Maple 13 Questions and Posts

These are Posts and Questions associated with the product, Maple 13
f1 := 0.001;
f2 := 0.002;
c1 := 0.002;
c2 := 0.005;
w1 := 0.1;
W := 0.14;
p1 := 0.65;
p2 := 0.28;
p := 1.167;
r := 0.004;
alpha := 0.2;
ze := 0.14;
mu := 0.05;
ga := 0.01;
cp := 9.3;
Rp := 100;
sigma2 := 0;
l[1] := 3*W^2*(-1+W^2)/(4*(-1+4*W^2));
l[2] := Rp^2*w1^2*mu*ga*cp/(2*(Rp^2*w1^2*cp^2+1));
l[3] := (Rp.w1.mu.ga)/(2*(Rp^2*w1^2*cp^2+1));
l[4] := W*(-1-7*W^2+8*W^4)/(8*(-2+8*W^2));
eq1 := (-x*t+l[2]*x+l[1]*x*y^2+(3/2)*alpha*ze^2*x)^2+((1/2)*c1*x+l[3]*x)^2-(1/4)*f1^2;
eq2 := (-l[4]*y^3+l[1]*x^2*y)^2+(1/4)*y^2*c2^2-f2^2/(4*W^2);

I need to solve these two equation for the variable x and y in terms of  t because I want to plot x with a range for t 

and the same plot y with a range for t and if it is possible to plot x vs y for the previuos same range for t

I want to contnue the simulation from the point (time) that the event accure 

how can I do it ?

 

proctes.mw

load this Maple code done'nt work!!!

I am trying to calculate the following integra   
r*rr*g1^2*h1^2*f1^2*fh1^2*exp(-2*t)/t

here g1 is a kummerM functin in s, and also h1 is another kummerM function  in ss, and f1 and fh1 are the HeunB functions with complex arguments in r and rr. and t=sqrt((r-rr)^2+(s-ss)^2).I would like to integte over dr drr ds dss

I am using an integal sign using Int. If there is a minus sign in front of it, then

I get the expression -(Int ... dx). Why is the parenthesis there? Can we avoind it?

Thank you!

mapleatha

 

Why does Maple give me an answer like this?

How do I force Maple to automatically multiply the exponents in the denominator and eliminate the factor y^2?

Simplify will not do it.

Thank you!

mapleatha

I am solving a PDE whose solution is the integrating factor MU of a given 1st order ODE. I get

I only need one of these solutions. How do I get rid of _F1? Can I make it to be the identity function? That is exactly what I need.

Thank you, as always!

mapleatha

 

 

 

I cannot get the answer (m=2,n=2) to the following problem on two equations from Maple 13.

(13/4)*m-(7/4)*n-3 = 0,
-(17/2)*n*2^n +34*m= 0

I get:

{m = (7/13)*RootOf(13*_Z*2^_Z-28*_Z-48)+12/13, n = RootOf(13*_Z*2^_Z-28*_Z-48)}

Thank you very much.

mapleatha

 

 

 

How can i plot a probability function such as cos(x-y)*cos(y-z)*cos^3(x-2z)=0.6 where

x=0..5, y=0..x, z=0..y.

please guide me.

i have a probability function f(x,y,z)=x^3*y*z and constraint on its ranges x<y , y<z. how can i plot it fot f(x,y,z)=0.5

Hi

Im going to solve mixing layer boundary layer equation in maple but Its this error: "Error, (in Shoot:-shoot) invalid boundary conditions, must be given at one point"

please help me. thank you.

> restart;
> alias(U = u(x, y), V = v(x, y)); PDE := {diff(U, x)+diff(V, y) = 0, U*(diff(U, x))+V*(diff(U, y))-nu*(diff(U, `$`(y, 2))) = 0};
print(`output redirected...`); # input placeholder
    // d   \   / d   \        / d   \     / d   \      / d  / d   \\    \ 
   { |--- U| + |--- V| = 0, U |--- U| + V |--- U| - nu |--- |--- U|| = 0 }
    \\ dx  /   \ dy  /        \ dx  /     \ dy  /      \ dy \ dy  //    / 
> simsubs := eta(x, y) = y*sqrt((1/2)*u[0]/(nu*x));
print(`output redirected...`); # input placeholder
                                                  (1/2)
                                 1    (1/2) /u[0]\     
                     eta(x, y) = - y 2      |----|     
                                 2          \nu x/     
> stream := psi(x, y) = sqrt(2*nu*x*u[0])*f(eta(x, y));
print(`output redirected...`); # input placeholder
                           (1/2)            (1/2)             
              psi(x, y) = 2      (nu x u[0])      f(eta(x, y))
> Usubs := U = diff(rhs(stream), y);
print(`output redirected...`); # input placeholder
              (1/2)            (1/2)                 / d           \
         U = 2      (nu x u[0])      D(f)(eta(x, y)) |--- eta(x, y)|
                                                     \ dy          /
> Vsubs := V = -(diff(rhs(stream), x));
print(`output redirected...`); # input placeholder
               (1/2)                     
              2      f(eta(x, y)) nu u[0]
        V = - ---------------------------
                               (1/2)     
                  2 (nu x u[0])          

              (1/2)            (1/2)                 / d           \
           - 2      (nu x u[0])      D(f)(eta(x, y)) |--- eta(x, y)|
                                                     \ dx          /
> ODE := simplify(subs(Usubs, Vsubs, simsubs, PDE));
print(`output redirected...`); # input placeholder
 /                             /      /           /                 (1/2)\  /    
 |                  1          |    2 |           |1    (1/2) /u[0]\     |  |1   
 |0 = 0, - ------------------- |u[0]  |@@(D, 2)(f)|- y 2      |----|     | f|- y 
<                        (1/2) \      \           \2          \nu x/     /  \2   
 |               2 /u[0]\                                                        
 |         2 nu x  |----|                                                        
 \                 \nu x/                                                        

               (1/2)\          (1/2)  
   (1/2) /u[0]\     |    /u[0]\       
  2      |----|     | nu |----|      x
         \nu x/     /    \nu x/       

                                 /                 (1/2)\\\    \ 
                (1/2)            |1    (1/2) /u[0]\     |||    | 
   + (nu x u[0])      @@(D, 3)(f)|- y 2      |----|     ||| = 0| 
                                 \2          \nu x/     ///     >
                                                               | 
                                                               | 
                                                               / 
> simsubs2 := solve(subs(eta(x, y) = eta, simsubs), {y});
print(`output redirected...`); # input placeholder
                              /         (1/2) \ 
                              |    eta 2      | 
                              |y = -----------| 
                             <           (1/2) >
                              |    /u[0]\     | 
                              |    |----|     | 
                              \    \nu x/     / 
> ODE := simplify(subs(simsubs2, ODE), symbolic);
print(`output redirected...`); # input placeholder
      /             2                                                 \ 
      |         u[0]  (@@(D, 2)(f)(eta) f(eta) + @@(D, 3)(f)(eta))    | 
     < 0 = 0, - -------------------------------------------------- = 0 >
      |                                2 x                            | 
      \                                                               / 

> shootlib := "C:\\Users/abbas/Desktop/maple9/"; libname := shootlib, libname; with(Shoot);
print(`output redirected...`); # input placeholder
                                   [shoot]
> FNS := {f(eta), g(eta), h(eta)};
> ODE := {diff(f(eta), eta) = g(eta), diff(g(eta), eta) = h(eta), diff(h(eta), eta) = -f(eta)*h(eta)};
print(`output redirected...`); # input placeholder
 /  d                      d                      d                          \ 
{ ----- f(eta) = g(eta), ----- g(eta) = h(eta), ----- h(eta) = -f(eta) h(eta) }
 \ deta                   deta                   deta                        / 
> IC := {f(0) = 0, g(0) = 0, h(0) = beta};
print(`output redirected...`); # input placeholder
                      {f(0) = 0, g(0) = 0, h(0) = beta}
> BC := {g(-10.) = 0, g(10.) = 1, limit(eta-f(eta), eta = 10) = 0};
print(`output redirected...`); # input placeholder
                  {10 - f(10) = 0, g(-10.) = 0, g(10.) = 1}
> infolevel[shoot] := 1;
print(`output redirected...`); # input placeholder
                                      1
> S := shoot(ODE, IC, BC, FNS, beta = 0, abserr = 0.5e-6, output = listprocedure, method = taylorseries);
%;
Error, (in Shoot:-shoot) invalid boundary conditions, must be given at one point
 

2 3 4 5 6 7 8 Last Page 4 of 54