This is another attempt to tell about one way to solve the problem of inverse kinematics of a manipulator.  
We have a flat three-link manipulator. Its movement is determined by changing three angles - these are three control parameters. 1. the first link rotates around the black fixed point, 2. the second link rotates around the extreme movable point of the first link, 3. the third link − around the last point of the second link. These movable points are red. (The order of the links is from thick to thin.) The working point is green. For example, we need it to move along a circle. But the manipulator has one extra mobility (degree of freedom), that is, the problem has an infinite number of solutions. We have the ability to remove this extra degree of freedom mathematically. And this can also be done in an infinite number of ways.
Let us give two examples where the same manipulator performs the same movement of the working point in different ways. In one case the last red point moves in a straight line, and in the other case it moves in an ellipse. The result is the same. In the corresponding program texts, the manipulator model is described by a system of nonlinear equations f1, f2, f3, f4, f5 relative to the coordinates of the ends of the links (very easy to understand). The specific additional connection that takes away one degree of freedom is highlighted in blue. Equation of a circle in red color.

1.mw

2.mw


And as an elective. The same circle was obtained using a spatial 3-link manipulator with 5 degrees of freedom. In the last text, blue and red colors perform the same functions as in the previous texts.
3.mw

 


Please Wait...