One forum had a topic related to such a platform. ( Edited: the video is no longer available.)

The manufacturer calls the three-degrees platform, that is, having three degrees of freedom. Three cranks rotate, and the platform is connected to them by connecting rods through ball joints. The movable beam (rocker arm) has torsion springs.  I counted 4 degrees of freedom, because when all three cranks are locked, the platform remains mobile, which is camouflaged by the springs of the rocker arm. Actually, the topic on the forum arose due to problems with the work of this platform. Neither the designers nor those who operate the platform take into account this additional fourth, so-called parasitic degree of freedom. Obviously, if we will to move the rocker with the locked  cranks , the platform will move.
Based on this parasitic movement and a similar platform design, a very simple device is proposed that has one degree of freedom and is, in fact, a spatial linkage mechanism. We remove 3 cranks, keep the connecting rods, convert the rocker arm into a crank and get such movements that will not be worse (will not yield) to the movements of the platform with 6 degrees of freedom. And by changing the length of the crank, the plane of its rotation, etc., we can create simple structures with the required design trajectories of movement and one degree of freedom.
Two examples (two pictures for each example). The crank rotates in the vertical plane (side view and top view)
PLAT_1.mw


and the crank rotates in the horizontal plane (side view and top view).

The program consists of three parts. 1 choice of starting position, 2 calculation of the trajectory, 3 design of the picture.  Similar to the programm  in this topic.

 

 


Please Wait...