It has been a while since my last post, mostly because of a combination of getting Maple 14 ready to ship and a lack of meaty topics to write about. I am trying to get back into the habit of posting more regularly. You can help me achieve my goal by posting questions about parallel programming. I'll do my best to answer. However for now, I'll give a brief overview of the new parallel programming features in Maple 14.

A new function has been added to the Task Programming Model. The Threads:-Task:-Return function allows a parallel algorithm implemented on top of the Task Programming Model to perform an early bail out. Lets imagine that you have implemented a parallel search. You are looking for a particular element in a large set of data. Using the Task Programming Model, you've created a bunch of tasks, each searching a particular subset of the data. However one of the first tasks to execute finds the element you are looking for. In Maple 13, there was no built in way of telling the other tasks that the result have been found and they they should not execute. In Maple 14, the Return function allows one task to specify a return value (which will be returned from Threads:-Task:-Start) and signal the other tasks that the algorithm is complete and that additional tasks should not be executed. Tasks that are already running will still run to completion, but tasks that have not started executing will not be started.

You may have noticed that there is a race condition with Return. What happens if two tasks both call Return in parallel? Only one of the values will become the value that is passed to Threads:-Task:-Start. I suppose I could say the "first" value is the one that is used, but really, what does that mean? If you call Return, then the value passed to Return should be an acceptable result for the algorithm.  If you call Return more than once, any of those values should be valid, thus it shouldn't matter which one becomes the return value.  That said, the Return function does give some feedback. In the task that succeeds in having its value accepted, Return will return true. In all other tasks that call Return, it will return false. This allows the code to know if a particular result was or was not accepted.

Maple 14 also adds the Task Programming Model to the C External Calling API. This means that you can write your algorithms in C and make use of the Task Programming Model. The C API is similar to the Maple API, with a few differences. In particular, you need to create each child task individually, instead of as a single call to Continue, as you would in Maple. As well, because it is C code, you need to worry about a few details like memory management that are handled automatically in Maple.  Using External Call is fairly advanced, so I won't go into too much detail here.  If you'd like to see more details of using the Task Programming Model in External Calling, I can write a seperated post dedicated to that.

As with every release of Maple, we spent some time trying to make our existing functionality faster and more stable. For parallel programming, we reduced the overhead of using the Task Programming Model, as well as reducing the locking in the kernel (which should help improve parallelism). Of course many bugs have been fixed, which should make parallel programming more reliable in Maple 14.

Please Wait...