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Abstract—Liquid from a constant temperature reservoir enters a porous medium. At the opposite end
the temperature of the systemis raised above the evaporation point of the liquid by imposing either a constant
temperature, or a constant heat flux. This causes an evaporation front to propagate into the material,
separating a vapor region from the liquid region. The object of the paper is to analyze this system, investigat-
ing the relative importance of convection versus conduction, and the main parameters influencing the
temperature distribution, and the interface position. Exact solutions are obtained for the steady-state
problem where (1) properties are constant, and (2) density and viscosity of the vapor are variable. Also,
an approximate solution of the constant property, transient problem is obtained by applying a heat-balance
integral technique.

NOMENCLATURE u, actual velocity in pores;
C,. specific heat; v,  Darcy velocity;
d, average pore diameter; x,  distance cporc%u}ate;
g,  acceleration of gravity; «, therma}l diffusivity; )
h,  enthalpy; B,  coefficient of thermal expansion;
h,, latent heat of vaporization; €,  porosity; .
k,  thermal conductivity; n, transformed coordinate = x — S/1 — §;
K, permeability; #, dimensionless temperature;
L, length of porous section; K, V{SCOSlt){; ) )
11,  mass flow rate per unit area = pv; v, kinematic viscosity = u/p;
P, pressure; g,  transformed coordinate = S — x/S;
Pe, Péclét number = mC,L/k = RePrL/d; p,  density.
Pr, Prandtl number = uC/k;

g, heat flux per unit area; Dimensionless quantities

Ra, Rayleigh number = gLKB AT /av; G, Cpr/Cpys
Re, Reynolds number = puvd/u; E, ('pCp.)Le“-/pLCpL;
S, interface position; F, g
t, time; H, e (T*)/[h(T*) — h(TR)];
T, temperature; R, vy/v;
t, t(LPp LCpi/kLoe)s
* Presented at the International Symposium on Two- v, CP)V“‘/ p "CPV;
Phase Systems. Technion City, Haifa, Israel 29th August- Y, pL/PV;
2nd September, 1971. K, Kk /Ky
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Subscripts
eff, effective property;
sat, saturated porous medium;
steady state;
i, initial value (before interface advances
into medium);
R, reservoir (x = L);
£, fluid (liquid or vapor);
L

,  liquid;
V, vapor;
S, solid.
Superscripts

* saturation conditions;
-~ average quantity;
%, dimensionless quantity.

INTRODUCTION

MosT of the previous work on heat transfer in
porous media deals with a single phase, either
liquid or gas, flowing through the material
However, in certain problems involving trans-
piration cooling and heat shields there may be
regions of different phases separated by a
moving phase-change interface. In the problem
discussed in [1] and [2] liquid from a constant
temperature reservoir flows into one end of a
porous medium. At the opposite end of the

either a surface heat flux or a constant tempera-
ture, where the maximum temperature is less
than the boiling point of the liquid. If this
restriction is relaxed, an evaporation front,
separating a vapor region from the liquid
region, may propagate into the medium. The
object of this paper is to analyze this system,
showing the relative importance of convection
versus conduction, and the main parameters
influencing the temperature distribution, and
interface position. The material is treated as
a continuum, neglecting the pore structure,
in order to apply “average” governing equations.
The one-dimensional problem is solved neglect-
ing radiation and natural convection and
assuming a small, appropriately defined, Rey-
nolds number so that Darcy’s law may be
applied. Exact solutions of the steady-state
problem are obtained for (1) constant properties,
and (2) variable density and viscosity of the
vapor. An approximate solution of the transient
problem with constant properties is obtained
using the heat-balance integral technique pro-
posed by Goodman [3, 4] and applied suc-
cessfully in [5-7].

For the case with temperature prescribed on
the boundary, we find one steady-state interface
position which propagates farther into the

/ Interface 7% p*

Vapor region

R, =constant

Heat flux—=

q"" constant

Vapor flux, my, () =t

X=S (9

Liquid region Reservoir
7, = constant
# = constant
~p—Liquid flux, m, (#)
%.5_
!
XL

Fi1G. 1. Diagram of physical model.
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medium as the boundary temperature is in-
creased. For constant surface heat flux there
can be either one or three steady-state interface
positions depending on the parameters of the
problem. A stability analysis shows that for the
later case the middle position is unstable. The
solution of the transient problem shows the
initial conditions determining which stable,
steady-state interface position is reached.

FORMULATION OF THE PROBLEM

A schematic diagram of the problem is
presented in Fig. 1. Liquid, at temperature T
and pressure P, is forced through a porous
medium by an imposed pressure gradient,
Py > P,. The liquid is assumed to flow from an
infinite reservoir at x = L so that T, and Py
may be assumed constant. It is assumed that
the mass is removed instantly at x = 0, and the
pressure P, is constant. Also, the pressure
difference due to surface tension effects across
the liquid—vapor interface is assumed small
compared to (Pgx — P,) so that P(x = §*) =
P(x = S7). For a porous structure with a small
radius of curvature this discontinuity in pressure
may have to be included. Radiation and natural
convection are neglected compared to conduc-
tion and forced convection. Natural convection
can be neglected if an appropriately defined
Rayleigh number, Ra = gLKB AT/ug,v,, is
small.}

If a constant temperature, T, greater than
the saturation temperature of the liquid at
pressure Py, is applied at x = 0, an evaporation
interface will propagate into the medium,
separating a vapor region from the liquid
region. If a sufficiently high constant heat flux
per unit area. g;, is applied at x =0 in the
direction opposite the mass flux, an evaporation
interface will also propagate into the medium.

t According to Scheidegger [8], for convection currents
to develop in porous media a temperature gradient greater
than 4n2u_, vf/I?Kgp is necessary. Experiments by Com-
barnous and LeFur [9] show that for Ra < 40 natural
convection is negligible. In the examples presented in this
paper Ra < 1.

For both of these cases, the temperature and
pressure at the interface are the saturation
temperature and pressure, 7* and P* respec-
tively, where P, < P* < Pp. It is assumed that
the maximum temperature in the material is
less than the melting temperature of the solid.
For simplicity the one-dimensional problem is
treated.

Because of the complex geometry it is im-
possible to formulate the problem in terms of
the actual fluid flow in the pores. As in most
studies of flow through porous media, the
heterogeneous solid—fluid system is treated
as a continuum, which allows average or
“macroscopic” governing equations to be
applied.

The equation of flow known as Darcy’s law,

V= — Kdp (1)

u dx

was first deduced experimentally in 1856 [10].
Since then there have been several attempts to
derive equation (1) analytically starting with
the Navier—Stokes equations [11-13]. These
“derivations” show that Darcy’s law is restricted
to flow in which viscous forces dominate over
nertia forces. We assume a small, appropriately
defined Reynolds number,

Re = |pvd/u| < 1 )

so that equation (1) may be applicable.
For the transient problem, a modified Darcy’s
law is sometimes used [9, 14] in the form

10P

T pox

o v

a kYT
If the viscous time K/v is small, except for the
first fraction of a second, the term dv/dt may be
neglected.t Although Darcy’s law was deter-
mined empirically with constant viscosity, it is
often assumed valid for variable viscosity as
well. Wooding [15, 16] uses equation (1) with
temperature dependent viscosity, and Dybbs

+ For example, a typical value for K/v for water flowing
through packed sand is about 1077 s.
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[13] shows analytically that equation (1) may
not be restricted to constant viscosity.

The mass conservation equation may be
written in the form [8,9]:

Opy

0
&—gt—‘f-'a*;([)fl}):o. (3)

To simplify the problem, and consistent with
a small Reynolds number, it is assumed the
flow is slow enough so the temperature of the
solid and the adjacent fluid are equal. This
allows us to treat the temperature field as
continuous. In order to apply an average
energy equation, it is necessary to determine
an effective thermal conductivity of the saturated
porous medium. Hashin and Shtrikman [17]
derive an equation for the upper and lower
bounds of the effective conductivity of hetero-
geneous materials, and [18-24] discuss the
prediction of effective conductivities. For the
problem under consideration it is assumed that
the effective conductivity is known, at least
within reasonable limits, and taking an upper
and lower bound will yield limits on the solution
of the problem. Hence, the average energy
equation can be written in the form [9, 25]:

oT oT ¢ oT
e + p;Cpo—— = _<keff a) (4)

(PCp)e 3 — By
where,

(pCp)eff = (1 - 8) psts + 8prpj'

consisting with assuming same fluid and solid
temperatures.

The solution of the temperature distribution
and interface position involves the simultaneous
solution of equations (1), (3) and (4) in both the
liquid and vapor regions subject to appropriate
boundary conditions at x = 0, x = L, and at
the interface.

BOUNDARY CONDITIONS

The boundary conditions applicable to this
problem are:

atx =0: P, = P,,

case(a): T, = T, (5)
oT,

case (b): gin = — kegr—5— (6)
0x

atx =L: P, =Py, T, =Tx 7N

at the interface,
x=80):P, =P, =P*T =T, =T* 8

The physical properties at the interface are
related through the equation of state,

T* = T*P*). 9)

It can be shown that under certain conditions
equation (8) can be simplified to T* = constant.
Since P, < P* < Pp, we obtain a restriction
on the saturation temperature:

T*(Py) < THP*) < T*(PpR) (10)

For the case where T*(P,) ~ T*(Pg) we can
assume that the saturation temperature is
known. The conditions when this occurs is
presented below. Substituting equation (1) into
(2) we obtain a restriction on the pressure
gradient,

dpP

dx

Pevf

Kd

When the right hand side of inequality (10) is
small, the difference between Pp and P, is
small, and for many fluids T*(Py) > T*(Pg).}
We will restrict the problem to these cases and
assume T* is a known constant.

T* =T* (—PR B PO)
= )

The equations in the liquid and vapor region
are coupled by a mass balance and an interface

: (11)

(12)

t As an example, for water flowing through packed sand
(p,v,/Kd) = 0 (10* N/m?). In a porous bed of length up to
Im the pressure difference Pz — P, is less 10° N/m?
For this pressure difference the saturation temperature of
water around a pressure of one atmosphere varies by less
than 2°C [26].
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energy equation. Here it is necessary to point
out the difference between two different average
velocities: the Darcy velocity in equation (1),
and the average fluid velocity in the pores.
The Darcy velocity is a velocity which when
multiplied by the fluid density and the total
cross sectional area of the porous medium
yields the mass flux of the fluid. By definition,

1
v udA
Alolal J

Atotal

(13)

where A, = Avoias + Asoria- SINCE U IS ZEro on
the solid, the above integration is carried out
over the void cross sectional area only. The
secondary velocity, u, is the average fluid
velocity in the voids. This velocity, when
multiplied by the fluid density and the void
cross sectional area only, yields the mass flux.

Therefore,
1
il = A J udA.

(14)

voids
voids

Combining equations (13) and (14), and intro-
ducing,

A = SAto!al (15)

voids
yields,
v = ¢l

(16)

The significance of the average velocity in the
pores becomes apparent when considering a

Vapor region

Energy conducted in, q,

Energy convected out with vapor
ds _
R legi—Y) hv(r‘)

S R B
e
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mass balance across a moving interface. Since
the actual flow is only in the pores, the total
liquid mass flux per unit time through the
moving phase change interface equals

as
Pr <a - “L) Avoids-

This must equal the vapor flux leaving the
interface.

ds . ds .
PL (a‘; - uL> Avoids = Pv (a? - uV) Avoids‘

Substituting equations (15) and (16} into the
above equation and dividing by A4,,, yields,

ds ds
PL <8a? = UL> = PV<8’6? - UV)- (17)

Rearranging (17) we obtain the mass balance,

ds
ry(t) = () — elor, — Pv)a (18)

where m is the mass flux per unit area. Equation
(18) states that the vapor flux leaving the porous
medium at x = 0 equals the liquid flux entering
at x = L plus the rate of decrease of mass in the
system.

The interface energy equation comes from an
energy balance at x = S(¢). Consider the energy
convected into and out of the moving interface

/ Interface 7.%%

L iquid region

Energy conducted out, qL

Energy convected in with liquid
ds_ *
p, €G-y (%)

F1G. 2. Diagram of energy balance at the vaporizing interface.
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with the fluid. Making the energy balance as
shown in Fig. 2 yields,

) h(T*)

ds
qr + pr. s_(ﬂ = U

das
=4y — PV(SE - UV) hy(T*) = 0.

Substituting equation (17) and the definition of
the latent heat of vaporization, h,(T*) =
hAT*) — h,(T*), into the above relation yields,

o, 0T,
= }‘ —_
at x S(t) Teff 8 Verr Ox
ds
= {r, <SE - UL) hfg(T*) (19)

where from Fourier’s law of heat conduction,
g = —k(dT/dx). Equation (19) states that the
difference between the heat conducted into and
out of the phase change interface equals the
energy required to vaporize the liquid.

We now have the governing equations (1),
(3) and (4) in the liquid and vapor regions subject
to conditions (5)(7), (12), (18) and (19). An
exact solution of the steady-state problem and
an approximate solution of the transient
problem will be obtained for constant properties.

ANALYSIS AND RESULTS

Steady-state-—constant properties
In the constant property case it is possible to
solve for the mass flux as a function of the inter-
face position. Substituting equation (1) into (3)
yields,
d’p
dx?
Solving equation (20) for the pressure distribu-
tion in each region subject to boundary condi-
tions (5){7), and combining the result with
equation (1) yields the mass flux,

- 0. (20)

_ _K®Pa—PY
A ey
M, = _Ker (PT = Po), (22)

v,, S

Substituting equations (21) and (22) into the
mass conservation equation (18) yields a rela-
tion for P* in terms of S. Combining this result
with (21) we obtain,

_ K (Pg—Py)

T TV (RS¥1-9 @3)

my = my,

where R = v, /v, .
The energy equation (4) in each region can be
written in the form

d2T . dT
off 4yZ CP,mf'd? =0

where ri1, is obtained from equation (23). We
will solve for the temperature distribution and
interface position in two cases: (a) constant
temperature prescribed on the boundary x = 0,
and (b) constant surface heat flux at x = 0.

k (24)

(a) Constant temperature boundary condition.
Equations (5)7), (19), (23) and (24) are written
in nondimensional form using the following
quantities:

§E§n ,i‘::—x~, CECPL, KEkrerf,
L L CPV Verr
:__}}ﬁgl,__ 6. = TO B TV
Th(TH —h(T) VT T, - T*
.- T; T, — T* h
0, =k R =02 "~ F=_t
e A L T
Pe,-z—~——micPLL
kLefr

where the initial Péclét number is based on the
flow rate when the interface s at x =0,
m; = — K(Pg — Py)/Lv;. The energy equation
(24) in each region becomes:

d*9, x Pe,F(S)d8,
b bl A <£x<
=t ¢ . 0, 0<x<S (25
dZ
Ef*’ PeiF(S)% =0, S<x<1 (20
dx* dx

where the superscript “E” has been dropped,
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and F(S)=1/(RS + 1 — §). The normalized
boundary conditions are:

at x=0: 0,=0 27)
at x=1: 0, =0 (28)
0, =06, =1 (29)
atx =S 1d9, 6,do,
—L + 2—Y — HPe,F(S).
= * dx e,F(S). (30)

Equations (25) and (26) are integrated directly
applying boundary conditions (27}-(29) to
obtain the following expressions:

8,(x) = 1 — exp(—«xPe,FX/C)
" 1 — exp (—«xPeFS/C) ’

exp [Pe,E(1 — X)] -1
exp[PeF(1 - 8)] =1 °

Substituting these results into the energy balance
condition (30) yields the following transcendental
equation for the position of the interface in
terms of the independent parameters C, K, H, 6,
Pe;, and R.

0<x <83

S<x<1.(32)

6.(x) =

by Pe; kS 1
c \"Plcrs +1-9| '

1

Pe(1 — S)
1— I8 T
e"p[ RS+1—S]

It can be shown that equation (33) has only one
real root for 0 < S < 1 which, when substituted
into equations (31) and (32) yields the complete
solution for the temperature distribution.
Asymptotic solutions for S for small and large
initial Péclét numbers are:

H+ 33

0o/x
Pe; . = .
as Pe; > 0:S 1+ O/% + O(Pe;) (33a)
C 0
as Pe;, > 0: 8 xPe, n[ +C(H+1)]

+0 (PL(?) (33b)

Typical results are presented in Figs. 3-5.
The results in Figs. 3-10 are for water flowing
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Fi1G. 3. Typical temperature profile for constant properties,
steady-state, with surface temperature 8, = 14, and initial
Péclét number, Pe; = 41.
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Normalized interface position, S/Z
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L Re;= T x 1073 Pey= 77, g = 191 x 10°Wim?
2 Re,= 9 x 1073 Pe= 99, o = 246 x 10° Wim?
3. Re, = 11 x 1073, Pe; = 121, g = 300 x 10° W/m?
4. Re; = 12 x 1072, Pe, = 132, g = 328 x 10° W/m?
5. Re; = 13 x 1073, Pe; = 143, gp, = 355 % 10° Wm?
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FiG. 9. Interface position, S/L, as a function of surface
temperature, @, for constant and variable properties with
mitial Péclét number, Pe; = 2-2.

through a porous bed of packed spheres. Typical
values for the Prandtl number of water, the
porosity, and L/d are taken as 2:2, 04 and 10*
respectively. Also, R =45 for the constant
property cases, H = 7'1, C = 196, and x = 40
except where otherwise noted. The reservoir
temperature is 25°C, P, is one atmosphere,
and the saturation temperature is assumed to be
100°C. The properties of the solid and liquid
are kept constant while the effect of varying the
parameters T,, g;,, Pe, ky, k. and v, are
examined.

Figure 3 shows a typical temperature distribu-
tion in the porous medium with k = 2-24. In
the vapor region Pe is small, conduction
dominates over convection, and the temperature
profile is linear. In the liquid region Pe is high,
convection dominates, and the temperature
distribution is exponential.

Figure 4 presents typical curves for the

1000 T
For constant properties:

‘X
} . LT VL
\
\
\
\\ Variable properties
\ {water vapor)

mL / m/‘

\.
Omoi
:1
|

000

Normalized flow rate, F

000! L
‘o 05 10

Normalized interface position, S/Z

F1a. 10. Flow rate, F, as a function of interface position,
S/L, for constant and variable properties with initial Péclét
number, Pe; = 2:2.

steady-state interface position versus the pre-
scribed boundary temperature with variable
Pe,, and x = 2:24. The Péclét number and
Reynolds number are related byt Pe = RePr L/d.
The lower Pe; the farther the interface penetrates
into the material, where the limit as Pe; - 0 is
given by equation (33a). For large Pe;, convec-
tion completely dominates the flow and the
interface remains near x = 0.

As mentioned in the section “Formulation
of the Problem”, it is usually possible to obtain
only upper and lower bounds for the effective
thermal conductivity of porous media. Figure 5
shows the effect of a 20 per cent variation
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between the maximum and minimum k,,, in
the vapor region. For this example (x,,,, = 572
and x,;, = 477) when Pe = 11 and 6, = 14
the range of the solution for the steady-state
interface position varies by more than a factor
of two; but for 6, < 14 and Pe, greater than
approximately 20 the variation of the interface
position is almost negligible. In general, the
accurate prediction of k., is more important
for flow with convection and conduction than
for either convection dominated (Pe; > 1) or
conduction dominated (Pe; <) flow.

(b) Constant heat flux boundary condition. For
this case it is necessary to determine the mini-
mum surface heat flux to cause the liquid to
boil at x = 0. This is found to be (see Appendix I),

Pek;
— iVLefr h *
qmm LCPL |: fg( T )

hy(T*) — hL(TR)]' (34)

+ 1 —e Pe

0, =0, =1

do, _ = HPe,F(S). (38)

(37

atx=3S§

Integrating equations (25) and (26) subject to
boundary conditions (35){37) we obtain the
temperature distribution,

COH — He P + 1)

BV(X) = l + I:(l _ e—Pe;)
x (e~xPe,~Fx/C _ e—xPe,»FS/C)_ (39)
0<x<S

The solution for 6,(x) is identical in form to
equation (32). Substituting these results into
boundary condition (38) yields the following
transcendental equation for the interface

{Q(RS +1—S8)(H—-He " + 1) exp [— kPe,S/C(RS + 1 — §)]

(1 —e P

position:
_ H}

Pe(l —S) | _

Defining the dimensionless quantities:

GETV—TR O:TL_TR
v T*_’I}(’ L—T*_TRa
QE&>1

Amin
and using the normalized quantities of case (a),
we obtain the governing equations in an identical
form to equations (25) and (26). The correspond-
ing boundary conditions are:

~do,
at x = OE
kPe,Q(H - He o + 1)
- e =-I (3

at x=1:0,=0 (36)

Solving for S in terms of the independent
parameters C, x, H, Q, Pe; and R, and substitut-
ing equations (32) and (39), yields the complete
solution for the temperature distribution. Asymp-
totic solutions for S for small and large initial
Peclét number are:

Q-1
Q

C 1
| o — |-
KPe, nQ+ (Pef)
{40b)
For Pe; <1 and Pe; > | the interface position
is given by equations (40a) and (40b) respectively.
Figure 6 presents typical results for S as a
function of heat input for initial Péclét numbers

as Pe;—- 0. §=

+ O(Pe;) (40a)

as Pe;— w: S=
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of order 100. For Pe; small, but larger than
about one, and ¢;, > ¢, , the interface will
penetrate into the medium until it reaches a
steady state at the reservoir. For large Pe;
convection dominates the flow, heat is not
conducted into the system, and the interface
does not penetrate. For intermediate values
of the surface heat flux and Pe; there may be
three steady-state interface positions The
position where two of the solutions merge
is called the metastable solution. One method to
find this point is shown in the next section
where the stability of each of the steady-state
solutions is investigated.

Stability analysis

A stability analysis involves the study of the
transient governing equations (1), (3) and (4)
in the liquid and vapor region subject to con-
ditions (5b), (6), (7), (12), (18) and (19).

In the steady-state problem the mass flux
of liquid and vapor is given by equations (21)
and (22) respectively. For the transient case
the liquid flux remains the same, but there is an
additional flux «(p, — p,)(dS/dt), which 1s equal
to the rate of decrease of mass in the system.

. K (P* — Py)
My = — ————0——

vy S

ds

— ey — pv)

i (41

Combining equations (18), (21) and (41) and
solving for P* we obtain the liquid flux,

K(Pg — Py)
v [RS@) + 1 = S(O)]

my(t) = — (42)

The vapor flux is given by equation (18). Sub-
stituting equation (18) into (4) allows us to
write the energy equation as:

T, ds oT,
kUeff Ex—z + [g(pL - pu)n&t— - mL(t):I CpV )
= (PC pouse (3aT 0<x<S (43)

2T, oT,
Lers asz - mL(t) Cvaé:x',
5T
S (P ) 5 S<x<L @8

Using previously defined quantities and the
following:

y=fr g- Gy P
pv pLCpL /)uCpV
- t
- LZPLCPL/kLetr

we obtain the nondimensional energy equations,

%0, «k ( ds
! el =198 4 pers
6x2+C[b\ y ) di o |5
e hcxss @)
CY ot
220, 00, 00,
g F)Zt = E—L S<x<l (46
- + Pe;F(S) e Eé‘i’ X (46)

These are subject to conditions (35)-(37), and
the nondimensional energy balance condition,

.. 08 100
atx =503 - e
= [PeiF(S) + s%:l H. 47

Boundary condition (47) is applied at an un-
known, moving position. To simplify the prob-
lem by having all the boundaries at known,
stationary coordinates, we introduce

S@) — x
S()

x — S()
1 — S@)

E(x,b) = and n(x, 1) =

which transforms the interface position to
¢ =5 = 0. Next, we perturb the system about
the known steady-state solution:

S(t) = S, + Jexp (AD)

d
F@) = F — ) t
® + asls. o exp (A) ]
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0,(E,1) = 0y,.(8) + f(&) exp (4)
0.(n,8) = 0.,,(n) + g(n) exp (/i)

where 0, (&) and g(n) are small perturbations,
and 2 is an unknown complex constant. If
Arem > O the system is unstable; if 4 ,; <0 it is
stable. The above expressions are substituted
into the transformed energy equations and
boundary conditions. All terms of second order
and higher in the perturbed quantities are
neglected, yielding two linear, ordinary dif-
ferential equations for f(&) and g(n). Solving
and substituting into the energy balance bound-
ary condition, we obtain the following trans-
cendental equation for A in terms of the inde-
pendent parameters C, x, H, Q, Pe, R, Y, E, V
and the known steady-state solution S_.

(49)
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medium. An approximate solution will be
obtained applying the heat-balance integral
technique proposed by Goodman [ 3, 4]. Accord-
ing to this method, we assume a temperature
profile in the liquid and vapor regions satisfying
boundary conditions (5}(7) and then integrate
the governing energy equations. The advantage
of this method is that it changes the energy
equation from a partial to an ordinary dif-
ferential equation; the disadvantage is that the
energy equation is satisfied only on an average.

In choosing a temperature profile, consider
the case where the rate of advance of the inter-
face is slow enough so that changes in time can
be neglected compared to changes in the space
coordinate. For this “quasi-steady-state” case
the temperature is dependent on time only

(50)

Pe,F w o1 +e72) u| 20We W2+a)
== == L= H(W — gA
(1 - S“)(l — C_”){</‘LE )[ 1 — e—2¢r 2 E}_(l _ c—Zo') + ( & )
2 2 y
e 4 ﬂ—D é+r - é—r e |- 27A W—,+1—D elt4/2)=l
Vi 2 2 Vi
i [/ 4 A =0
— - _ -2t
KSSS_<2+‘L'> (2 r)e ]
where,

02 = (1 - Sss)2

_PeiFssz+
A

KPe,F._\? K/
2 = Sz 1% ss .
‘ [( 2C > +cy]’
kS . PeF
A = 88 1° ss ;
C

E/’} :

u=(1 =S, PeF>

W = (R — 1) Pe,F

gY — 1)

D=1
+ |4

Equation (50) has been solved numerically
by trial and error for several cases. It is found
that when three steady-state solutions are
possible, the middle position is unstable and
the other two are stable When / =0, two
solutions merge into one which is metastable.

Transient problem—constant properties
The object of this section is to determine the
rate at which the interface advances into the

implicity through the interface position. Hence,
the assumed temperature profile will be taken
in the form of the steady-state solution for
0,(x, S) and 8,(x, S).

Of particular interest is the solution of the
transient interface position for the case where
heat flux is prescribed on the boundary. For
certain parameters this problem has two stable,
steady-state interface positions. The initial con-
ditions and time required to reach each steady-
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state position will be determined. The norma-
lized, transient governing equations in the
vapor and liquid regions are (45) and (46)
respectively, subject to boundary conditions
(35(37) and (47). Integrating equation (45)
from x = 0 to x = S(f) yields:

0, 8, « ds
v 2 Sl PeF + el ——
3% |5 6x0+C[ . +"’( )dt}
sO
20,
X [049) = 0,0)] = o | Frdx 61)

Applying Leibnitz’s rule to change the order
of interaction and differentiation in the right
hand side of equation (51), and substituting
boundary conditions (35) and (37), we obtain:

where,

1
(D) = 504(x, f)dx. (55)
N0)
Combining equations (52), (54) and (47) we
obtain the energy balance boundary condition
as:

1-0,0)] a6,
PeF|H+1 - —2 - L
el l: * C ] ax x=1
v, |V ddy
di CY di

|4 1

dS I
0 — -
By +T 4+ = PeF + ¢ 1—— ds x (1 OV(O)):I K’ (36)
ax S(A) C dt
vk (dy, dS
x [1—6,0)] = ﬁ(d—tp = a) (52 Substituting the assumed temperature profiles
of the liquid and vapor region, equations (32)
where, and (39) respectively, into equations (53), (55)
sd and (56) yields the following first order, ordinary
Uit) = j Oy(x,i) dx. (53) differential equation for the interface position:
0
EPe,RF*(1 — S) ER-1)
- ‘ 1- —PeF(1 — SI{——— + ¢H
H: exp [Pe,F(1 — S)] — 1 {1 = exp [ —PeF( 1) Pe; e
rs 2C
+ Y exp(— KZPe,FS/C)l:l + (R — S)(FS + W@,):I
1\ 2V(R - 1)CN]dsS
1 - — kPeFS/C)] |61 — = - - g
+ KPeiE[ exp (= kPekS/O)] |}< r)*t YiPe; :IH] di
r — kPeFS/C
~ {1 — exp[—Pe;F(1 — S)]}{ exp ( '; afS/I0) _ PeiFH} — PeF.  (5T)

Integrating equation (46) from x = S() to
x = 1, applying Leibnitz’s rule and boundary
conditions (36) and (37) yields:

dl//L

% Bl _ PeF = E( )
s & d

0X |x=1 T ox
(59

A fourth order Runge—Kutta method [27] has
been applied in the numerical solution of the
above equation.

Typical results for the transient interface
position are presented in Fig. 7. For the cases
where three steady-state interface positions are
found, let us denote the position near x = 0 and
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Si the middle position as S,., and the one
near the reservoir as S, . If the initial condition
is such that 0 < S (t = 0) < §,,,, the interface
approaches S, If S, <S (t=0)<1, the
interface approaches S;,. When there is only
one steady-state position near the reservoir
end, the smaller the initial Reynolds number or
Péclét number the faster the interface penetrates
into the medium. {See curves with ¢/, = 10
in Fig. 7) Since the assumed temperature
profile was taken in the form of the steady-
state solution, it is expected that the smaller
!dS/dt[ (higher Pe;), the better the accuracy of
these results.

SUMMARY AND CONCLUSIONS

An analysis of two phase flow in porous
media has been presented. A phase change
interface separating a vapor region from the
liquid region has been induced by heating one
end of the porous medium above the vaporizing
temperature of the liquid. In general, it has been
found that for a large initial Péclét number (con-
vection dominated flow) the interface does not
penetrate into the system. This is because most
of the energy entering is convected out with
the vapor flux. On the other hand, for low Pe,
the interface is able to advance into the medium,
and we obtain a linear temperature profile in
the vapor and liquid regions.

Several other main points arise from the
analysis of this problem. They are:

1. Limits on the solution can be obtained by
applying upper and lower bounds on the
effective thermal conductivity of the porous
medium. Bounds on the solution are smaller
for either convection dominated (Pe; > 1)
or conduction dominated (Pe; < 1) flow
than for flow with both convection and con-
duction. (See Fig. 5.) Therefore, the accurate
prediction of the effective conductivity is
most important for initial Péclét number
around order one.

If a constant temperature is prescribed on
the boundary there is only one steady-state

[

interface position; but if the heat flux is
prescribed, there may be three steady-state
positions, two of which are stable.

3. If more than one steady-state solution is

~oos semsbin P Ao Odaarean San

possible, the initial conditions determine
which one is reached. For conduction domi-
nated flow where the interface can penetrate
into the medium, the smaller the initial
Péclét number the faster the system
approaches a steady state.

4. The results of the constant and variable
property cases (see Appendix II) give the
same effects. Therefore, to determine the
influence of convection, conduction, and
phase change a study of the constant property
case is adequate.

5. An evaluation of the validity of this theory
requires a comparison with experimental
results. To the authors’ knowledge, no such
experiments have been reported in the litera-
ture. An asymptotic solution for large time
is presently being investigated to determine
the accuracy of the heat-balance integral
technique for the transient problem.
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APPENDIX 1

Determination of Minimum Heat Input

First, we shall determine the heat flux per unit area neces-
sary to raise the temperature of the system at x = 0 to the
saturation temperature. The governing energy equation (24)
is subject to the boundary conditions:

dT

at X = 0 q* == "eff H;V

at x = L: T =T

where ¢* is the heat flux necessary to raise the temperature
at x = 0 to T*. Integrating equation (24) yields the tempera-
ture distribution,

—Peix __ r-l’e,‘)

*
Tix) = Ty — & (e

1, Cp,
Evaluating at x = 0, and rearranging terms we obtain g* as:
[T = h(Ty)]

(1 — e Py

*

q- =

where h, (T*) — h,(Ty) = Cp (T* — Tg). An additional heat
flux equal to r;h, (T*) is required to vaporize the liquid.
Adding this heat flux to ¢g* we obtain the minimum heat input.

Pek; “l: A (T*) — iy (TR)
min = T (T R R
1 e, LT —
Taking limits on Pe,.
as  Pe; - 0:
b, Peh, (T*
Qmin = JS’J[T* - Tr + J"‘J + 0(Pe})
L .
as Pe,— x
min = Pek h (T* 1
4 f._l‘if[ 1T +T* - T |+ 0
L Cyp, ePes
APPENDIX II
Steady-state, Variable Properties, Constant Temperature

Boundary Condition

The purpose of this section is to compare the results of the
constant property case to the case with temperature depend-
ent kinematic viscosity, since v;- is the most temperature
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sensitive property.} The procedure for a constant tempera-
ture boundary condition is identical to that of the case with
a constant surface heat flux [28].

In obtaining P* as a function of S, we take basically the
same approach as in the constant property case, and
substituting for P* in equation (21) yields:

K(Pg — Pg)

ty = —

< (A1)
v (L - 8) + ij(T) dx
o

For convenience, the expression relating the kinematic
viscosity, v, and temperature is taken in a polynomial
form, 1

vAT) = Ao + AT — T*) + Ao(T — T*)?

+ AT — T* (A2)

where the 4;'s are constants.

The governing equations for the temperature are the same
as those for the constant property case except the normalized
flow rate, F, is not a known function of the interface position.
Dividing m; in equation (A.1) by niy;, and combining with
the polynomial expression for the kinematic viscosity, we
obtain the normalized flow rate,

I

F= - A3
LS+ [[Vo+ 0V (-8
0
+ 02V (1 = 8,0 + 63151 — 8,)°] dx
where,
A ™ — T, AT — Tp)?
V, =2, ,Z_A‘( R),sz_ o "),
vy Vi, Ve
Ay(T* — T

3= ;
Vi,

1 For example, the kinematic viscosity of steam at
atmospheric pressure varies by about a factor of four
between 100°C and 500°C, whereas the thermal conductivity
varies by less than half as much, and the specific heat varies
only 2 per cent [26]. Other gases exhibit similar behavior.

} Comparing values of the kinematic viscosity for
saturated steam tabulated in [26] shows that a second order
polynomial approximation for v(T) has an accuracy of
+6 per cent for the temperature range 100-800°C whereas
the third order polynomial, equation (A.2), is accurate to
+2 per cent in the same temperature range.
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With 6,{x) known from equation (31), the integral in the
above expression may be integrated to yield:

xPe, |

1 S
- / U4 S0 = 1)+ 06Vl o = oy

02V,(e#S — 4e%S + 2ZS + 3)

Z =

2Z@%S — 17
G, V3(26375 — qe?25 — 18”5 — 11 — 628)}
+ - A4
6Z(eZ% — 1y a4

where Z = kPeF/C. Ogly for V, = V, = V; = 0, which is
equivalent to v, = constant, one may obtain F as an explicit
function of §. We obtain another equation in F and § by
substituting the normalized temperatures from equations
(31) and (32) into the interface energy equation (30}

8o

c [exp (kPe FS/C) — 1]

1
{H T Tewiorern —sf MY

Equations {A.4) and {A.5) are two, coupled transcendental
equations for ¥ and S. A solution is obtained by applying a
modified Newton-Raphson iteration technique [29]. The
substitution of F and § into equations (31) and (32) yields
the complete solution for the temperature distribution.

Figure 8 presents a comparison of a typical temperature
profite of the constant property and variable property cases.
In both the liquid and vapor regions the Péclét number is
small; hence the temperature distribution is linear. Figures
9 and 10 compare the two cases for the steady-state interface
position and the normalized {low rate respectively. These
results show that the constant property case predicts the
same effects as the variable property case even if v,/v, varies
by a factor of 16 for constant properties. This is readily
seen in Fig. 8 Therefore, since we are mainly interested in
studying the influence of convection, conduction, and phase
change on the interface position, the constant property
case yields adequate results for this purpose.

TRANSFERT THERMIQUE DANS UN MILIEU POREUX AVEC
CHANGEMENT DE PHASE

Résumé—Un liquide provenant d’un réservoir 4 température constante traverse un milieu poreux. A
I'extrémité opposée la température du systéme est portée au-dessus du point d'ébullition du liquide en
impesant soit une température constante soit un flux thermique constant. Ceci provoque la propagation



60

ALAN RUBIN and SAMUEL SCHWEITZER

d’un front d’évaporation dans le matériau avec séparation en une région de vapeur et une région de

liquide. L objet de cet article et d’analyser le systéme en recherchant 'importance relative de la convection

par rapport a la conduction et en dégageant les principaux paramétres influencant la distribution de

température et la position de I'interface. Des solutions exactes sont obtenues pour le probléme permanent

ou (1) les propriétés sont constantes et (2) la densité et la viscosité de la vapeur est variable. On obtient

aussi une solution approchée du probléme transitoire avec propriétés constantes en appliquant la
technique intégrale du bilan thermique.

WARMETRANSPORT IN POROSEN MEDIEN MIT PHASENUBERGANG

Zusammenfassung-— Flissigkeit aus einem Reservoir mit konstanter Temperatur gelangt in ein pordses
Material. Auf der freien Seite wird die Temperatur des Systems tiber der Siedetemperatur der Fliissigkeit
gehalten durch Aufprégen einer konstanten Temperatur oder eines konstanten Wiarmeflusses. Dies ruft
eine Verdampfungsfront hervor, die in das Material vordringt und so einen Dampfbereich von dem
Fliissigkeitsbereich abtrennt. In dem Artikel soll dieses System untersucht werden: die Bedeutung der
Konvektion in Verhiltnis zur Wirmeleitung, die Hauptparameter, die die Temperaturverteilung beein-
influssen, und die Lage der Phasengrenze.

Exakte Losungen wurden fiir das stationdre Problem gefunden, wobei (1) die Eigenschaften konstant
sind und (2) Dichte und Viskositat des Dampfes verdnderlich sind. Auch wurde eine Niherungsidsung fiir
das instationdre Problem gefunden. bei konstanten Eigenschaften, durch Anwendung einer integralen

Energiebilanz.

NEPEHOC TEINJA B HOPUCTHIX CPEJAX IIPY HAJNYNN ®A30OBOI'O
N3MEHEHUA

Anporamua—HuakocTs n3 pesepByapa ¢ HOCTOSHHOMN TeMIIEpAaTypoil IIOCTYIAeT B IOPUCTYIO
cpeny. Ha mpqQTMBONONO:KHOM KOHIE TEeMIeparypa CUCTEMBI Bhillle TeMIIepaTyphl KUIEHHSA
JKHIKOCTH, YTO TOCTUTAETCSA IONJep:KaHWeM IIOCTOSHHON TeMIlepaTyphl MM IOCTOSHHOIO
TEIIOBOTO IIOTOKA. JTO BHIBHIBAET pACIpOCTaHeHHe PPOHTA MCHAapeHNs BHYTPH MaTepuaa,
oTaensan o6aacTh mapa or ob6macTH KMAKOCTH. B maHHO# paboTe CTABUIOCH LEIbIO HPO-
AHAQJIUBNPOBATE 3TY CUCTEMY , HCCIEIYA OTHOCHTEILHYIO BIAXHOCTb KOHBEKL{MHU 10 CPABHEHUIO
C KOHAYKUMel ¥ OCHOBHBIE [apaMeTpsl, BIMAINME HA pacHpefeleHUe TeMIepaTypsl U
HOJIO}KeHMe IpaHusl pasfeaa $aa. Ilomydensl TouHble pelieHUA JuIA CTALMOHAPHOM 3amauu,
rae (1) cBoiicTBa ABIAIOTCA NMOCTOAHHBIMMU, & (2) IJIOTHOCTE ¥ BA3SKOCTD I1apa IepeMeHHbIMM.
Moayueno nmpubiImxeHHOe pellleEMe HeCTALMOHAPHON 3afadl ¢ IOCTOAHHBIMU CBOHCTBAMU
HHTErpUPOBaHMA (ajaHca TeIIa.



