb is at an intermediate level. The
outcomes of Shr relating to both Nb and Nt are consistent with Figures 7 and 8.

Figure 12(a,b) indicates that both the nonlinear convection factor (Nc) and the mixed
convection factor (Mc) aid to improve the Nur. The maximum magnitude of Nur is perceived
when both Nc and Mc are kept at maximum since the thermal energy layer on the surface
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