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where Ny(T) is given by (62.1). Expanding the integrand and using the fact that u
is small near the point 7 = T,, and therefore the important part of the integral
arises from the region where ¢ is small, we find that the integral is equal to
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Substituting this value and then expressing y in terms of N—N,, we have
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To the same accuracy we can write
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where E, = Ey(T) denotes the energy for u = 0, i.e. the function (62.5). The sec-
ond derivative of the second term with respect to temperature will clearly give
the required discontinuity. The result of the calculation is
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The value of the derivative (0C,/0T)y for T = T,—O0 is, from (62.5), +2.89N|T,,
and for T = T,+0 it is therefore —0.77N/T,,.

§ 63. Black-body radiation

The most important application of Bose statistics relates to electromagnetic
radiation which is in thermal equilibrium—called black-body radiation. Such
radiation may be regarded as a gas consisting of photons. The linearity
of the equations of electrodynamics expresses the fact that photons do not
interact with one another (the principle of superposition for the electro-
magnetic field), so that the photon gas is an ideal gas. Because the angular
momentum of the photons is integral, this gas obeys Bose statistics.

If the radiation is not in a vacuum but in a material medium, the condition
for an ideal photon gas requires also that the interaction between radiation
and matter should be small. This condition is satisfied in gases throughout
the radiation spectrum except for frequencies in the neighbourhood of ab-
sorption lines of the material, but at high densities of matter it may be vio-
lated except at very high temperatures.
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It should be remembered that at least a small amount of matter must be
present if thermal equilibrium is to be reached in the radiation, since the
interaction between the photons themselves may be regarded as completely
absent.! The mechanism by which equilibrium can be established consists in
the absorption and emission of photons by matter. This results in an im-
portant specific property of the photon gas: the number of photons N in it
is variable, and not a given constant as in an ordinary gas. Thus N itself must be
determined from the conditions of thermal equilibrium. From the condition
that the free energy of the gas should be a minimum (for given T and V), we
obtain as one of the necessary conditions 9F/8N = 0. Since (8F/oN)r, , = u,
this gives

p=0, (63.1)
i.e. the chemical potential of the photon gas is zero.

The distribution of photons among the various quantum states with
definite values of the momentum #k and energies ¢ = #w = fick (and defi-
nite polarisations) is therefore given by formula (54.2) with 4 = 0:

m, = 1/(e*T—1). (63.2)

This is called Planck’s distribution.

Assuming that the volume is sufficiently large, we can make the usual
change(see Fields,§ 52)from thediscrete to the continuous distribution of eigen-
frequencies of the radiation. The number of modes of oscillation for which
the components of the wave vector k lie in the intervals d*%k = dk, dk, dk, is
V d3k/(2x=)3, and the number of modes for which the absolute magnitude
of the wave vector lies in the range dk is correspondingly V -4xk? dk/(27)3.
Using the frequency @ = ck and multiplying by 2 (for the two independent
directions of polarisation of the oscillations), we obtain the number of
quantum states of photons with frequencies between o and @ +-dw:

Veo? dw/n?c3. (63.3)

Multiplying the distribution (63.2) by this quantity, we find the number of
photons in this frequency interval:
V o?do
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(63.4)

and a further multiplication by #w gives the radiation energy in this segment
of the spectrum:
Vi ofdo
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dE, = (63.5)

t Apart from the entirely negligible interaction (the scattering of light by light)
which is due to the possible production of virtual electron-positron pairs.
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This formula for the spectral energy distribution of black-body radiation is
called Planck’s formula.' In terms of the wavelength A = 2nc/w, it becomes

16n2chV di
dE* =75 oA _ ] ° (63.6)

At low frequencies (fiw <« T), formula (63.5) gives
dE, = V(T[n?c*)w? do. (63.7)

This is the Rayleigh-Jeans formula. 1t should be noticed that formula (63.7)
does not contain the quantum constant #, and can be derived by multiplying
by T the number of modes (63.3); in this sense it corresponds to classical
statistics, in which an energy T must correspond to each “vibrational degree
of freedom”—the law of equipartition (§ 44).

In the opposite limiting case of high frequencies (iw > T'), formula (63.5)

becomes
dE, = V({li/n*cP)wie— T dw. (63.8)

This is Wien’s formula.
Figure 7 shows a graph of the function x3/(¢*—1), corresponding to the
distribution (63.5).
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The density of the spectral frequency distribution of the energy of black-
body radiation, dE,/dw, has a maximum at a frequency w,, given by

i, /T = 2.822. (63.9)

t The discdvery of .this law by M. Planck (1900) was the foundation of the
quantum theory.
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Thus, when the temperature rises, the position of the maximum of the distri-
bution is displaced towards higher frequencies in proportion to T (the
displacement law).!

Let us calculate the thermodynamic quantities for black-body radiation.
For p = 0, the free energy is the same as 2 (since F = ®—PV = Nu+9).
According to formula (54.4), in which we put 4 = 0 and change in the usual
way (by means of (63.3)) from summation to integration, we obtain

L
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With the new variable of integration x = #w/T, integration by parts gives
Tt [ dx
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The integral is equal to z4/15 (see the second footnote to § 58). Thus

F = —V-n2T4/45(hc)’
= —40VT4[3c. (63.11)

If T is measured in degrees, the coefficient o (called the Stefan-Boltzmann
constant) is
o = nk4 /6032
= 5.67X 1073 g/sec® deg*. (63.12)

The entropy is
§ = —0F[oT = 16aVT3/3c, (63.13)

and is proportional to the cube of the temperature. The total radiation energy
E=F4TSis
E = 46VT4/c = —3F, (63.14)

This expression could, of course, be derived also by direct integration of the
distribution (63.5). Thus the total energy of black-body radiation is propor-
tional to the fourth power of the temperature. This is Boltzmann’s law.

For the specific heat of the radiation C, we have

Cy, = (OE[OT)y = 166T3V [c. (63.15)

T The wavelength distribution density dE;/d} also has a maximum, but at a
different value of the corresponding ratio: 2nic/TA,, = 4.965. Thus the maximum
Ay, of the wavelength distribution is displaced in inverse proportion to the temper-
ature.



