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Abstract-Liquid from a constant temperature reservoir enters a porous medium. At the opposite end 
the temperature ofthe system is raised above the evaporation point of the liquid by imposing either a constant 

temperature, or a constant heat flux. This causes an evaporation front to propagate into the material, 
separating a vapor region from the liquid region. The object ofthe paper is to analyze this system, investigat- 
ing the relative importance of convection versus conduction, and the main parameters influencing the 
temperature distribution, and the interface position. Exact solutions are obtained for the steady-state 
problem where (1) properties are constant, and (2) density and viscosity of the vapor are variable. Also, 
an approximate solution of the constant property, transient problem is obtained by applying a heat-balance 

integral technique. 
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NOMENCLATURE 

specific heat; 
average pore diameter; 
acceleration of gravity; 
enthalpy ; 

latent heat of vaporization; 
thermal conductivity; 
permeability; 
length of porous section; 
mass flow rate per unit area = pu; 
pressure; 
P&l&t number = rX,L/k = RePrL/d; 

Prandtl number = pC,/k; 
heat flux per unit area; 
Rayleigh number = gLK/l AT/w; 

Reynolds number = pvdfp; 

interface position; 
time ; 
temperature; 

* Presented at the International Symposium on Two- 
Phase Systems. Technion City, Haifa, Israel 29th August- 
2nd September, 197 1. 

actual velocity in pores; 
Darcy velocity; 
distance coordinate; 
thermal diffusivity; 
coefficient of thermal expansion; 
porosity; 
transformed coordinate = x - S/l - S; 
dimensionless temperature; 
viscosity; 
kinematic viscosity = pJp; 
transformed coordinate = S - x/S; 
density. 

Dimensionless quantities 

C, C,LIC,” ; 

ET (PqL,ff/PLCpL ; 
F, ti Jtii; 

H, h,g(T*YCh.(T*) - h&%)1; 
R, VVIVL ; 
2, @h.CpJh.,rr); 
JfY (PC,)“ert/P”q”; 
Y, PJPvi 
h’, k*Akk * 
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Subscripts 
eff, effective property; 
sat, saturated porous medium; 

ss, steady state; 

6 initial value (before interface advances 
into medium); 

K reservoir (x = L); 
f, fluid (liquid or vapor); 

L liquid ; 

V, vapor ; 

S, solid. 

Superscripts 
* saturation conditions; 
* average quantity; 

A, dimensionless quantity. 

INTRODUCTION 

MOST of the previous work on heat transfer in 
porous media deals with a single phase, either 
liquid or gas, flowing through the material. 
However, in certain problems involving trans- 
piration cooling and heat shields there may be 
regions of different phases separated by a 
moving phase-change interface. In the problem 
discussed in [l] and [2] liquid from a constant 
temperature reservoir flows into one end of a 
porous medium. At the opposite end of the 
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either a surface heat flux or a constant tempera- 
ture, where the maximum temperature is less 
than the boiling point of the liquid. If this 
restriction is relaxed, an evaporation front, 
separating a vapor region from the liquid 
region, may propagate into the medium. The 
object of this paper is to analyze this system, 
showing the relative importance of convection 
versus conduction, and the main parameters 
influencing the temperature distribution, and 
interface position. The material is treated as 
a continuum, neglecting the pore structure, 
in order to apply “average” governing equations. 
The one-dimensional problem is solved neglect- 
ing radiation and natural convection and 
assuming a small, appropriately defined, Rey- 
nolds number so that Darcy’s law may be 
applied. Exact solutions of the steady-state 
problem are obtained for (1) constant properties, 
and (2) variable density and viscosity of the 
vapor. An approximate solution of the transient 
problem with constant properties is obtained 
using the heat-balance integral technique pro- 
posed by Goodman [3, 41 and applied suc- 
cessfully in [5-71. 

For the case with temperature prescribed on 
the boundary, we find one steady-state interface 
position which propagates farther into the 

Reservoir 

TR = constant 

Pj = constant 

-Liquid flux. 4 (1) 

FIG. 1. Diagram of physical model. 
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medium as the boundary temperature is in- 
creased. For constant surface heat flux there 
can be either one or three steady-state interface 
positions depending on the parameters of the 
problem. A stability analysis shows that for the 
later case the middle position is unstable. The 
solution of the transient problem shows the 
initial conditions determining which stable, 
steady-state interface position is reached. 

FORMULATION OF THE PROBLEM 

A schematic diagram of the problem is 
presented in Fig. 1. Liquid, at temperature TR 
and pressure P,, is forced through a porous 
medium by an imposed pressure gradient, 
P, > P,. The liquid is assumed to flow from an 
infinite reservoir at x = L so that TR and PR 

may be assumed constant. It is assumed that 
the mass is removed instantly at x = 0, and the 
pressure P, is constant. Also, the pressure 
difference due to surface tension effects across 
the liquid-vapor interface is assumed small 
compared to (PR - P,) so that P(x = S+) = 

P(x = S-). For a porous structure with a small 
radius of curvature this discontinuity in pressure 
may have to be included. Radiation and natural 
convection are neglected compared to conduc- 
tion and forced convection. Natural convection 
can be neglected if an appropriately defined 
Rayleigh number, Ra = gL.KB AT/a,,,vf, is 

smal1.t 
If a constant temperature, T,, greater than 

the saturation temperature of the liquid at 
pressure P,, is applied at x = 0, an evaporation 
interface will propagate into the medium, 
separating a vapor region from the liquid 
region. If a sufficiently high constant heat flux 
per unit area qin, is applied at x = 0 in the 
direction opposite the mass flux, an evaporation 
interface will also propagate into the medium. 

t According to Scheidegger [S], for convection currents 
to develop in porous media a temperature gradient greater 
than 47?u,,, vf/pKgfi is necessary. Experiments by Com- 
barnous and LeFur [9] show that for Ra < 40 natural 
convection is negligible. In the examples presented in this 
paper Ra < 1. 

For both of these cases, the temperature and 
pressure at the interface are the saturation 
temperature and pressure, T* and P* respec- 
tively, where P, d P* < P,. It is assumed that 
the maximum temperature in the material is 
less than the melting temperature of the solid. 
For simplicity the one-dimensional problem is 
treated. 

Because of the complex geometry it is im- 
possible to formulate the problem in terms of 
the actual fluid flow in the pores. As in most 
studies of flow through porous media, the 
heterogeneous solid-fluid system is treated 
as a continuum, which allows average or 
“macroscopicn governing equations to be 
applied. 

The equation of flow known as Darcy’s law, 

KdP UC___ 
p dx 

was first deduced experimentally in 1856 [lo]. 
Since then there have been several attempts to 
derive equation (1) analytically starting with 
the Navier-Stokes equations [ 1 l-l 31. These 
“derivations” show that Darcy’s law is restricted 
to flow in which viscous forces dominate over 
inertia forces. We assume a small, appropriately 
defined Reynolds number, 

Re E Ipud/pj < 1 (2) 

so that equation (1) may be applicable. 
For the transient problem, a modified Darcy’s 

law is sometimes used [9,14] in the form 

au v 1 ap 
at+K”= ---- P ax 

If the viscous time K/v is small, except for the 
first fraction of a second, the term c?u/& may be 
neglected.? Although Darcy’s law was deter- 
mined empirically with constant viscosity, it is 
often assumed valid for variable viscosity as 
well. Wooding [15, 163 uses equation (1) with 
temperature dependent viscosity, and Dybbs 

t For example, a typical value for K/v for water flowing 
through packed sand is about 10m5 s. 
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[ 131 shows analytically that equation (1) may 
not be restricted to constant viscosity. 

The mass conservation equation may be 
written in the form [8,9]: 

E 2 + ; (pp) = 0. (3) 

To simplify the problem, and consistent with 
a small Reynolds number, it is assumed the 
flow is slow enough so the temperature of the 
solid and the adjacent fluid are equal. This 
allows us to treat the temperature field as 
continuous. In order to apply an average 
energy equation, it is necessary to determine 
an effective thermal conductivity of the saturated 
porous medium. Hashin and Shtrikman [17] 
derive an equation for the upper and lower 
bounds of the effective conductivity of hetero- 
geneous materials, and [l&24] discuss the 
prediction of effective conductivities. For the 
problem under consideration it is assumed that 
the effective conductivity is known, at least 
within reasonable limits, and taking an upper 
and lower bound will yield limits on the solution 
of the problem. Hence, the average energy 
equation can be written in the form [9,25]: 

aT aT a aT 
W,)eff at + P,C,,yg = G kff ax 

( > 
- (4) 

where, 

(PC,),,, = (1 - s) PSC,, + &P&p,. 

consisting with assuming same fluid and solid 
temperatures. 

The solution of the temperature distribution 
and interface position involves the simultaneous 
solution of equations (l), (3) and (4) in both the 
liquid and vapor regions subject to appropriate 
boundary conditions at x = 0, x = L, and at 
the interface. 

atx=O: Pv=Po, 

i 
case (a): T, = To (5) 

I case (b): qi. = - k,,,$ 

atx=L:P,=P,, T,,=T, (7) 

at the interface, 

x = S(t): P, = P, = P*, T, = T, = T*. (8) 

The physical properties at the interface are 
related through the equation of state, 

T* = T*(P*). (9) 

It can be shown that under certain conditions 
equation (8) can be simplified to T* = constant. 
Since P, 6 P* < P,, we obtain a restriction 
on the saturation temperature: 

T*(P,) < T*(P*) d T*(P,). (10) 

For the case where T*(P,) FZ T*(P,J we can 
assume that the saturation temperature is 
known. The conditions when this occurs is 
presented below. Substituting equation (1) into 
(2) we obtain a restriction on the pressure 
gradient, 

dP 

I I 
p/v? - . 

dx< Kd 
(11) 

When the right hand side of inequality (10) is 
small, the difference between PR and P, is 
small, and for many fluids T*(P,) 5 T*(P,).t 
We will restrict the problem to these cases and 
assume T* is a known constant. 

T* = T* (12) 

The equations in the liquid and vapor region 
are coupled by a mass balance and an interface 

BOUNDARY CONDITIONS 

The boundary conditions applicable to this 
problem are: 

t As an example, for water flowing through packed sand 
(~,v,/Kd) = 0 ( lo4 N/n?). In a porous bed of length up to 

ltn the pressure difference P, - PO is less IO3 N/n? 
For this pressure difference the saturation temperature of 
water around a pressure of one atmosphere varies by less 
than 2°C [26]. 
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energy equation. Here it is necessary to point 
out the difference between two different average 
velocities: the Darcy velocity in equation (l), 
and the average fluid velocity in the pores. 
The Darcy velocity is a velocity which when 
multiplied by the fluid density and the total 
cross sectional area of the porous medium 
yields the mass flux of the fluid. By definition, 

where Atotal = Avoids + Asolid. Since u is zero on 
the solid, the above integration is carried out 
over the void cross sectional area only. The 
secondary velocity, U, is the average fluid 
velocity in the voids. This velocity, when 
multiplied by the fluid density and the void 
cross sectional area only, yields the mass flux. 
Therefore, 

W 1 

=xL s 
u dA. (14) 

A”&& 

Combining equations (13) and (14), and intro- 
ducing, 

Avoids = ~Atota, (15) 

yields, 

v = &. (16) 

The significance of the average velocity in the 
pores becomes apparent when considering a 
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mass balance across a moving interface. Since 
the actual flow is only in the pores, the total 
liquid mass flux per unit time through the 
moving phase change interface equals 

This must equal the vapor flux leaving the 
interface. 

Substituting equations (15) and (16) into the 
above equation and dividing by Atotal yields, 

PL(&~-vL)=P”(+u”). (17) 

Rearranging (17) we obtain the mass balance, 

ho) = ~LO) - 4PL - P&f (18) 

where rit is the mass flux per unit area. Equation 
(18) states that the vapor flux leaving the porous 
medium at x = 0 equals the liquid flux entering 
at x = L plus the rate of decrease of mass in the 
system. 

The interface energy equation comes from an 
energy balance at x = S(t). Consider the energy 
convected into and out of the moving interface 

, Interface PP* 

Vapor region Liquid region 

Energy conducted in .I?, Energy conducted out. 4 
L 

Energy convected out with vapor cl IEnergy convected in with liquid 

Pv “+$’ hJT2) i$! 
p‘ k$$-~ ‘? (T*) 

FIG. 2. Diagram of energy balance at the vaporizine interface. 



48 ALAN RUBIN and SAMUEL SCHWEITZER 

with the fluid. Making the energy balance as 
shown in Fig. 2 yields, 

MT*) 

-q,-pV(+vy)hv(T*)=O. 

Substituting equation (17) and the definition of 
the latent heat of vaporization, h,,(F) = 
h,(T*) - h,(T*), into the above relation yields, 

h,,(T*) (19) 

where from Fourier’s law of heat conduction, 
q = - k(dT/dx). Equation (19) states that the 
difference between the heat conducted into and 
out of the phase change interface equals the 
energy required to vaporize the liquid. 

We now have the governing equations (l), 
(3) and (4) in the liquid and vapor regions subject 
to conditions (5H7), (12), (18) and (19). An 
exact solution of the steady-state problem and 
an approximate solution of the transient 
problem will be obtained for constant properties. 

ANALYSIS AND RESULTS 

Steady-state-constant properties 
In the constant property case it is possible to 

solve for the mass flux as a function of the inter- 
face position. Substituting equation (1) into (3) 
yields, 

d2P 
I_ = 0. 
dx2 

(20) 

Pei 3 hicP,L k 
Ldf 

where the initial P&let number is based on the 
flow rate when the interface is at x = 0, 
tii = - K(P, - Po)/Lv,. The energy equation 
(24) in each region becomes: 

Solving equation (20) for the pressure distribu- 
tion in each region subject to boundary condi- 
tions (5)-(7), and combining the result with 
equation (1) yields the mass flux, 

K (PR - P*) 
%= -; (L-s) 

K (P* - PO) 
&,= -- 

s . vv 

d28, K Pe,F(S) dtI, 
- = 0, 0 <x < S (25) -?-+ 

(21) ;; 
C dx 

dx” Pe,F(S)%=O, Sdx<l (26) 

(22) 

Substituting equations (21) and (22) into the 
mass conservation equation (18) yields a rela- 
tion for P* in terms of S. Combining this result 
with (21) we obtain, 

K (Pz? - PO) 
mv=m,= -V,(RS+ 1 -S) (23) 

where R 3 v,,/v,.. 
The energy equation (4) in each region can be 

written in the form 

k 5-c ~!!!?-=o 
t’ff dX2 

pf ‘dx 
(24) 

where tir is obtained from equation (23). We 
will solve for the temperature distribution and 
interface position in two cases: (a) constant 
temperature prescribed on the boundary x = 0, 
and (b) constant surface heat flux at x = 0. 

(a) Constant temperature boundary condition. 
Equations (5H7), (19), (23) and (24) are written 
in nondimensional form using the following 
quantities: 

h,,(T*) 
* = h,(T*) - hL(TR)’ Ov - 

T, - T” 
T, - T*’ 

where the superscript ‘%” has been dropped, 
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and F(S) = l/(RS + 1 - S). The normalized 
boundary conditions are: 

at x = 0: 0, = 0 

at x=1: 8, = 0 

c 
e,=e,= 1 

Hii ’ [H+ 1 _exp[_-‘~:~~~~]~ (33) 

atx=S I w. dx + 2% = HPe,F(S). (30) 

Equations (25) and (26) are integrated directly 
applying boundary conditions (27x29) to 
obtain the following expressions : 

It can be shown that equation (33) has only one 
real root for 0 < S < 1 which, when substituted 
into equations (31) and (32) yields the complete 
solution for the temperature distribution. 
Asymptotic solutions for S for small and large 
initial P&let numbers are: 

edx) = 
1 - exp (- icPeiFX/C) 

1 - exp (- KPeiFS/C) ’ 
0 6 x d S(31) 

exp [Pe,E( 1 - X)] - 1 

asPei+O:S = co/K 
i + 8,/K 

+ O(PeJ (33a) 

eL(x) = exp lpeiF(l _ s)] _ 1 3 s G x Q l. (32) as Pe, + cc : S = & In 
[ 

1 + 0, 
C(H + 1) 1 

Substituting these results into the energy balance 
condition (30) yields the following transcendental 
equation for the position of the interface in 
terms of the independent parameters C, K, H, Q,, 
Pei, and R. 

WW 

Typical results are presented in Figs. 3-5. 
The results in Figs. 3-10 are for water flowing 

I, Vapor region 
I PT, =0.73 

I, 
Interface 

, G.V.TL.Tf 
I 

Liquid region 
P EI -123 

O-25 0.50 0 75 

Normalized distance, x/L 

FIG. 3. Typical temperature profile for constant properties, 
steady-state, with surface temperature B,, = 14, and initial 

P&l&t number, Pe, = 41. 
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FIG. 4. Steady-state interface position, SJL. as a kmction of 
surface temperature, 0,. 

Nwrdimensionalked surface tempetoturs, &f------- 
7% r, 

FK. 5. Steady-state interface position as a function of 
surface temperature. &, for a 20 per cent uncertainty in the 

effective thermal conductivity of the vapor region. 

Surface heat flux per unit area. O,n. xIo-6w+12 

FIG. 6. Steady-state interface position, S/L, as a function of 
surface heat flux qin, for constant properlies. 
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FIG. 7. Interface position, .S(Z)/L, as a function of time, for 
constant properties with prescribed surface heat flux. yi,. 

0 O-25 0 
\1 
2~ IO 

,a. /jr‘ 

\,\ - 

‘\;\. 
05 

P = 0.0023’ 
i 4f-cm9 ‘ j\, 

& 0055 \ 

i0 075 IO0 

Normollzrd distance. x/L 

FIG. 8. Typical temperature profile comparing constant 
property to variable property caSe with surface tempera- 

ture, B0 = 5, and initial P&&t number, Pei = 2.2. 
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0 5 10 

r, 7-a 
Nondimensionolired surface temperature, 8,‘~ 

R 

FIG. 9. Interface position, S/L, as a function of surface 
temperature, O,, for constant and variable properties with 

initial Pickt number, PC,, = 2.7. 

through a porous bed of packed spheres. Typical 
values for the Prandtl number of water, the 
porosity, and L/d are taken as 2.2, 0.4 and 10“ 
respectively. Also, R = 45 for the constant 
property cases, H = 7.1, C = 1.96, and ic = 4.0 
except where otherwise noted. The reservoir 
temperature is 25”C, P, is one atmosphere, 
and the saturation temperature is assumed to be 
100°C. The properties of the solid and liquid 
are kept constant while the effect of varying the 
parameters T,, gin, Pe, k,, kvefc and vy are 
examined. 

Figure 3 shows a typical temperature distribu- 
tion in the porous medium with K = 2.24. In 
the vapor region Pe is small, conduction 
dominates over convection, and the temperature 
profile is linear. In the liquid region Pe is high, 
convection dominates, and the temperature 
distribution is exponential. 

Figure 4 presents typical curves for the 

I 

For constant properties: 

Normalized Interface position, $4 

FIG. 10. Flow rate. F, as a function of interface position, 

S/L, for constant and variable properties with initial PC&t 

number, Fe, = 2.2. 

steady-state interface position versus the pre- 
scribed boundary temperature with variable 
Pe,, and K = 2.24. The PCclCt number and 
Reynolds number are related bytPe = RePr L/d. 
The lower Pe, the farther the interface penetrates 
into the material, where the limit as Pei 4 0 is 
given by equation (33a). For large Pe,, convec- 
tion completely dominates the flow and the 
interface remains near x = 0. 

As mentioned in the section “Formulation 
of the Problem”, it is usually possible to obtain 
only upper and lower bounds for the effective 
thermal conductivity of porous media. Figure 5 
shows the effect of a 20 per cent variation 
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between the maximum and minimum k,, in 
the vapor region. For this example (K,,, = 5.72 
and K,,,~” = 4.77) when Pe = 11 and 8, = 14 
the range of the solution for the steady-state 
interface position varies by more than a factor 
of two; but for B0 < 14 and Pei greater than 
approximately 20 the variation of the interface 
position is almost negligible. In general, the 
accurate prediction of k,, is more important 
for flow with convection and conduction than 
for either convection dominated (Pei B 1) or 
conduction dominated (Pe, 6) flow. 

(b) Constant heatflux boundary condition. For 
this case it is necessary to determine the mini- 
mum surface heat flux to cause the liquid to 
boil at x = 0. This is found to be (see Appendix I), 

+ UT*) - w4.J 
1 _ ,-Per 

1 
. (34) 

atx=S d&. -- 
dx 

d 2 = HPeiF(S). (38) 

Integrating equations (25) and (26) subject to 
boundary conditions (35)-(37) we obtain the 
temperature distribution, 

e,(x) = 1 + 
CQ(H - H emPet + 1) 

F(l - eeP’a) 

x (e 
-rcPeiFx/C _ ,-.Pe,FS/C 

). 

Odx<S 

(39) 

The solution for 19,(x) is identical in form to 
equation (32). Substituting these results into 
boundary condition (38) yields the following 
transcendental equation for the interface 
position : 

Q(RS + 1 - S) (H - H eePei + 1) exp [ - KPe,S/C(RS + 1 - S)] 
(1 - eePet) 

_ H 

i [ 
1 - exp - 

Pe,(l-S) 1 

RS+l-S =. II (40) 

Defining the dimensionless quantities: 
Solving for S in terms of the independent 

8, F 
T” - TQ 
T* - TR’ 

8, = TL - TR parameters C, K, H, Q, Pei and R, and substitut- 

T* - TR’ ing equations (32) and (39) yields the complete 

Q+>l 
solution for the temperature distribution. Asymp- 
totic solutions for S for small and large initial 

Ill,” PeclCt number are: 
and using the normalized quantities of case (a), 
we obtain the governing equations in an identical as Pe,+O: S = Q - * + O(Pe.) 

Q ' 
(404 

form to equations (25) and (26). The correspond- 
ing boundary conditions are: 

as Pe,+c0: S= 

de, at x=0:= (4W 

IcPeiQ(H - H emPe, + 1) For Pei 6 1 and Pei $ 1 the interface position 
= =- (1 _ ,-Pei) - r (35) is given by equations (40a) and (40b) respectively. 

Figure 6 presents typical results for S as a 
at x = 1: 8, = 0 (36) function of heat input for initial P&let numbers 
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of order 100. For Pei small, but larger than 
about one, and qi, > ain , the interface will 
penetrate into the medium until it reaches a 
steady state at the reservoir. For large Pei 
convection dominates the flow, heat is not 
conducted into the system, and the interface 
does not penetrate. For intermediate values 
of the surface heat flux and Pe, there may be 
three steady-state interface positions The 
position where two of the solutions merge 
is called the metastable solution. One method to 
find this point is shown in the next section 
where the stability of each of the steady-state 
solutions is investigated. 

Stability analysis 
A stability analysis involves the study of the 

transient governing equations (I), (3) and (4) 
in the liquid and vapor region subject to con- 
ditions (5b), (6), (7), (12), (18)and (19). 

In the steady-state problem the mass flux 
of liquid and vapor is given by equations (21) 
and (22) respectively. For the transient case 
the liquid flux remains the same, but there is an 
additional flux c(t),, - p,) (dS/dt), which is equal 
to the rate of decrease of mass in the system. 

K (P* - PO) 
&-- 

S 
- :;(p,, - /I”) g. (41) 

\‘v 

Combining equations (IS), (21) and (41) and 
solving for P* we obtain the liquid flux, 

W’, - PO) 
%@) = - vJRS(t) + 1 - S(t)]’ 

(42) 

The vapor flux is given by equation (18). Sub- 
stituting equation (18) into (4) allows us to 
write the energy equation as: 

Using previously defined quantities and the 
following : 

we obtain the nondimensional energy equations, 

(45) 

.56x6 1. (46) 

These are subject to conditions (35)-(37), and 
the nondimensional energy balance condition, 

= 
[ 

PeiF(S) -t E g 

1 
H. (47) 

Boundary condition (47) is applied at an un- 
known, moving position. To simplify the prob- 
lem by having all the boundaries at known, 
stationary coordinates, we introduce 

S(Z) - x 
((x, 2) = - 

x - S(Z) 

w and ~(x, 2) E ~ 
1 - S(Z) 

which transforms the interface position to 
r = r] = 0. Next, we perturb the system about 
the known steady-state solution: 

k a2T, 
Uerf ax2 + 4PL. - P”)$ - W) 1 S(Z) = S,, + b exp (E) 

_ 

= (PC,),,, asY OdxdS (43) 
F(Z) = F,, + dt- 

dS SS. 
6 exp (Z) 
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where S, f(5) and g(n) are small perturbations, 
and i. is an unknown complex constant. If 
A,,,, > 0 the system is unstable; if Area, < 0 it is 
stable. The above expressions are substituted 
into the transformed energy equations and 
boundary conditions. All terms of second order 
and higher in the perturbed quantities are 
neglected, yielding two linear, ordinary dif- 
ferential equations for f(t) and g(q). Solving 
and substituting into the energy balance bound- 
ary condition, we obtain the following trans- 
cendental equation for ;1 in terms of the inde- 
pendent parameters C, JC, H, Q, Pei, R, E: E, V 
and the known steady-state solution S,,. 

medium. An approximate solution will be 
obtained applying the heat-balance integral 
technique proposed by Goodman [3,4]. Accord- 
ing to this method, we assume a temperature 
profile in the liquid and vapor regions satisfying 
boundary conditions (5t(7) and then integrate 
the governing energy equations. The advantage 
of this method is that it changes the energy 
equation from a partial to an ordinary dif- 
ferential equation; the disadvantage is that the 
energy equation is satisfied only on an average. 

In choosing a temperature profile, consider 
the case where the rate of advance of the inter- 
face is slow enough so that changes in time can 
be neglected compared to changes in the space 
coordinate. For this “quasi-steady-state” case 
the temperature is dependent on time only 

where, 

CT2 = (1 - s,$ [(!?$?y + E;+ FL = (1 - S,,) PeiFis 

W s (R - 1) Pe,F,, 

Equation (50) has been solved numerically 
by trial and error for several cases. It is found 
that when three steady-state solutions are 
possible, the middle position is unstable and 
the other two are stable. When R = 0, two 
solutions merge into one which is metastable. 

Transient problem--constant properties 
The object of this section is to determine the 

rate at which the interface advances into the 

implicity through the interface position. Hence, 
the assumed temperature profile will be taken 
in the form of the steady-state solution for 

0,(x, s) and &(x, S). 
Of particular interest is the solution of the 

transient interface position for the case where 
heat flux is prescribed on the boundary. For 
certain parameters this problem has two stable, 
steady-state interface positions. The initial con- 
ditions and time required to reach each steady- 
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state position will be determined. The norma- 
lized, transient governing equations in the 
vapor and liquid regions are (45) and (46) 
respectively, subject to boundary conditions 
(35H37) and (47). Integrating equation (45) 
from x = 0 to x = S(t) yields: 

SCi, 

X [b(s) - e,(O)] = g 
s 

$ dx. (51) 

0 

Applying Leibnitz’s rule to change the order 
of interaction and differentiation in the right 
hand side of equation (51), and substituting 
boundary conditions (35) and (37), we obtain: 

(52) 

where, 

SCfl 

ll/&) E J O,(x,Z)dx. 
0 

(53) 

where, 

$dQ = 6 h.(x, 2) dx. (55) 

Combining equations (52), (54) and (47) we 
obtain the energy balance boundary condition 
as: 

Pe,F H + 1 - ’ -,‘(‘)] - 21 _ 
x-1 

+ ,!!Y!L + V!tY 
d2 CY d2 

+ E-&+cH+; 

x (1 - e”(0)) 1 ; = 5. (56) 

Substituting the assumed temperature profiles 
of the liquid and vapor region, equations (32) 
and (39) respectively, into equations (53) (55) 
and (56) yields the following first order, ordinary 
differential equation for the interface position : 

E - exp [PeiF(l - S)] - 1 
+ (1 - exp [ -Pe,F(l - S)]} E(;i 1) + EH 

’ 
VI-S 

+ CY 
-exp(- xPeiFS/C)[l + (R - s)(M + s-1 

+ 

= (1 - exp [ - fJqF(l - S)]} 

Integrating equation (46) from x = S(Z) to A fourth order Runge-Kutta method [27] has 
x = 1, applying Leibnitz’s rule and boundary been applied in the numerical solution of the 
conditions (36) and (37) yields: above equation. 

a@, ah 

-1 I 

Typical results for the transient interface 
-- 

ax X= 1 ax s(8 
-PeJ=E(z+$) position are presented in Fig. 7. For the cases 

where three steady-state interface positions are 
(54) found, let us denote the position near x = 0 and 
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S is_ the middle position as S2_, and the one 
near the reservoir as Ssss. if the initial condition 
is such that 0 < S (t = 0) < SZss, the interface 
approaches S1 _. If Stsr < S (t = 0) d 1, the 
interface approaches S3_. When there is only 
one steady-state position near the reservoir 
end, the smaller the initial Reynolds number or 
PC& number the faster the interface penetrates 
into the medium. (See curves with qin/qmin =* 10 
in Fig. 7.) Since the assumed temperature 
prolile was taken in the form of the steady- 
state solution, it is expected that the smaller 
jdS/dtl (higher Pe,), the better the accuracy of 
these results. 

SUMMARY AND CONCLUSIONS 

An analysis of two phase flow in porous 
media has been presented. A phase change 
interface separating a vapor region from the 
liquid region has been induced by heating one 
end of the porous medium above the vaporizing 
temperature of the liquid. In general, it has been 
found that for a large initial PC&t number (con- 
vection dominated flow) the interface does not 
penetrate into the system. This is because most 
of the energy entering is convected out with 
the vapor flux. On the other hand, for low Pe, 
the interface is able to advance into the medium, 
and we obtain a linear temperature profile in 
the vapor and liquid regions. 

Several other main points arise from the 
analysis of this problem. They are: 

Limits on the solution can be obtained by 
applying upper and lower bounds on the 
effective thermal conductivity of the porous 
medium. Bounds on the solution are smaller 
for either convection dominated (Pe, $ 1) 
or conduction dominated (Pe, < 1) flow 
than for flow with both convection and con- 
duction. (See Fig. 5.) Therefore, the accurate 
prediction of the effective conductivity is 
most important for initial P&Et number 
around order one. 
If a constant temperature is prescribed on 
the boundary there is only one steady-state 

3. 

4. 

5. 

interface position; but if the heat flux is 
prescribed, there may be three steady-state 
positions, two of which are stable. 
If more than one steady-state solution is 
possible, the initial conditions determine 
which one is reached. For conduction domi- 
nated flow where the interface can penetrate 
into the medium, the smaller the initial 
P&let number the faster the system 
approaches a steady state. 
The results of the constant and variable 
property cases (see Appendix II) give the 
same effects. Therefore, to determine the 
influence of convection, conduction, and 
phase change a study of the constant property 
case is adequate. 
An evaluation of the validity of this theory 
requires a comparison with experimental 
results. To the authors’ knowledge, no such 
experiments have been reported in the litera- 
ture. An asymptotic solution for large time 
is presently being investigated to determine 
the accuracy of the heat-balance integral 
technique for the transient problem. 
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APPENDIX I 

Detcrrnination of Minimum Hrtrt Input 

First, we shall determine the heat flux per unit area neces- 

sary to raise the temperature of the system at I = 0 to the 

saturation temperature. The governing energy equation (24) 

is subject to the boundary conditions: 

dT 
at y = 0: q* = - kr.err 2; 

at Y = L: T = T, 

where y* is the heat flux necessary to raise the temperature 

at Y = 0 to T*. Integrating equation (24) yields the tempera- 

ture distribution, 

T(u) = T 
R 

_ q*(emP”X - r-““) 

+c CP,. 

Evaluating at Y = 0, and rearranging terms we obtain q* as: 

%[h,JT*) - h,,CTJl 
(,* = _ ~~~ 

(1 - eCP”) 

where h,,(T*) - h,.(T,) = C,,(T* - T,). An additional heat 

flux equal to mih,,(T*) is required to vaporize the liquid. 

Adding this heat flux to q* we obtain the minimum heat input. 

Taking limits on Pe, 

as Pe,-0: 

!L 
qnlm = ~~- 

Peihfq( T*) 
L 

T*-TR+--- 
C I 

+ 0 (Pef) 
PL 

APPENDIX II 

Steadv-state, Variable Properties, Constant Temperature 
Boundary Condition 

The purpose of this section is to compare the results of the 

constant property case to the case with temperature depend- 

ent kinematic viscosity, since v,. is the most temperature 
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sensitive pr0perty.t The procedure for a constant tempera- 

ture boundary condition is identical to that of the case with 

a constant surface heat flux [28]. 

In obtaining P* as a function of S, we take basically the 

same approach as in the constant property case, and 

substituting for P* in equation (21) yields: 

fi,= -- WP, - PO) ,~ --‘-. 64.1) 
v,(L - S) + f v,(T)dx 

0 

For convenience, the expression relating the kinematic 

viscosity, vy and temperature is taken in a polynomial 

form, $ 

v,(T) = A, + A,(T - T*) + A,(?- - T*)* 

+ A,(T - T*)’ (A.2) 

where the Ai’s are constants. 

The governing equations for the temperature are the same 

as those for the constant property case except the normalized 

flow rate, F, is not a known function of the interface position, 

Dividing h, in equation (A.l) by r+ri, and combining with 

the polynomial expression for the kinematic viscosity, we 

obtain the normalized flow rate, 

1 
F= ~__ 

1 - S + j [1/,, + e,v, (1 - 8,) 

~ (A.3) 

where, 

i- 0; 6 (1 - Bv)2 + I?; V3( 1 - Q3] dx 

t For example, the kinematic viscosity of steam at 
atmospheric pressure varies by about a factor of four 
between 100°C and 500°C whereas the thermal conductivity 
varies by less than half as much, and the specific heat varies 
only 2 per cent [26]. Other gases exhibit similar behavior. 

$ Comparing values of the kinematic viscosity for 
saturated steam tabulated in [26] shows that a second order 
polynomial approximation for v(T) has an accuracy of 
k6 per cent for the temperature range 10&8OO”C whereas 
the third order poiynomial, equation (A.2), is accurate to 

+ 2 per cent in the same temperature range. 

With @Ax) known from equation (31), the integral in the 

above expression may be integrated to yield: 

_I_ 
B,l/,(e’rS - 4ezS + 2ZS + 3) 

2Z(ezs - 1)’ 

8,F’a(2@ZS - qeZZS - 18eZS - 11 - 6ZS) 
+ ______._.. 

6Z(ezs - I )j (A.4) 

where Z z tiPe$‘/C’. 0~1~ for VI = Vz = V, = 0, which is 

equivalent to vy = constant, one may obtain F as an explicit 

function of S. We obtain another equation in F and S by 

substituting the normalized temperatures from equations 

(31) and (32) into the interface energy equation (30). 

7 = [exp (kPe#S/C) - I] 

1 
-- 1 H + 1exp [ - Pe,F( I - S)] j 

(A.3 

Equations (A.4) and (A.5) are two, coupled transcendental 

equations for F and S. A solution is obtained by applying a 

modified Newton-Raphson iteration technique 1291. The 

substitution of F and S into equations (31) and (32) yields 

the complete solution for the temperature distribution. 

Figure 8 presents a comparison of a typical temperature 

profile of the constant property and variable property cases. 

tn both the liquid and vapor regions the P&let number is 

small: hence the temperature distribution is linear. Figures 

9 and 10 compare the two cases for the steady-state interface 

position and the normalized flow rate respectively. These 

results show that the constant property case predicts the 

same effects as the variable property case even if vv/vL varies 
by a factor of 16 for constant properties. This is readily 

seen in Fig. 8. Therefore, since we are mamly interested in 

studying the influence of convection, conduction, and phase 

change on the interface position, the constant property 

case yields adequate results for this purpose. 

TRANSFERT THERMIQUE DANS UN MILIEU POREUX AVEC 
CHANGEMENT DE PHASE 

R&rm~-Un liquide. provenant dun reservoir a temperature constante traverse un milieu poreux. A 
l’extremite opposee la temperature du systeme est portee au-dessus du point d’tbullition du liquide en 
imposant soit une tem@rature constante soit un flux thermique constant. Ceci provoque la propagation 



60 ALAN RUBIN and SAMUEL SCHWEITZER 

d’un front d’tvaporation dans le materiau avec separation en une region de vapeur et une region de 
liquide. L’objet de cet article et d’analyser le systtme en recherchant l’importance relative de la convection 
par rapport a la conduction et en dtgageant les principaux paramttres influencant la distribution de 
temperature et la position de l’interface. Des solutions exactes sont obtenues pour le probleme permanent 
ou (1) les proprietts sont constantes et (2) la densite et la viscositt de la vapeur est variable. On obtient 
aussi une solution approchee du problbme transitoire avec proprietes constantes en appliquant la 

technique integrale du bilan thermique. 

WARMETRANSPORT IN PORijSEN MEDIEN MIT PHASENUBERGANG 

Zussmmenfassung~~Fliissigkeit aus einem Reservoir mit konstanter Temperatur gelangt in ein poroses 
MateriaLAuf der freien Seite wird die Temperatur des Systems tiber der Siedetemperatur der Fliissigkeit 
gehalten durch Aufpragen einer konstanten Temperatur oder eines konstanten Warmeflusses. Dies ruft 
eine Verdampfungsfront hervor, die in das Material vordringt und so einen Dampfbereich von dem 
Fliissigkeitsbereich abtrennt. In dem Artikel sol1 dieses System untersucht werden: die Bedeutung der 
Konvektion in Verhlltnis zur Wlrmeleitung, die Hauptparameter, die die Temperaturverteilung beein- 
influssen, und die Lage der Phasengrenze. 

Exakte Lijsungen wurden fur das stationare Problem gefunden. wohei (I) dte Eigenschaften konstant 
sind und (2) Dichte und Viskositat des Dampfes verlnderlich sind. Auch wurde eine Naherungslosung fur 
das instationlre Problem gefunden. bei konstanten Eigenschaften, durch Anwendung einer integralen 

Energiebilanz. 

IIEPEHOC TEHJIA B HOPBCTbIX CPEAAX HPH HAJIkI=IHH @A30BOFO 
M3MEHEHHH 

A.EEOT~qH~-~H~KOCTbI43 pe3epByapaC IIOCTORHHOfi TeMnepaTypOti IIOCTyIIaeT B IIOpHCTyI0 

Cpefiy. Ha IIpQTMBOnOnOXHOM KOHqe TeMIIepaTypa CHCTeMbI BbIIIIe TeMIIepaTypbI KHIIeHHR 

N~~~K~CTEI, 9To fiocTaraeTc2 no~gepxameM n0cT0f1H~0# TeMnepaTypbI RJIR IIOCTORHHO~O 

TennoBoro noToKa. 3To BbI3bIBaeT pacnpocTaHeme @pofiTa lrcnapemu BHYT~I~ MaTepnana, 

OT~eJIm 06naCTb napa OT o6nacTa ?KH~~KOCTM. B HaHHOti pa6oTe CTaBmOCb UenbIo npo- 

aHa~ll3IlpOBaTb3TyCMCTeMy,~CC~e~y~OTHOCHTeJIbHyH)BJIaH(HOCTbKOHBeK~liM~OCpaBHeH1IH) 

C KOHAyKqlleii A OCHOBHbIe IIapaMeTpbI, Bmmo~xe Ha pacnpeAeneHae TewnepaTypbr II 

nonomeH2fe rpaHnqbI pasaena @as.nonyseHbI TowbIe pemeHMtl AJIR cTaqxoHapHoti aagasa, 

rge (1)CBOtiCTBa RBJIRIOTCR IIOCTOHHHbIMW, a (2) IIJIOTHOCTb II BRBKOCTb IIapa IIepeMeHHbIMH. 

nOJIyqeH0 IIpEI6JIHFKeHHOe pemeHIle HeCTa~HOHapHOti 3aAaW C IIOCTOHHHbIMli CBOiCTBaMH 

msTerpnposaHaa 6anaHca Tenna. 


