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Abstract

The dynamic stability behaviour of imperfect simply supported plates subjected to in-plane
pulse loading is investigated. For the calculation of dynamic buckling loads a stress failure
criterion is applied. The large-deflection plate equations are solved by a Galerkin method by
using Navier’s double Fourier series. In this paper the dynamic load factor (DLF) is redefined
and plots that are useful for the design of plate structures are presented. Parametric studies
are performed in which the influences of the pulse duration, shock function, imperfection,
geometric dimensions and limit stress of the material are discussed. Comparison between the
dynamic buckling loads, which are obtained by the commonly used criterion of Budiansky
and Hutchinson [Proceedings of the 11th International Congress of Applied Mechanics (1964)
636], and the dynamic elastic limit loads, which are computed by the stress failure criterion,
shows that the latter criterion is more useful for the design of lightweight structures. 2001
Elsevier Science Ltd. All rights reserved.
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1. Introduction

The dynamic buckling analysis of in-plane loaded structures is a problem of
dynamic response, in which imperfections are necessary to cause out-of-plane
motion.

For those configurations that have an instable postbuckling branch (i.e., cylindrical
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shells), critical conditions for defining a dynamic buckling load can be found by
using the Equation of Motion Approach or Energy Approaches [2]. But there does
not exist any standard criterion for the investigation of structures with stable post-
buckling behaviour like plates. Therefore it is necessary to establish critical con-
ditions for finding a dynamic buckling load.

In different publications [3–5] dynamic buckling loads are determined by consider-
ing the stability criterion of Budiansky and Hutchinson [1]: a dynamically critical
condition is defined if some characteristic value increases rapidly with the loading
amplitude. In these works the quotient of the dynamic buckling load and the load
of bifurcation is defined as the dynamic load-amplification factor (DLF). The disad-
vantage of this criterion is caused by the fact that the load-carrying capacity of the
structure is not taken into account. Therefore such a criterion is not very useful for
proper design of structures with a stable postbuckling branch.

In this paper the dynamic buckling of plates is investigated by using a stress failure
criterion and the effects of the shock function, imperfections, geometric dimensions
and limit stress of the material are studied.

2. Dynamic stability of plates

As will be shown in the following, the application of the Budiansky–Hutchinson
criterion [1] leads to very conservative dynamic buckling loads. Therefore a dynamic
buckling criterion that is founded on stress analysis is used: a stress failure occurs
if the effective stresssE exceeds the limit stresssL of the material. A dynamic
response caused by an impact is defined to be dynamically stable if

sE#sL (1)

is fulfilled at every time everywhere in the structure. Even if local yielding does not
result in global failure of the structure, it is practical for ductile materials to use the
yield stresssY as limit stresssL. The application of this stress failure criterion results
in a unique failure load depending on the shock function. The corresponding ampli-
tude of the impact function is called the dynamic failure load,Ndyn

F .
A dynamic load factor has been defined in the literature as the quotient of the

dynamic buckling (here: failure) load,Ndyn
F , and the classical bifurcation load,Ncrit:

DLFcrit5
Ndyn

F

Ncrit

. (2)

Considering the fact that the static failure load of a plate could exceed its static
bifurcation load several times [6], it seems better to compare the dynamic failure
load Ndyn

F with the static one,Nstat
F . In redefining the dynamic load factor by

DLF5
Ndyn

F

Nstat
F

, (3)

this load-amplifying quotient only describes the dynamic behaviour of the structure
under impact loading.
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3. Analysis

Consider a rectangular plate of lengtha, width b and constant thicknessh subjected
to pulse loadingN̄x(t), N̄y(t) andN̄xy(t) (Fig. 1). The plate has an initial imperfection
w0 in the z-direction. The total transverse displacement is defined by

w5wel1w0, (4)

wherewel is the flexible displacement. Applying Kirchhoff’s hypothesis, the in-plane
displacementsū and v̄ are taken as

ū5u(x, y)2z
∂w
∂x

(5)

and

v̄5v(x, y)2z
∂w
∂y

. (6)

The derivatives of the displacementsū andv̄ — i.e.,∂ū/∂x, ∂ū/∂y, ∂v̄/∂x and∂v̄/∂y —
are small compared with∂w/∂x and∂w/∂y. Accordingly, their squares are negligible
against the other terms in the non-linear strain–displacement relations. Considering
the imperfection they can be written as [7]:

ēx5
∂ū
∂x

1
1
2S∂w

∂xD2

2
1
2S∂w0

∂x D2

, (7)

ēy5
∂v̄
∂y

1
1
2S∂w

∂yD2

2
1
2S∂w0

∂y D2

(8)

and

Fig. 1. (a) Plate dimensions and coordinates; (b) definition of the average boundary membrane forces.
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ḡxy5
∂ū
∂y

1
∂v̄
∂x

1
∂w
∂x

∂w
∂y

2
∂w0

∂x
∂w0

∂y
. (9)

As in the classic plate theory, the membrane forcesNx, Ny, Nxy and bending or
twisting momentsMx, My, Mxy are defined by

{ Nx, Ny, Nxy} 5 E
1h/2

2h/2

{sx, sy, txy} dz (10)

and

{ Mx, My, Mxy} 5 E
1h/2

2h/2

z{sx, sy, txy} dz. (11)

Substituting the linear elastic Hooke’s law for isotropic materials

5
sx

sy

txy
65

E
1−n23

1 n 0

n 1 0

0 0
1−n
2

45ēxēyḡxy
6 (12)

into Eqs. (10) and (11), the membrane forces and the moments in terms of the three
displacements can be derived. In Eq. (12),E is Young’s modulus andn is Poisson’s
ratio. Neglecting the terms of plane and rotary inertia, the applied strain–displace-
ment relations lead to the following equation of motion

rhẅ5Nx

∂2w
∂x21Ny

∂2w
∂y212Nxy

∂2w
∂x∂y

2K(DDw2DDw0)1qz, (13)

whereD is the Laplacian operator,qz is the load per area in thez-direction and the
plate stiffnessK is defined by

K5
Eh3

12(1−n2)
. (14)

By combining the middle-plane strainsex=ēx(z=0), ey=ēy(z=0) andgxy=ḡxy(z=0), the
compatibility equation

∂2ex
∂y2 1

∂2ey
∂x2 2

∂2gxy

∂x∂x
5S ∂2w

∂x∂yD2

2
∂2w
∂x2

∂2w
∂y22HS∂2w0

∂x∂yD2

2
∂2w0

∂x2

∂2w0

∂y2 J (15)

can be found. Regarding the definitions of membrane forces, by introducing Airy’s
stress functionf which satisfies
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Nx5
∂2f
∂y2, Ny5

∂2f
∂x2 andNxy52

∂2f
∂x∂y

, (16)

it follows that

DDF5EhFS ∂2w
∂x∂yD2

2
∂2w
∂x2

∂2w
∂y22HS∂2w0

∂x∂yD2

2
∂2w0

∂x2

∂2w0

∂y2 JG. (17)

This non-linear equation of compatibility takes the plane problem into consideration.

4. Solution of the plate equations

The boundary conditions forw andw0 of a simply supported plate where the edges
remain straight after buckling are:

w=w0=0

∂2w
∂x2=

∂2w0

∂x2 =0

∂u
∂y

=C1
6 at x50, a;

w=w0=0

∂2w
∂y2=

∂2w0

∂y2 =0

∂v
∂x

=C2
6 at y50, b. (18)

If N̄x, N̄y andN̄xy are the average membrane forces at the edges, the stress function
has to satisfy the following relations:

x50, a:
1
bE

b

0

∂2f
∂y2 dy5N̄x; 2

1
bE

b

0

∂2f
∂x∂y

dy5N̄xy (19)

and

y50, b:
1
aE

a

0

∂2f
∂x2 dx5N̄y; 2

1
aE

a

0

∂2f
∂x∂y

dx5N̄xy. (20)

In accordance with the boundary conditions, Navier’s double Fourier series with
the coefficientstWmn and 0Wmn are chosen to describe the displacement function
w(x, y) and the geometric imperfectionw0(x, y):

w5Ok

m51

Ol

n51

tWmn sin
mpx

a
sin

npy
b

(21)

and

w05Ok

m51

Ol

n51

0Wmn sin
mpx

a
sin

npy
b

. (22)
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By inserting these two relations into the differential equation of compatibility [Eq.
(17)] the following equation is obtained:

DDF5EhHOk
i51

Ol

j51

Ok
m51

Ol

n51

Sijmnp4

a2b2 cos
ipx
a

cos
jpy
b

cos
mpx

a
cos

npy
b

(23)

2
i2n2p4

a2b2 sin
ipx
a

sin
jpy
b

sin
mpx

a
sin

npy
b D[tWij

tWmn2
0Wij

0Wmn]J.

Using different trigonometric relations, Airy’s stress function can be derived as:

F5
1
2
N̄xy21

1
2
N̄yx22N̄xyxy1EhOk

i51

Ol

j51

SAij
1 cos

2ipx
a

1Aij
2 cos

2jpy
b D[tW2

ij

20W2
ij ]1EhOk

i51

Ol

j51

Ok
m51

Ol

n51

(i, j)Þ(m, n)

HAijmn
3 cos

(i−m)px
a

cos
(j−n)py

b

1Aijmn
4 cos

(i−m)px
a

cos
(j+n)py

b
1Aijmn

5 cos
(i+m)px

a
cos

(j−n)py
b

1Aijmn
6 cos

(i+m)px
a

cos
(j+n)py

b J[tWij
tWmn2

0Wij
0Wmn], (24)

with the shortenings:

Aij
15

a2j 2

32b2i2
, Aijmn

3 5
(ijmn−i2n2)a2b2

4[(i−m)2b2+(j−n)2a2]2, Aijmn
5 5

(ijmn+i2n2)a2b2

4[(i+m)2b2+(j−n)2a2]2

Aij
25

b2i2

32a2j 2, Aijmn
4 5

(ijmn+i2n2)a2b2

4[(i−m)2b2+(j+n)2a2]2, Aijmn
6 5

(ijmn−i2n2)a2b2

4[(i+m)2b2+(j+n)2a2]2.

With the definitions (16), the membrane forcesNx, Ny andNxy are computable by
this solution off and the boundary conditions (19) and (20) are satisfied. By using
Eqs. (7, 8) and (12) one can show that the boundary conditions∂u/∂yux=0, a and
∂v/∂xuy=0, b [Eq. (18)] are valid too. Together with the double Fourier series [Eqs.
(21) and (22)] the membrane forces are inserted into the equation of motion [Eq.
(13)]. The relation obtained is multiplied by

sin
rpx
a

sin
spy
b

, r51, 2,…, k; s51, 2,…, l (25)

and next integrated over the plate area. A system ofk×l second-order ordinary differ-
ential equations is obtained to compute the coefficientstWrs of the double Fourier ser-
ies:

tẄrs1
K
rhSr2p2

a2 1
s2p2

b2 D2

[tWrs2
0Wrs]2

E
rO

k

i51

Ol

j51

Ok

p51

Ol

q51

(B11B2)[tW2
ij
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20W2
ij ]tWpq2

E
rO

k

i51

Ol

j51

Ok

m51

Ol

n51

Ok

p51

Ol

q51

(i, j)Þ(m, n)

{ B31B41B51B6}[ tWij
tWmn

20Wij
0Wmn]tWpq1

1
rh

r2p2

a2 N̄x
tWrs1

1
rh

s2p2

b2 N̄y
tWrs

2Ok

p51

Ol

q51

8
rh

pqp2

ab
XY(p, q, r, s)N̄xy

tWpq50, (26)

r51, 2,…, k respectivelys51, 2,…, l.

The abbreviationsB1 to B6 and XY are defined in Appendix A. The corresponding
system of equations for static problems results from Eq. (26) by omittingtẄrs. For
dynamic buckling investigationsqz has not been considered.

A computer code that solves the dynamic problem in dependence on the imperfec-
tion coefficients0Wmn and the loading functionsN̄x(t), N̄y(t) and N̄xy(t) has been
developed in FORTRAN. For time integration a fourth-order Runge–Kutta method
has been used. The initial conditions are set as:

tẆmn(t50)50 (27)

and
tWmn(t50)50Wmn. (28)

To solve the coefficients of the deflection function in the static case, a quadratic
convergent Newton method is applied.

Compared with calculations performed by the finite element code MSC-Nastran
for static as well as for dynamic analysis, the applied Galerkin method is very effec-
tive in relation to deflection and stress analysis because only a few modes have to
be employed for the investigations [8]. The CPU time increases nearly quadratically
with the number of terms of the Fourier series.

5. Results and discussion

In this section results will be presented for aluminium alloy plates with various
geometric dimensions and imperfections under unidirectional impact loading,N̄x(t).
In order to analyse the behaviour of dynamically loaded plates for different loading
durations the amplitude of the loading functionN̄x(t), the exceeding of which leads
to stress failure in the plate, is searched. This computation is performed by a bisection
method which varies the pulse amplitude. For every bisection step the system of
coupled differential equations (26) has to be solved. The effective stresssE is calcu-
lated by using the von Mises yield criterion [9]:

sE5Îs2
x+s2

y−sxsy+3(t2xy+t2yz+t2xz). (29)



274 D. Petry, G. Fahlbusch / Thin-Walled Structures 38 (2000) 267–283

The results will be presented in form of DLF versus pulse duration (TS) charts.
To compute the DLF the static failure load, which is obtained by a static postbuckling
calculation, is necessary. Unless otherwise stated, a one-term imperfection0W11,
which corresponds to the basic buckling mode of the plates investigated, is used for
the calculations. Because of the symmetric imperfection shape all antisymmetric
terms of the Fourier series become zero. Therefore Navier’s double series can be
reduced to a summation over odd indices, and so the CPU time decreases consider-
ably. The calculations, the results of which are presented in this paper, are performed
by using a (k=5)×(l=3) series that results in convergent solutions.

5.1. Influence of pulse duration

The dependence of the dynamic behaviour of a structure on the pulse duration
could be described by a shock spectrum. In such a chart the residual response ampli-
tudes and maximax response amplitudes are plotted over the duration of impact. The
residual response amplitude is defined by the free vibration amplitude after loading,
while the maximax response amplitude results from the maximum of deflection dur-
ing the motion of a structure caused by the loading [10]. For a sinusoidial impact
function (S) that is described by

N̄S
x(t)55Nmax

x sin
pt
TS

, 0#t#TS

0, otherwise

, (30)

the shock spectrum of a plate (a/b=1; h/b=0.005;0W11/h=0.2;sL=100 MPa) subjected
to a loading amplitude ofNmax

x =3Ncrit is presented in Fig. 2, in which the mid-point
transverse deflection has been normalized to the corresponding static deflection,wstat.

It is shown in Fig. 2 that the maximum of response is reached for a shock duration
close to the period time of transverse vibration,TP. The DLF plot of the plate is
shown in Fig. 3. Depending on the shock duration, this chart yields the factor by
which to multiply the static failure load to obtain the dynamic failure load. Accord-
ingly the DLF plot is useful to get the dynamic failure load from the corresponding
static load. If the DLF plot is known, the design of plates relating to in-plane dynamic
loading is reduced to a static postbuckling analysis. In design practice such compu-
tations are performed by the simple method of effective width [6].

As demonstrated in the plot, high loads are possible without the occurrence of
failure for short-time pulses while for higher pulse durations — because of the
dynamic overshooting of displacements — the dynamic load has to be reduced in
relation to the static failure load.

For a wide range of shock durations loads smaller than the static failure load lead
to stress failure in the plate. For high ratios ofTS/TP the quasi-static limit load is
reached asymptotically.
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Fig. 2. Shock spectrum of a plate subjected to unidirectional dynamic loading (Nmax
x =3Ncrit).

Fig. 3. DLF plot of a plate subjected to unidirectional dynamic loading.

As in the shock spectrum, the effects of transverse inertia affect the DLF chart
differently depending on the pulse duration. The DLF plot corresponds with the
shock spectrum. Thus high deflections in the shock spectrum result in low DLF
values. On account of the non-linear behaviour, local maxima or minima in the DLF
plot and the shock spectrum are not reached for exactly the same shock durations.

Fig. 3 also shows that the dynamic load-amplification factor is limited for short
pulse durations by the flat plates problem:

DLFmax5
sLh
|Nstat

F |
. (31)
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5.2. Influence of the shock function

To examine the influence of different loading functions on the dynamic behaviour
of imperfect plates, in addition to the sinusoidial impact rectangular (R) and triangu-
lar (T) pulses will be investigated. These two functions are described by:

N̄R
x (t)5HNmax

x , 0#t#TS

0, otherwise
(32)

and

N̄T
x(t)55

2Nmax
x

t
TS

, 0#t#
TS

2

2Nmax
x S1−

t
TS
D,

TS

2
,t#TS

0, otherwise

. (33)

The corresponding DLF plots (Fig. 4) show that the particular force function influ-
ences the dynamic behaviour of stability exceptionally.

In the region of residual response, which is characterized by the visible drop in
DLF, the plot moves to shorter pulse durations for shock functions with higher pulse
area (i.e., impulse) if the loading parameters (TS, Nmax

x ) are equal. In the same way
the DLF reaches lower values. While shock functions having finite rise time — like
the sinusoidial or the triangular pulse — approach quasi-static behaviour for higher
shock durations, the rectangular pulse having infinite rise time is constant after reach-
ing its minimum. It has been demonstrated that the position of the DLF plots to one
another is defined by the impulse ratio of the shock functions which have equal
loading parameters [11].

Fig. 4. Influence of the shock function on dynamic buckling.
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Fig. 5. DLF plots for different imperfection magnitudes.

5.3. Imperfection sensitivity

Many publications have been pointed out the imperfection sensitivity of dynamic
stability behaviour [3,12]. The DLF plots of four plates having different geometric
imperfections (0W11/h=0.01, 0.05, 0.2, 0.5) are compared in Fig. 5. As shown, higher
imperfection leads to smaller dynamic load-amplification factors for short pulse dur-
ations while, for higher durations, the DLF of plates having minor imperfection is
comparatively small. The smaller the magnitude of imperfection, the more the
dynamic deflection lags behind the static one, which is shown in Fig. 6. This is why
the location of the DLF minimum is dependent on the size of imperfection.

Fig. 6. Response curves for different imperfection magnitudes (TS/TP=0.78;Nmax
x =0.7Nstat

F ; sF=100 MPa).
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Fig. 7. Influence of geometric imperfection shapes on dynamic buckling.

In previous publications on plates subjected to in-plane pulse loading only one
term of the imperfection function (22) has been considered. But if there exist more
wave terms of imperfection, the dynamic behaviour of stability is influenced differ-
ently for varying pulse durations. Thus higher undulating imperfections influence the
dynamic behaviour of short-duration impacts considerably, while for long-duration
pulses imperfections of high wavelength dominate the plate’s dynamic behaviour.
Fig. 7 shows this effect of imperfection superposition.

5.4. Influence of geometric dimensions

DLF plots of three plates with different thickness (h/b=0.0025, 0.00375, 0.005)
are demonstrated in Fig. 8. Because of the variable thickness also the0W11/h ratio
differs. All other plate parameters are identical.

Fig. 8. Influence of the plate thickness on dynamic buckling.
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For higher pulse durations the thickness of a plate does not affect its dynamic
stability much. But there exist differences in dynamic behaviour for short-time
impacts. Investigations proved that the influence of varying0W11/h ratio is not
responsible for the change in the DLF plot. The thinner the plates, the more the drop
in DLF moves to shorter pulse durations. The thicker the plates, the more the
dynamic deflections lag behind the quasi-static deflections (cf. influence of the mag-
nitude of the imperfection).

The static failure load decreases overproportionally while the dynamic failure load
falls proportionally by reducing the thickness [Eq. (31)], thus higher maxima of DLF
are reached for thinner plates.

Fig. 9 shows three DLF plots of plates with the same static basic buckling mode.
As demonstrated, the aspect ratio of the plate does not affect the dynamic stability
much.

5.5. Influence of failure stress

Fig. 10 shows DLF charts of plates made of aluminium alloys that have the same
mechanical properties but different limit stresses (AlMg 5454:sL=80 MPa; AlMg
5086: 100 MPa; AlMg 5083: 130 MPa). All plates show nearly the same dynamic
behaviour of stability. There is only a difference for short pulse durations: because
of the non-linear behaviour, raising the limit load of the materialsL increases the
static failure load underproportionally. Considering that for short-time impacts the
dynamic failure load is proportional tosL [Eq. (31)], the DLF increases.

5.6. Influence of the criterion of stability

In this section an example is given to show how the dynamic buckling load is
affected by the criterion of stability.

Fig. 9. DLF plots for different aspect ratiosa/b.
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Fig. 10. Influence of the material’s limit stresssF on dynamic buckling.

For a shock durationTS/TP=1, the dynamic buckling load is computed by the
Budiansky–Hutchinson [1] criterion and the stress failure criterion (1). To determine
the dynamic buckling load by the Budiansky–Hutchinson criterion [1], the maximum
deflection in thez-direction caused by the impact is investigated by variation of the
loading amplitude. The dynamic buckling load based on the Budiansky–Hutchinson
criterion [1] is defined by the maximum of the gradient∂wmax/∂Nmax

x . In Fig. 11 the
corresponding dynamic buckling load and the region of instability are marked. The
dynamic buckling load computed by the stress failure criterion applied in this paper
is shown as well. Hence it appears in the example that the load-carrying capability
is only exploited for nearly 50% by the Budiansky–Hutchinson criterion [1].

Fig. 11. Comparison of Budiansky–Hutchinson [1] and stress failure criteria.
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6. Conclusions

A study of dynamic buckling of thin isotropic plates under unidirectional loading
has been presented in this paper. For this purpose a stress failure criterion has been
applied which considers the load-carrying capability of the structure. It has been
demonstrated that application of the criterion of Budiansky and Hutchinson [1] is
not suitable for the design of plates considering dynamic buckling in lightweight
structures.

The dynamic load factor (DLF) has been defined such that it describes only
dynamic effects in dependence on the shock duration. If the DLF is known, the
design of plates relating to dynamic buckling is reduced to a non-linear static post-
buckling analysis. For a wide range of shock durations DLFs smaller than unity are
caused by the dynamic overshooting of the structure. As demonstrated in this paper,
the dynamic behaviour of a plate subjected to in-plane dynamic loading is essentially
influenced by the loading function, the duration of impact and the geometric imper-
fections. Not only the magnitude of the imperfection but also its shape affect dynamic
buckling considerably. Regarding the variation of the other parameters (i.e., ultimate
stress, thickness and aspect ratio), plates show only a modest sensitivity.

Appendix A

ShorteningsB1, B2, …, B6 of Eq. (26):

B15
i2p2p4

2a4 X1(p, r)Y2(j, q, s),

B25
j 2q2p4

2b4 X2(i, p, r)Y1(q, s),

B35
(ijmn−i2n2)p4

[(i−m)2b2+(j−n)2a2]2{[( j2n)2p21(i2m)2q2]X3(i, m, p, r)Y3(j, n, q, s)22(i

2m)(j2n)pqX4(i, m, p, r)Y4(j, n, q, s)},

B45
(ijmn−i2n2)p4

[(i−m)2b2+(j+n)2a2]2{[( j1n)2p21(i2m)2q2]X3(i, m, p, r)Y5(j, n, q, s)22(i

2m)(j1n)pqX4(i, m, p, r)Y6(j, n, q, s)},

B55
(ijmn+i2n2)p4

[(i+m)2b2+(j−n)2a2]2{[( j2n)2p21(i1m)2q2]X5(i, m, p, r)Y3(j, n, q, s)22(i

1m)(j2n)pqX6(i, m, p, r)Y4(j, n, q, s)}

and

B65
(ijmn−i2n2)p4

[(i+m)2b2+(j+n)2a2]2{[( j1n)2p21(i1m)2q2]X5(i, m, p, r)Y5(j, n, q, s)22(i
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1m)(j1n)pqX6(i, m, p, r)Y6(j, n, q, s)},

whereX1, X2, …, X6 respectivelyY1, Y2, …, Y6 andXY are defined by integrations of
trigonometric functions:

XY(p, q, r, s)5
1
abE

a

0

E
b

0

cos
ppx
a

cos
qpy
b

sin
rpx
a

sin
spy
b

dx dy,

X1(p, r)5
1
aE

a

0

sin
ppx
a

sin
rpx
a

dx,

Y1(q, s)5
1
bE

b

0

sin
qpy
b

sin
spy
b

dy,

X2(i, p, r)5
1
aE

a

0

cos
2ipx

a
sin

ppx
a

sin
rpx
a

dx,

Y2(j, q, s)5
1
bE

b

0

cos
2jpy

b
sin

qpy
b

sin
spy
b

dy,

X3(i, m, p, r)5
1
aE

a

0

cos
(i−m)px

a
sin

ppx
a

sin
rpx
a

dx,

Y3(j, n, q, s)5
1
bE

b

0

cos
(j−n)py

b
sin

qpy
b

sin
spy
b

dy,

X4(i, m, p, r)5
1
aE

a

0

sin
(i−m)px

a
cos

ppx
a

sin
rpx
a

dx,

Y4(j, n, q, s)5
1
bE

b

0

sin
(j−n)py

b
cos

qpy
b

sin
spy
b

dy,

X5(i, m, p, r)5
1
aE

a

0

cos
(i+m)px

a
sin

ppx
a

sin
rpx
a

dx,
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Y5(j, n, q, s)5
1
bE

b

0

cos
(j+n)py

b
sin

qpy
b

sin
spy
b

dy,

X6(i, m, p, r)5
1
aE

a

0

sin
(i+m)px

a
sin

ppx
a

sin
rpx
a

dx

and

Y6(j, n, q, s)5
1
bE

b

0

sin
(j+n)py

b
sin

qpy
b

sin
spy
b

dy.
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