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Figure 5.28. Substrate Distribution
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Figure 5.29. Metabolite Distribution
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8. Groundwater Flow

The mathematical model describes a tracer experiment that was conducted at the lake
Gérdsjin in Sweden, see Andersson and Olsson (5], to investigate acidification of ground-
water pollution. To conduct the experiment, a catchment of 1,000 m? was covered by a
roof. A tracer impulse consisting of lithium-bromide was applied with steady state How
conditions. Tensiometer measurements of the tracer concentration were documented in a
distance of 40 m from the center of the covered area.

The diffusion equations proposed by Van Genuchten and Wierenga [454] are chosen
by Hoch [200] to analyze the diffusion process and to get a simulation model. A two-
domain approach was selected in the form of two equations, to model the mobile and the
immobile part of the system. The first one describes the diffusion of the fiow through soil
by convection and dispersion,

: 2
b (2, 0) -+ 6 %ﬁ(x, ) = amDm%-ggl(x, t) — emvm%%i
A sccond equation is needed for the so-called immobile part, the mass transfer orthogonal
to the fiow direction,

Jem (z,8) . (5.39)

B 2 (2,8) = @ em(2,) — eim(,1) (5.40)

for t > 0 and 0 < & < L. Boundary conditions are

Dy B, a, ilf< i

em{0) = Ve Oz 0,8) = {O , otherwise (5.41)

and D P
(L) + = 0y = 5.42
R L (5.42)

for ¢ » 0, and imitial values are given by ¢n(z,0) = 0 and ¢pn{2,0) = 0 for 0 < ¢ < L.
Then we evaluate the fitting function

Dy 6
Ve Oz

hit) = en(3L.1) - (8L.1) C (5.43)
defined for t > 0.

In the above equations, cm(z,t) and (e, t) denote the tracer concentrations, 8,
and 8, the corresponding water contents, 1, the dispersion coefficient, and « the mass
transfer coefficient.

EXAMPLE 5.9 Since we want to investigate the whole process over a length of I = 80, experimental
measurements are given inside the spatial area, see Figure 5.30. We transform (5.39) and {5.40) into the
oquivalent system

%C.gi(a;,t] _ Dm%%(m=t)7Vm%%(;g,t)7pm(@n($,t)7cim(m:f)) ! (544)
Pomiat) = pimlen(a,t) —cin(@,0)



Table 5.11. Initial Values and Confidence Regions

initial lower final upper
P 1.0 8.681 11.83 14.97
Pim . 1.0 4.640 - 6.296 7.950
Dy, 160.0 257.9 382.7 507.5
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Figure 5.30.  Pitting Criterion and Data

for¢ > 0and 0 <z < L, with p = 0/0m and pin = 0/8iy,. Parameters to be estimated are Py Pim, 80d
Dy, whereas {5 = 0.0104187, Vi, = 100, and a = 5800 are considered as constants.

The five-point-difference formula is used to discretize first and second derivatives subject to 41 lincs.
"The differential equations are integrated by RADAUS with error tolerance 107°%, The least squares code
DFNLP, executed with termination tolerance 1077, stops after 34 iterations. Initial and final parametor
values are listed in. Table 5.11 together with 5 % confidence intervals. Figure 5.30 shows all experimental
data and the fitting eriterion. The corresponding surface plots for mobile and immobile parts are found in
Figures 5.31 and 5.32.
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Figure 5.31. Mobile Part
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Figure 5.32. Immobile Part




