Maple 17 Questions and Posts

These are Posts and Questions associated with the product, Maple 17

Why in geom3d[FindAngle] we cannot get the value of the angle of a triangle greater than Pi / 2?
For example, I build a chord of a circle of unit radius along the sides of the triangle and calculate the center angle that corresponds to the given angle of the triangle. But it's not very convenient.
TR_ANGLE.mw

One way to find the equation of an ellipse circumscribed around a triangle. In this case, we solve a linear system of equations, which is obtained after fixing the values of two variables ( t1 and t2). These are five equations: three equations of the second-order curve at three vertices of the triangle and two equations of a linear combination of the coordinates of the gradient of the curve equation.
The solving of system takes place in the ELS procedure. When solving, hyperboles appear, so the program has a filter. The filter passes the equations of ellipses based on by checking the values of the invariants of the second-order curves.
FOR_ELL_ТR_OUT_PROCE_F.mw  ( Fixed comments in the text  01, 08, 2020)

An attempt to find the equation of an ellipse inscribed in a given triangle. 
The program works on the basis of the ELS procedure.  After the procedure works, the  solutions are filtered.
ELS procedure solves the system of equations f1, f2, f3, f4, f5 for the coefficients of the second-order curve.
The equation f1 corresponds to the condition that the side of the triangle intersects t a curve of the second order at one point.
The equation f2 corresponds to the condition that the point x1,x2  belongs to a curve of the second order.
Equation f3 corresponds to the condition that the side of the triangle is tangent to the second order curve at the point x1,x2.
The equation f4 is similar to the equation f2, and the equation f5 is similar to the equation f3.
FOR_ELL_ТR_PROCE.mw
For example

Hi there,

Can someone explain to me why is it happening? If smaller equal than coloured well, if smaller then just the equal line appears. Why?

with(plots);
dm1 := .23; pm12 := .7; dm12 := .23;
inequal(pm1*(dm12+am21)-pm12*(dm1+am21) <= 0, pm1 = 0 .. 1, am21 = 0 .. 1, color = "Nautical 1");


 

inequal(pm1*(dm12+am21)-pm12*(dm1+am21) < 0, pm1 = 0 .. 1, am21 = 0 .. 1, color = "Nautical 1")

Thank you!

Hello everyone,

I would have a question about how to colour a region of complicated inequalities.

I'm curious about the region where my 'lambdas' are all negatives regarding the parameters 'pm2' and 'am2', but I always find difficulties even if I try with implicitplot or inequal commands. Also, I would like to put into the same graph with different colours when they are separately smaller than 0.

I've already tried plenty of things, I hopefully attached some pics by snipping tool about them.  And here is an example of my problem:

p61w:= implicitplot([lambda61 <= 0], pm2 = 0 .. 1, am2 = 0 .. 1)

in61 := inequal(lambda61 <= 0, pm2 = 0 .. 1, am2 = 0 .. 1)

 

display(in61,p61w)

 

 

So, the main issue that it is not just coloured where my condition is true, but elsewhere too. In plot 'in61' as you can see, there is a region approx. pm2=0..0.6 where it shouldn't be coloured since my condition is not true there. In the graph; 'display(in61, p61w)',  it is visible that under the red line should be just coloured however my 'inequal' command coloured it outside too. 

Also, I tried with implicitplot, for example:

p6 := implicitplot([lambda61 <= 0], pm2 = 0 .. 1, am2 = 0 .. 1, filled = true, coloring = [blue, white], transparency = .5)

But the result is similarly wrong. And I'm not sure why it happens and how can I fix it.

(It's okay if for example for these particular lambdas (lambda61,lambda62) never negatives together, but I have more systems and I don't think it works properly)

I read similar questions too but I couldn't find an answer so, I would very appreciate any suggestions.

This is my first post in Maple, so please let me know if I have mistaken something.

Is it possible to make notes above and next to a matrix like in the image above? How?

I'm sorry if this is really obvious but I'm new to Maple.

Thank you in advance :)

One of the forums asked a question: what is the maximum area of a triangle inscribed in a given ellipse x^2/16 + y^2/3 - 1 = 0? It turned out to be 9, but there are infinitely many such triangles. There was a desire to show them in one of the possible ways. This is a complete (as far as possible) set of such triangles.
(This is not an example of Maple programming; it is just an implementation of a Maple-based algorithm and the work of the Optimization package).
MAX_S_TRIAN_ANINATION.mw

Problems with incomplete worksheet.

I have saved a .mw worksheet, which i cannot open in Maple, and i get an error code:
"There were problems during the loading process. Your worksheet may be incomplete"

I have attached a link, where a user is helped with the same problem, but i cannot understand the solution there has been given:

https://www.mapleprimes.com/questions/125503-Incomplete-Worksheet

I have attached the worksheets, and would be so gratefull for any help:

Beregningsdokument.mw
Beregningsdokument_2.mw


Best regards

Henrik Jorgensen

Error, numeric exception: division by zeroprpblem_maple_2.mw
 

restart;

Normalizer := simplify

simplify

(1)

asa := (1/1176215040)*(11762150400*Pi^(3/2)*c[2]*c[3]*sqrt(2)*x^(3/2)*cos(x)*FresnelS(sqrt(2)*sqrt(x)/sqrt(Pi))-11762150400*Pi^(3/2)*c[2]*c[3]*sqrt(2)*x^(3/2)*sin(x)*FresnelC(sqrt(2)*sqrt(x)/sqrt(Pi))-289348899840*Pi^(3/2)*c[5]*c[2]*sqrt(2)*x^(3/2)*cos(x)*FresnelS(sqrt(2)*sqrt(x)/sqrt(Pi))+289348899840*Pi^(3/2)*c[5]*c[2]*sqrt(2)*x^(3/2)*sin(x)*FresnelC(sqrt(2)*sqrt(x)/sqrt(Pi))-1176215040*Pi^(3/2)*c[0]*c[1]*sqrt(2)*x^(3/2)*cos(x)*FresnelS(sqrt(2)*sqrt(x)/sqrt(Pi))+1176215040*Pi^(3/2)*c[0]*c[1]*sqrt(2)*x^(3/2)*sin(x)*FresnelC(sqrt(2)*sqrt(x)/sqrt(Pi))-11762150400*Pi^(3/2)*c[3]*c[4]*sqrt(2)*x^(3/2)*cos(x)*FresnelS(sqrt(2)*sqrt(x)/sqrt(Pi))+11762150400*Pi^(3/2)*c[3]*c[4]*sqrt(2)*x^(3/2)*sin(x)*FresnelC(sqrt(2)*sqrt(x)/sqrt(Pi))+289348899840*Pi^(3/2)*c[5]*c[4]*sqrt(2)*x^(3/2)*cos(x)*FresnelS(sqrt(2)*sqrt(x)/sqrt(Pi))-289348899840*Pi^(3/2)*c[5]*c[4]*sqrt(2)*x^(3/2)*sin(x)*FresnelC(sqrt(2)*sqrt(x)/sqrt(Pi))+5881075200*Pi^(3/2)*c[0]*c[3]*sqrt(2)*x^(3/2)*cos(x)*FresnelS(sqrt(2)*sqrt(x)/sqrt(Pi))-5881075200*Pi^(3/2)*c[0]*c[3]*sqrt(2)*x^(3/2)*sin(x)*FresnelC(sqrt(2)*sqrt(x)/sqrt(Pi))-144674449920*Pi^(3/2)*c[5]*c[0]*sqrt(2)*x^(3/2)*cos(x)*FresnelS(sqrt(2)*sqrt(x)/sqrt(Pi))+144674449920*Pi^(3/2)*c[5]*c[0]*sqrt(2)*x^(3/2)*sin(x)*FresnelC(sqrt(2)*sqrt(x)/sqrt(Pi))-2352430080*Pi^(3/2)*c[1]*c[2]*sqrt(2)*x^(3/2)*cos(x)*FresnelS(sqrt(2)*sqrt(x)/sqrt(Pi))+2352430080*Pi^(3/2)*c[1]*c[2]*sqrt(2)*x^(3/2)*sin(x)*FresnelC(sqrt(2)*sqrt(x)/sqrt(Pi))+1176215040*Pi^(3/2)*c[1]*c[2]*sqrt(2)*sqrt(x)*sin(x)*FresnelS(sqrt(2)*sqrt(x)/sqrt(Pi))-1176215040*Pi^(3/2)*c[1]*c[4]*sqrt(2)*sqrt(x)*cos(x)*FresnelC(sqrt(2)*sqrt(x)/sqrt(Pi))-1176215040*Pi^(3/2)*c[1]*c[4]*sqrt(2)*sqrt(x)*sin(x)*FresnelS(sqrt(2)*sqrt(x)/sqrt(Pi))-5881075200*Pi^(3/2)*c[2]*c[3]*sqrt(2)*sqrt(x)*cos(x)*FresnelC(sqrt(2)*sqrt(x)/sqrt(Pi))-5881075200*Pi^(3/2)*c[2]*c[3]*sqrt(2)*sqrt(x)*sin(x)*FresnelS(sqrt(2)*sqrt(x)/sqrt(Pi))+144674449920*Pi^(3/2)*c[5]*c[2]*sqrt(2)*sqrt(x)*cos(x)*FresnelC(sqrt(2)*sqrt(x)/sqrt(Pi))+588107520*Pi^(3/2)*c[0]*c[1]*sqrt(2)*sqrt(x)*cos(x)*FresnelC(sqrt(2)*sqrt(x)/sqrt(Pi))+588107520*Pi^(3/2)*c[0]*c[1]*sqrt(2)*sqrt(x)*sin(x)*FresnelS(sqrt(2)*sqrt(x)/sqrt(Pi))+716931072*c[5]*c[3]*x^12*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+716931072*x^11*c[3]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-1158676480*x^13*c[4]*c[5]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+716931072*x^13*c[4]*c[5]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*x^11*c[4]*c[5]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-22224863232*x^11*c[4]*c[5]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+716931072*c[5]*c[2]*x^11*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+716931072*c[2]*c[4]*x^10*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[2]*c[4]*x^8*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-1838182301696*c[5]*c[4]*x^9*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+32944912678912*x^7*c[4]*c[5]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+592633147392*x^7*c[4]*c[5]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+428356051643520*x^5*c[4]*c[5]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+716931072*c[4]*c[0]*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*x^6*c[0]*c[4]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-926941184*c[5]*c[2]*x^11*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+28590342144*c[5]*c[2]*x^9*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-6273146880*c[5]*c[2]*x^9*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-8065474560*c[5]*c[2]*x^9*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-450739634176*c[5]*c[2]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+276018462720*c[5]*c[2]*x^7*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+8342470656*c[2]*c[3]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+16395272192*c[2]*c[4]*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-1254629376*c[2]*c[4]*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+191330979840*c[2]*c[4]*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-579338240*c[4]*c[0]*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-225760870400*c[5]*c[1]*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+8800821839169360*c[5]^2*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-8800821839169360*c[5]^2*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-29999084544*c[2]^2*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+32149877760*c[2]^2*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+3763888128*c[2]^2*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+69004615680*x^2*c[4]^2*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+55517349888*c[4]^2*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-5045766485760*c[4]^2*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+358465536*c[2]^2*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-2352430080*Pi*c[1]*c[2]*x+2352430080*Pi*c[1]*c[4]*x+11762150400*Pi*c[2]*c[3]*x-289348899840*Pi*c[5]*c[2]*x-1176215040*Pi*c[0]*c[1]*x-11762150400*Pi*c[3]*c[4]*x+289348899840*Pi*c[5]*c[4]*x+27601846272*x^3*c[1]*c[4]*Pi+27601846272*x^3*c[3]*c[4]*Pi-82805538816*x^3*c[4]*c[5]*Pi+1254629376*x^3*c[0]*c[1]*Pi+1254629376*x^3*c[0]*c[3]*Pi-3763888128*x^3*c[0]*c[5]*Pi+31365734400*x^2*c[0]*c[4]*Pi+3136573440*x^2*c[0]*c[2]*Pi+69004615680*x^2*c[2]*c[4]*Pi+869007360*x^6*c[0]*c[4]*Pi+17647534080*x^7*c[4]*c[5]*Pi+802160640*x^7*c[0]*c[5]*Pi+23658725376*x^4*c[2]*c[4]*Pi+1075396608*x^4*c[0]*c[2]*Pi+955908096*x^5*c[0]*c[3]*Pi-955908096*x^5*c[0]*c[5]*Pi+21029978112*x^5*c[3]*c[4]*Pi-21029978112*x^5*c[4]*c[5]*Pi-6810845184*c[4]^2*x^10*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-405536768*c[3]^2*x^10*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-13830328512000*c[5]^2*x^8*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-8754008440320*c[5]^2*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+19885785088*c[4]^2*x^10*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+5881075200*Pi^(3/2)*c[3]*c[4]*sqrt(2)*sqrt(x)*cos(x)*FresnelC(sqrt(2)*sqrt(x)/sqrt(Pi))+5881075200*Pi^(3/2)*c[3]*c[4]*sqrt(2)*sqrt(x)*sin(x)*FresnelS(sqrt(2)*sqrt(x)/sqrt(Pi))-144674449920*Pi^(3/2)*c[5]*c[4]*sqrt(2)*sqrt(x)*cos(x)*FresnelC(sqrt(2)*sqrt(x)/sqrt(Pi))-144674449920*Pi^(3/2)*c[5]*c[4]*sqrt(2)*sqrt(x)*sin(x)*FresnelS(sqrt(2)*sqrt(x)/sqrt(Pi))-2940537600*Pi^(3/2)*c[0]*c[3]*sqrt(2)*sqrt(x)*cos(x)*FresnelC(sqrt(2)*sqrt(x)/sqrt(Pi))-2940537600*Pi^(3/2)*c[0]*c[3]*sqrt(2)*sqrt(x)*sin(x)*FresnelS(sqrt(2)*sqrt(x)/sqrt(Pi))+72337224960*Pi^(3/2)*c[5]*c[0]*sqrt(2)*sqrt(x)*cos(x)*FresnelC(sqrt(2)*sqrt(x)/sqrt(Pi))+72337224960*Pi^(3/2)*c[5]*c[0]*sqrt(2)*sqrt(x)*sin(x)*FresnelS(sqrt(2)*sqrt(x)/sqrt(Pi))+1176215040*Pi^(3/2)*c[1]*c[2]*sqrt(2)*sqrt(x)*cos(x)*FresnelC(sqrt(2)*sqrt(x)/sqrt(Pi))+2352430080*Pi^(3/2)*c[1]*c[4]*sqrt(2)*x^(3/2)*cos(x)*FresnelS(sqrt(2)*sqrt(x)/sqrt(Pi))-2352430080*Pi^(3/2)*c[1]*c[4]*sqrt(2)*x^(3/2)*sin(x)*FresnelC(sqrt(2)*sqrt(x)/sqrt(Pi))+228969861120*c[5]*c[1]*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+356001085440*c[5]*c[3]*x^8*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+716931072*c[1]*c[3]*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[1]*c[3]*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+127344881664*c[5]*c[3]*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-10565155560960*c[5]*c[3]*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+26041253888*c[3]*c[4]*x^9*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-411923972096*c[3]*c[4]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-60715100160*c[3]*c[4]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-5531739333120*c[3]*c[4]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+716931072*c[1]*c[4]*x^9*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[1]*c[4]*x^7*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+1781465088*c[2]^2*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-289669120*c[2]^2*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+1337160464640*c[3]^2*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-87979326507072*c[4]^2*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+5881075200*Pi*c[0]*c[3]*x-144674449920*Pi*c[5]*c[0]*x-3136573440*c[5]^2*x^12*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-15862099968*c[5]^2*x^12*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-3136573440*c[2]^2*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+87989363542080*c[4]^2*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+1185624760320*c[2]*c[3]*x^3*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6631612416*c[3]*c[4]*x^9*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+263472168960*c[3]*c[4]*x^7*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+473981054976*c[5]*c[4]*x^9*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-17407590520320*c[5]*c[4]*x^7*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+716931072*c[1]*c[2]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[1]*c[2]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+3943120896*c[2]*c[3]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+120758077440*c[2]*c[3]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-55696582656*c[5]*c[2]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6137098007040*c[5]*c[2]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+3291740135424*c[5]*c[2]*x^5*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+5231009152512*c[5]*c[2]*x^5*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+70978108481280*c[5]*c[2]*x^3*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-71286747307776*c[5]*c[2]*x^3*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+5185077248*c[1]*c[3]*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-89392343040*c[1]*c[3]*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-463470592*c[1]*c[2]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+58455228416*c[5]*c[4]*x^11*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-695205888*c[1]*c[4]*x^9*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+11355029504*c[1]*c[4]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+358465536*c[1]*c[4]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+152123811840*c[1]*c[4]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-579338240*c[1]*c[3]*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-695205888*c[2]*c[3]*x^9*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+716931072*c[2]*c[3]*x^9*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[2]*c[3]*x^7*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-926941184*c[3]*c[4]*x^11*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-6273146880*c[3]*c[4]*x^9*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-463470592*c[0]*c[3]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+716931072*c[0]*c[3]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[0]*c[3]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+15062794240*c[5]*c[0]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-3226189824*c[5]*c[0]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+183489546240*c[5]*c[0]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-695205888*c[5]*c[0]*x^9*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+716931072*c[5]*c[0]*x^9*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[5]*c[0]*x^7*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+450098288640*c[5]*c[4]*x^9*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-811073536*c[2]*c[4]*x^10*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-1042808832*c[5]*c[3]*x^12*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+41277849600*c[5]*c[3]*x^10*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-946921111552*c[5]*c[3]*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-811073536*c[5]*c[1]*x^10*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+716931072*c[5]*c[1]*x^10*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+21261713408*c[5]*c[1]*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-6273146880*c[5]*c[1]*x^8*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-5556215808*c[5]*c[1]*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+174863969280*c[4]^2*x^8*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+5341870616576*c[4]^2*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+2630800972800*c[4]^2*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-95590809600*x^5*c[0]*c[5]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-156246165504*x^5*c[0]*c[5]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-2220693995520*x^3*c[0]*c[5]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+2070138470400*x^3*c[0]*c[5]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-70824099840*x^5*c[1]*c[4]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-137426724864*x^5*c[1]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-1558876999680*x^3*c[1]*c[4]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+1533784412160*x^3*c[1]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+3074618646528*x^5*c[3]*c[4]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+4660600868352*x^5*c[3]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+66544561923840*x^3*c[3]*c[4]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-66584710063872*x^3*c[3]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-263853041307648*x^5*c[4]*c[5]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-355765111498368*x^5*c[4]*c[5]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-5713675981453440*x^3*c[4]*c[5]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+5714067425818752*x^3*c[4]*c[5]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-165799362560*c[2]*c[4]*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-123536185344*c[2]*c[4]*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-2820171594240*x^4*c[2]*c[4]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-54747463680*c[2]*c[3]*x^5*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-104268662784*c[2]*c[3]*x^5*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-1173078466560*c[2]*c[3]*x^3*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+144674449920*Pi^(3/2)*c[5]*c[2]*sqrt(2)*sqrt(x)*sin(x)*FresnelS(sqrt(2)*sqrt(x)/sqrt(Pi))-454255493120*c[4]^2*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-637272064*c[5]^2*x^14*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+358465536*c[5]^2*x^14*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-3136573440*x^10*c[4]^2*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+358465536*c[4]^2*x^12*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+358465536*x^4*c[0]^2*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-1568286720*x^2*c[0]^2*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-173801472*c[1]^2*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+3136573440*c[1]^2*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+40495742976*c[5]^2*x^12*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-1679392931840*c[5]^2*x^10*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+279155036160*c[5]^2*x^10*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+538280810496*c[5]^2*x^10*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+43491569811456*c[5]^2*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-539983223749632*c[5]^2*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+464578475961600*c[5]^2*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-219223333023552*c[5]^2*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-521404416*c[4]^2*x^12*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+358465536*c[3]^2*x^10*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-3136573440*c[3]^2*x^8*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+7676231680*c[3]^2*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-268849152*c[3]^2*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-80075407360*c[3]^2*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+92528916480*c[3]^2*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-56928807936*c[3]^2*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-1337160464640*c[3]^2*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+358465536*c[1]^2*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-3136573440*c[1]^2*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+3820738521600*c[5]*c[1]*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+11038361411584*c[5]*c[3]*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-181886855230080*c[5]*c[3]*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+2784325040640*x^4*c[2]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-69004615680*x^2*c[2]*c[4]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-347602944*x^6*c[0]*c[2]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+6990077952*x^4*c[0]*c[2]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+7270694912*x^6*c[0]*c[4]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-120220379136*c[4]*c[0]*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-3136573440*x^2*c[0]*c[2]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-31365734400*x^2*c[0]*c[4]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+716931072*x^6*c[0]*c[2]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*x^4*c[0]*c[2]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+1792327680*x^6*c[0]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+114484930560*c[4]*c[0]*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+1998716928*c[1]*c[2]*x^5*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+7348543488*c[1]*c[2]*x^5*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+40775454720*c[1]*c[2]*x^3*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-43284713472*c[1]*c[2]*x^3*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+4660051968*c[1]*c[3]*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+89392343040*c[1]*c[3]*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-132856289280*c[5]*c[1]*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-3820738521600*c[5]*c[1]*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+5614197608448*c[5]*c[3]*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+181886855230080*c[5]*c[3]*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-173801472*x^5*c[0]*c[1]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+716931072*x^5*c[0]*c[1]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*x^3*c[0]*c[1]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+3763888128*x^3*c[0]*c[1]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[5]*c[3]*x^10*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-14338621440*c[5]*c[3]*x^10*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+2520121344*x^5*c[0]*c[3]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+5197750272*x^5*c[0]*c[3]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+59594895360*x^3*c[0]*c[3]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-54576377856*x^3*c[0]*c[3]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+1244672*x^2*Pi-882161280*x^(5/2)*c[3]*Pi^(3/2)-882161280*x^(5/2)*c[1]*Pi^(3/2)-735134400*x^(7/2)*c[2]*Pi^(3/2)-530675145*x^(13/2)*c[5]*Pi^(3/2)-578918340*x^(11/2)*c[4]*Pi^(3/2)+2352430080*c[4]*x^(3/2)*Pi^(3/2)-2352430080*c[2]*x^(3/2)*Pi^(3/2)-1176215040*c[0]*x^(3/2)*Pi^(3/2)+1996488704*x^8*c[4]*sqrt(Pi)+2867724288*x^4*c[0]*sqrt(Pi)+2139095040*x^7*c[3]*sqrt(Pi)+5735448576*x^4*c[2]*sqrt(Pi)-2139095040*x^7*c[5]*sqrt(Pi)+2549088256*x^5*c[1]*sqrt(Pi)+2549088256*x^5*c[3]*sqrt(Pi)-7647264768*x^5*c[5]*sqrt(Pi)+1879048192*x^9*c[5]*sqrt(Pi)+2317352960*x^6*c[2]*sqrt(Pi)+643242600*x^(9/2)*c[5]*Pi^(3/2)-643242600*x^(9/2)*c[3]*Pi^(3/2)+2646483840*x^(5/2)*c[5]*Pi^(3/2)+1568286720*x^2*c[0]^2*Pi-5735448576*x^4*c[4]*sqrt(Pi)+19118161920*x^6*c[4]^2*Pi-69004615680*x^2*c[4]^2*Pi)/(Pi^(3/2)*sqrt(x))

(1/1176215040)*(716931072*c[5]*c[3]*x^12*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+716931072*x^11*c[3]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-1158676480*x^13*c[4]*c[5]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+716931072*x^13*c[4]*c[5]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*x^11*c[4]*c[5]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-22224863232*x^11*c[4]*c[5]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+716931072*c[5]*c[2]*x^11*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+716931072*c[2]*c[4]*x^10*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[2]*c[4]*x^8*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-1838182301696*c[5]*c[4]*x^9*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+32944912678912*x^7*c[4]*c[5]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+592633147392*x^7*c[4]*c[5]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+428356051643520*x^5*c[4]*c[5]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+716931072*c[4]*c[0]*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*x^6*c[0]*c[4]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-926941184*c[5]*c[2]*x^11*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+28590342144*c[5]*c[2]*x^9*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-6273146880*c[5]*c[2]*x^9*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-8065474560*c[5]*c[2]*x^9*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-450739634176*c[5]*c[2]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+276018462720*c[5]*c[2]*x^7*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+8342470656*c[2]*c[3]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+16395272192*c[2]*c[4]*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-1254629376*c[2]*c[4]*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+191330979840*c[2]*c[4]*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-579338240*c[4]*c[0]*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-225760870400*c[5]*c[1]*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+8800821839169360*c[5]^2*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-8800821839169360*c[5]^2*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-29999084544*c[2]^2*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+32149877760*c[2]^2*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+3763888128*c[2]^2*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+69004615680*x^2*c[4]^2*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+55517349888*c[4]^2*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-5045766485760*c[4]^2*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+358465536*c[2]^2*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-2352430080*Pi*c[1]*c[2]*x+2352430080*Pi*c[1]*c[4]*x+11762150400*Pi*c[2]*c[3]*x-289348899840*Pi*c[5]*c[2]*x-1176215040*Pi*c[0]*c[1]*x-11762150400*Pi*c[3]*c[4]*x+289348899840*Pi*c[5]*c[4]*x+27601846272*x^3*c[1]*c[4]*Pi+27601846272*x^3*c[3]*c[4]*Pi-82805538816*x^3*c[4]*c[5]*Pi+1254629376*x^3*c[0]*c[1]*Pi+1254629376*x^3*c[0]*c[3]*Pi-3763888128*x^3*c[0]*c[5]*Pi+31365734400*x^2*c[0]*c[4]*Pi+3136573440*x^2*c[0]*c[2]*Pi+69004615680*x^2*c[2]*c[4]*Pi+869007360*x^6*c[0]*c[4]*Pi+17647534080*x^7*c[4]*c[5]*Pi+802160640*x^7*c[0]*c[5]*Pi+23658725376*x^4*c[2]*c[4]*Pi+1075396608*x^4*c[0]*c[2]*Pi+955908096*x^5*c[0]*c[3]*Pi-955908096*x^5*c[0]*c[5]*Pi+21029978112*x^5*c[3]*c[4]*Pi-21029978112*x^5*c[4]*c[5]*Pi-11762150400*Pi^(3/2)*c[3]*c[4]*2^(1/2)*x^(3/2)*cos(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))+11762150400*Pi^(3/2)*c[3]*c[4]*2^(1/2)*x^(3/2)*sin(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))+289348899840*Pi^(3/2)*c[5]*c[4]*2^(1/2)*x^(3/2)*cos(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))-289348899840*Pi^(3/2)*c[5]*c[4]*2^(1/2)*x^(3/2)*sin(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))+5881075200*Pi^(3/2)*c[0]*c[3]*2^(1/2)*x^(3/2)*cos(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))-5881075200*Pi^(3/2)*c[0]*c[3]*2^(1/2)*x^(3/2)*sin(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))-144674449920*Pi^(3/2)*c[5]*c[0]*2^(1/2)*x^(3/2)*cos(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))+144674449920*Pi^(3/2)*c[5]*c[0]*2^(1/2)*x^(3/2)*sin(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))-2352430080*Pi^(3/2)*c[1]*c[2]*2^(1/2)*x^(3/2)*cos(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))+2352430080*Pi^(3/2)*c[1]*c[2]*2^(1/2)*x^(3/2)*sin(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))+1176215040*Pi^(3/2)*c[1]*c[2]*2^(1/2)*x^(1/2)*sin(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))-1176215040*Pi^(3/2)*c[1]*c[4]*2^(1/2)*x^(1/2)*cos(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))-1176215040*Pi^(3/2)*c[1]*c[4]*2^(1/2)*x^(1/2)*sin(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))-5881075200*Pi^(3/2)*c[2]*c[3]*2^(1/2)*x^(1/2)*cos(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))-5881075200*Pi^(3/2)*c[2]*c[3]*2^(1/2)*x^(1/2)*sin(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))+144674449920*Pi^(3/2)*c[5]*c[2]*2^(1/2)*x^(1/2)*cos(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))+588107520*Pi^(3/2)*c[0]*c[1]*2^(1/2)*x^(1/2)*cos(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))+588107520*Pi^(3/2)*c[0]*c[1]*2^(1/2)*x^(1/2)*sin(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))+5881075200*Pi^(3/2)*c[3]*c[4]*2^(1/2)*x^(1/2)*cos(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))+5881075200*Pi^(3/2)*c[3]*c[4]*2^(1/2)*x^(1/2)*sin(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))-144674449920*Pi^(3/2)*c[5]*c[4]*2^(1/2)*x^(1/2)*cos(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))-144674449920*Pi^(3/2)*c[5]*c[4]*2^(1/2)*x^(1/2)*sin(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))-2940537600*Pi^(3/2)*c[0]*c[3]*2^(1/2)*x^(1/2)*cos(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))-2940537600*Pi^(3/2)*c[0]*c[3]*2^(1/2)*x^(1/2)*sin(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))+72337224960*Pi^(3/2)*c[5]*c[0]*2^(1/2)*x^(1/2)*cos(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))+72337224960*Pi^(3/2)*c[5]*c[0]*2^(1/2)*x^(1/2)*sin(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))+1176215040*Pi^(3/2)*c[1]*c[2]*2^(1/2)*x^(1/2)*cos(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))+2352430080*Pi^(3/2)*c[1]*c[4]*2^(1/2)*x^(3/2)*cos(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))-2352430080*Pi^(3/2)*c[1]*c[4]*2^(1/2)*x^(3/2)*sin(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))+144674449920*Pi^(3/2)*c[5]*c[2]*2^(1/2)*x^(1/2)*sin(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))+11762150400*Pi^(3/2)*c[2]*c[3]*2^(1/2)*x^(3/2)*cos(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))-11762150400*Pi^(3/2)*c[2]*c[3]*2^(1/2)*x^(3/2)*sin(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))-289348899840*Pi^(3/2)*c[5]*c[2]*2^(1/2)*x^(3/2)*cos(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))+289348899840*Pi^(3/2)*c[5]*c[2]*2^(1/2)*x^(3/2)*sin(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))-1176215040*Pi^(3/2)*c[0]*c[1]*2^(1/2)*x^(3/2)*cos(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))+1176215040*Pi^(3/2)*c[0]*c[1]*2^(1/2)*x^(3/2)*sin(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))-6810845184*c[4]^2*x^10*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-405536768*c[3]^2*x^10*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-13830328512000*c[5]^2*x^8*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-8754008440320*c[5]^2*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+19885785088*c[4]^2*x^10*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+1996488704*x^8*c[4]*Pi^(1/2)+2867724288*x^4*c[0]*Pi^(1/2)+2139095040*x^7*c[3]*Pi^(1/2)+5735448576*x^4*c[2]*Pi^(1/2)-2139095040*x^7*c[5]*Pi^(1/2)+2549088256*x^5*c[1]*Pi^(1/2)+228969861120*c[5]*c[1]*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+356001085440*c[5]*c[3]*x^8*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+716931072*c[1]*c[3]*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[1]*c[3]*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+127344881664*c[5]*c[3]*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-10565155560960*c[5]*c[3]*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+26041253888*c[3]*c[4]*x^9*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-411923972096*c[3]*c[4]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-60715100160*c[3]*c[4]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-5531739333120*c[3]*c[4]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+716931072*c[1]*c[4]*x^9*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[1]*c[4]*x^7*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+2549088256*x^5*c[3]*Pi^(1/2)-7647264768*x^5*c[5]*Pi^(1/2)+1879048192*x^9*c[5]*Pi^(1/2)+2317352960*x^6*c[2]*Pi^(1/2)-5735448576*x^4*c[4]*Pi^(1/2)+1781465088*c[2]^2*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-289669120*c[2]^2*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+1337160464640*c[3]^2*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-87979326507072*c[4]^2*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+5881075200*Pi*c[0]*c[3]*x-144674449920*Pi*c[5]*c[0]*x-3136573440*c[5]^2*x^12*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-15862099968*c[5]^2*x^12*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-3136573440*c[2]^2*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+87989363542080*c[4]^2*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+1185624760320*c[2]*c[3]*x^3*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6631612416*c[3]*c[4]*x^9*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+263472168960*c[3]*c[4]*x^7*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+473981054976*c[5]*c[4]*x^9*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-17407590520320*c[5]*c[4]*x^7*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+716931072*c[1]*c[2]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[1]*c[2]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+3943120896*c[2]*c[3]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+120758077440*c[2]*c[3]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-55696582656*c[5]*c[2]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6137098007040*c[5]*c[2]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+3291740135424*c[5]*c[2]*x^5*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+5231009152512*c[5]*c[2]*x^5*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+70978108481280*c[5]*c[2]*x^3*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-71286747307776*c[5]*c[2]*x^3*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+5185077248*c[1]*c[3]*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-89392343040*c[1]*c[3]*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-463470592*c[1]*c[2]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+58455228416*c[5]*c[4]*x^11*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-695205888*c[1]*c[4]*x^9*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+11355029504*c[1]*c[4]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+358465536*c[1]*c[4]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+152123811840*c[1]*c[4]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-579338240*c[1]*c[3]*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-695205888*c[2]*c[3]*x^9*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+716931072*c[2]*c[3]*x^9*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[2]*c[3]*x^7*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-926941184*c[3]*c[4]*x^11*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-6273146880*c[3]*c[4]*x^9*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-463470592*c[0]*c[3]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+716931072*c[0]*c[3]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[0]*c[3]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+15062794240*c[5]*c[0]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-3226189824*c[5]*c[0]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+183489546240*c[5]*c[0]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-695205888*c[5]*c[0]*x^9*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+716931072*c[5]*c[0]*x^9*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[5]*c[0]*x^7*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+450098288640*c[5]*c[4]*x^9*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-811073536*c[2]*c[4]*x^10*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-1042808832*c[5]*c[3]*x^12*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+41277849600*c[5]*c[3]*x^10*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-946921111552*c[5]*c[3]*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-811073536*c[5]*c[1]*x^10*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+716931072*c[5]*c[1]*x^10*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+21261713408*c[5]*c[1]*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-6273146880*c[5]*c[1]*x^8*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-5556215808*c[5]*c[1]*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+174863969280*c[4]^2*x^8*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+5341870616576*c[4]^2*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+2630800972800*c[4]^2*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-95590809600*x^5*c[0]*c[5]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-156246165504*x^5*c[0]*c[5]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-2220693995520*x^3*c[0]*c[5]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+2070138470400*x^3*c[0]*c[5]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-70824099840*x^5*c[1]*c[4]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-137426724864*x^5*c[1]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-1558876999680*x^3*c[1]*c[4]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+1533784412160*x^3*c[1]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+3074618646528*x^5*c[3]*c[4]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+4660600868352*x^5*c[3]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+66544561923840*x^3*c[3]*c[4]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-66584710063872*x^3*c[3]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-263853041307648*x^5*c[4]*c[5]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-355765111498368*x^5*c[4]*c[5]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-5713675981453440*x^3*c[4]*c[5]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+5714067425818752*x^3*c[4]*c[5]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-165799362560*c[2]*c[4]*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-123536185344*c[2]*c[4]*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-2820171594240*x^4*c[2]*c[4]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-54747463680*c[2]*c[3]*x^5*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-104268662784*c[2]*c[3]*x^5*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-1173078466560*c[2]*c[3]*x^3*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-454255493120*c[4]^2*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-637272064*c[5]^2*x^14*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+358465536*c[5]^2*x^14*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-3136573440*x^10*c[4]^2*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+358465536*c[4]^2*x^12*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+358465536*x^4*c[0]^2*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-1568286720*x^2*c[0]^2*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-173801472*c[1]^2*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+3136573440*c[1]^2*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+40495742976*c[5]^2*x^12*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-1679392931840*c[5]^2*x^10*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+279155036160*c[5]^2*x^10*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+538280810496*c[5]^2*x^10*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+43491569811456*c[5]^2*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-539983223749632*c[5]^2*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+464578475961600*c[5]^2*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-219223333023552*c[5]^2*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-521404416*c[4]^2*x^12*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+358465536*c[3]^2*x^10*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-3136573440*c[3]^2*x^8*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+7676231680*c[3]^2*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-268849152*c[3]^2*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-80075407360*c[3]^2*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+92528916480*c[3]^2*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-56928807936*c[3]^2*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-1337160464640*c[3]^2*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+358465536*c[1]^2*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-3136573440*c[1]^2*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+3820738521600*c[5]*c[1]*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+11038361411584*c[5]*c[3]*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-181886855230080*c[5]*c[3]*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+2784325040640*x^4*c[2]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-69004615680*x^2*c[2]*c[4]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-347602944*x^6*c[0]*c[2]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+6990077952*x^4*c[0]*c[2]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+7270694912*x^6*c[0]*c[4]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-120220379136*c[4]*c[0]*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-3136573440*x^2*c[0]*c[2]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-31365734400*x^2*c[0]*c[4]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+716931072*x^6*c[0]*c[2]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*x^4*c[0]*c[2]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+1792327680*x^6*c[0]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+114484930560*c[4]*c[0]*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+1998716928*c[1]*c[2]*x^5*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+7348543488*c[1]*c[2]*x^5*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+40775454720*c[1]*c[2]*x^3*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-43284713472*c[1]*c[2]*x^3*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+4660051968*c[1]*c[3]*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+89392343040*c[1]*c[3]*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-132856289280*c[5]*c[1]*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-3820738521600*c[5]*c[1]*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+5614197608448*c[5]*c[3]*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+181886855230080*c[5]*c[3]*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-173801472*x^5*c[0]*c[1]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+716931072*x^5*c[0]*c[1]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*x^3*c[0]*c[1]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+3763888128*x^3*c[0]*c[1]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[5]*c[3]*x^10*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-14338621440*c[5]*c[3]*x^10*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+2520121344*x^5*c[0]*c[3]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+5197750272*x^5*c[0]*c[3]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+59594895360*x^3*c[0]*c[3]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-54576377856*x^3*c[0]*c[3]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+1244672*x^2*Pi-882161280*x^(5/2)*c[3]*Pi^(3/2)-882161280*x^(5/2)*c[1]*Pi^(3/2)-735134400*x^(7/2)*c[2]*Pi^(3/2)-530675145*x^(13/2)*c[5]*Pi^(3/2)-578918340*x^(11/2)*c[4]*Pi^(3/2)+2352430080*c[4]*x^(3/2)*Pi^(3/2)-2352430080*c[2]*x^(3/2)*Pi^(3/2)-1176215040*c[0]*x^(3/2)*Pi^(3/2)+643242600*x^(9/2)*c[5]*Pi^(3/2)-643242600*x^(9/2)*c[3]*Pi^(3/2)+2646483840*x^(5/2)*c[5]*Pi^(3/2)+1568286720*x^2*c[0]^2*Pi+19118161920*x^6*c[4]^2*Pi-69004615680*x^2*c[4]^2*Pi)/(Pi^(3/2)*x^(1/2))

(2)

simplify(asa)

(1/1176215040)*(19118161920*x^6*c[4]^2*Pi-69004615680*x^2*c[4]^2*Pi+1568286720*x^2*c[0]^2*Pi-5735448576*x^4*c[4]*Pi^(1/2)+1996488704*x^8*c[4]*Pi^(1/2)+2867724288*x^4*c[0]*Pi^(1/2)+2139095040*x^7*c[3]*Pi^(1/2)+5735448576*x^4*c[2]*Pi^(1/2)-2139095040*x^7*c[5]*Pi^(1/2)+2549088256*x^5*c[1]*Pi^(1/2)+2549088256*x^5*c[3]*Pi^(1/2)-7647264768*x^5*c[5]*Pi^(1/2)+1879048192*x^9*c[5]*Pi^(1/2)+2317352960*x^6*c[2]*Pi^(1/2)+643242600*x^(9/2)*c[5]*Pi^(3/2)-643242600*x^(9/2)*c[3]*Pi^(3/2)+2646483840*x^(5/2)*c[5]*Pi^(3/2)-882161280*x^(5/2)*c[3]*Pi^(3/2)-882161280*x^(5/2)*c[1]*Pi^(3/2)-735134400*x^(7/2)*c[2]*Pi^(3/2)-530675145*x^(13/2)*c[5]*Pi^(3/2)-578918340*x^(11/2)*c[4]*Pi^(3/2)+2352430080*c[4]*x^(3/2)*Pi^(3/2)-2352430080*c[2]*x^(3/2)*Pi^(3/2)-1176215040*c[0]*x^(3/2)*Pi^(3/2)+1244672*x^2*Pi+716931072*c[5]*c[3]*x^12*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+716931072*x^11*c[3]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-1158676480*x^13*c[4]*c[5]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+716931072*x^13*c[4]*c[5]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*x^11*c[4]*c[5]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-22224863232*x^11*c[4]*c[5]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+716931072*c[5]*c[2]*x^11*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-2352430080*Pi*c[1]*c[2]*x+2352430080*Pi*c[1]*c[4]*x+11762150400*Pi*c[2]*c[3]*x-289348899840*Pi*c[5]*c[2]*x-1176215040*Pi*c[0]*c[1]*x-11762150400*Pi*c[3]*c[4]*x+289348899840*Pi*c[5]*c[4]*x+27601846272*x^3*c[1]*c[4]*Pi+27601846272*x^3*c[3]*c[4]*Pi-82805538816*x^3*c[4]*c[5]*Pi+1254629376*x^3*c[0]*c[1]*Pi+1254629376*x^3*c[0]*c[3]*Pi-3763888128*x^3*c[0]*c[5]*Pi+31365734400*x^2*c[0]*c[4]*Pi+3136573440*x^2*c[0]*c[2]*Pi+69004615680*x^2*c[2]*c[4]*Pi+869007360*x^6*c[0]*c[4]*Pi+17647534080*x^7*c[4]*c[5]*Pi+802160640*x^7*c[0]*c[5]*Pi+23658725376*x^4*c[2]*c[4]*Pi+1075396608*x^4*c[0]*c[2]*Pi+955908096*x^5*c[0]*c[3]*Pi-955908096*x^5*c[0]*c[5]*Pi+21029978112*x^5*c[3]*c[4]*Pi-21029978112*x^5*c[4]*c[5]*Pi+5881075200*Pi*c[0]*c[3]*x-144674449920*Pi*c[5]*c[0]*x-3136573440*c[5]^2*x^12*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-15862099968*c[5]^2*x^12*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+716931072*c[2]*c[4]*x^10*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[2]*c[4]*x^8*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-1838182301696*c[5]*c[4]*x^9*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+32944912678912*c[5]*c[4]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+592633147392*c[5]*c[4]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+428356051643520*c[5]*c[4]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+716931072*c[4]*c[0]*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[4]*c[0]*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-926941184*c[5]*c[2]*x^11*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+28590342144*c[5]*c[2]*x^9*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-6273146880*c[5]*c[2]*x^9*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-8065474560*c[5]*c[2]*x^9*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-450739634176*c[5]*c[2]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+276018462720*c[5]*c[2]*x^7*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+8342470656*c[2]*c[3]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+16395272192*c[2]*c[4]*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-1254629376*c[2]*c[4]*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+191330979840*c[2]*c[4]*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-579338240*c[4]*c[0]*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-225760870400*c[5]*c[1]*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+3820738521600*c[5]*c[1]*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+11038361411584*c[5]*c[3]*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-181886855230080*c[5]*c[3]*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+2784325040640*x^4*c[2]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-69004615680*x^2*c[2]*c[4]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-347602944*x^6*c[0]*c[2]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+6990077952*x^4*c[0]*c[2]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+7270694912*c[4]*c[0]*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-120220379136*c[4]*c[0]*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-3136573440*x^2*c[0]*c[2]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-31365734400*x^2*c[0]*c[4]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+716931072*x^6*c[0]*c[2]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*x^4*c[0]*c[2]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+1792327680*c[4]*c[0]*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+114484930560*c[4]*c[0]*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+1998716928*c[1]*c[2]*x^5*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+7348543488*c[1]*c[2]*x^5*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+40775454720*c[1]*c[2]*x^3*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-43284713472*c[1]*c[2]*x^3*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+4660051968*c[1]*c[3]*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+89392343040*c[1]*c[3]*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-132856289280*c[5]*c[1]*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-3820738521600*c[5]*c[1]*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+5614197608448*c[5]*c[3]*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+181886855230080*c[5]*c[3]*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-173801472*x^5*c[0]*c[1]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+716931072*x^5*c[0]*c[1]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*x^3*c[0]*c[1]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+3763888128*x^3*c[0]*c[1]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[5]*c[3]*x^10*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-14338621440*c[5]*c[3]*x^10*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+2520121344*x^5*c[0]*c[3]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+5197750272*x^5*c[0]*c[3]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+59594895360*x^3*c[0]*c[3]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-54576377856*x^3*c[0]*c[3]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-95590809600*x^5*c[0]*c[5]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-156246165504*x^5*c[0]*c[5]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-2220693995520*x^3*c[0]*c[5]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+2070138470400*x^3*c[0]*c[5]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-70824099840*x^5*c[1]*c[4]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-137426724864*x^5*c[1]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-1558876999680*x^3*c[1]*c[4]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+1533784412160*x^3*c[1]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+3074618646528*x^5*c[3]*c[4]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+4660600868352*x^5*c[3]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+66544561923840*x^3*c[3]*c[4]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-66584710063872*x^3*c[3]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-263853041307648*x^5*c[4]*c[5]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-355765111498368*x^5*c[4]*c[5]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-5713675981453440*x^3*c[4]*c[5]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+5714067425818752*x^3*c[4]*c[5]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-165799362560*x^6*c[2]*c[4]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-123536185344*x^6*c[2]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-2820171594240*x^4*c[2]*c[4]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-54747463680*c[2]*c[3]*x^5*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-104268662784*c[2]*c[3]*x^5*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-1173078466560*c[2]*c[3]*x^3*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+1185624760320*c[2]*c[3]*x^3*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6631612416*c[3]*c[4]*x^9*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+263472168960*c[3]*c[4]*x^7*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+473981054976*c[5]*c[4]*x^9*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-17407590520320*c[5]*c[4]*x^7*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+716931072*c[1]*c[2]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[1]*c[2]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+3943120896*c[2]*c[3]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+120758077440*c[2]*c[3]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-55696582656*c[5]*c[2]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6137098007040*c[5]*c[2]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+3291740135424*c[5]*c[2]*x^5*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+5231009152512*c[5]*c[2]*x^5*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+70978108481280*c[5]*c[2]*x^3*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-71286747307776*c[5]*c[2]*x^3*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+5185077248*c[1]*c[3]*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-89392343040*c[1]*c[3]*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-463470592*c[1]*c[2]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+58455228416*c[5]*c[4]*x^11*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-695205888*c[1]*c[4]*x^9*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+11355029504*c[1]*c[4]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+358465536*c[1]*c[4]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+152123811840*c[1]*c[4]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-579338240*c[1]*c[3]*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-695205888*c[2]*c[3]*x^9*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+716931072*c[2]*c[3]*x^9*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[2]*c[3]*x^7*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-926941184*c[3]*c[4]*x^11*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-6273146880*c[3]*c[4]*x^9*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-463470592*c[0]*c[3]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+716931072*c[0]*c[3]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[0]*c[3]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+15062794240*c[5]*c[0]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-3226189824*c[5]*c[0]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+183489546240*c[5]*c[0]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-695205888*c[5]*c[0]*x^9*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+716931072*c[5]*c[0]*x^9*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[5]*c[0]*x^7*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+450098288640*c[5]*c[4]*x^9*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-811073536*c[2]*c[4]*x^10*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-1042808832*c[5]*c[3]*x^12*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+41277849600*c[5]*c[3]*x^10*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-946921111552*c[5]*c[3]*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-811073536*c[5]*c[1]*x^10*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+716931072*c[5]*c[1]*x^10*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+21261713408*c[5]*c[1]*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-6273146880*c[5]*c[1]*x^8*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-5556215808*c[5]*c[1]*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+228969861120*c[5]*c[1]*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+356001085440*c[5]*c[3]*x^8*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+716931072*c[1]*c[3]*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[1]*c[3]*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+127344881664*c[5]*c[3]*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-10565155560960*c[5]*c[3]*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+26041253888*c[3]*c[4]*x^9*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-411923972096*c[3]*c[4]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-60715100160*c[3]*c[4]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-5531739333120*c[3]*c[4]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+716931072*c[1]*c[4]*x^9*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[1]*c[4]*x^7*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-637272064*c[5]^2*x^14*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+358465536*c[5]^2*x^14*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-3136573440*x^10*c[4]^2*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+358465536*c[4]^2*x^12*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+5881075200*Pi^(3/2)*c[3]*c[4]*2^(1/2)*x^(1/2)*cos(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))+5881075200*Pi^(3/2)*c[3]*c[4]*2^(1/2)*x^(1/2)*sin(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))-144674449920*Pi^(3/2)*c[5]*c[4]*2^(1/2)*x^(1/2)*cos(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))-144674449920*Pi^(3/2)*c[5]*c[4]*2^(1/2)*x^(1/2)*sin(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))-2940537600*Pi^(3/2)*c[0]*c[3]*2^(1/2)*x^(1/2)*cos(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))-2940537600*Pi^(3/2)*c[0]*c[3]*2^(1/2)*x^(1/2)*sin(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))+72337224960*Pi^(3/2)*c[5]*c[0]*2^(1/2)*x^(1/2)*cos(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))+72337224960*Pi^(3/2)*c[5]*c[0]*2^(1/2)*x^(1/2)*sin(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))+1176215040*Pi^(3/2)*c[1]*c[2]*2^(1/2)*x^(1/2)*cos(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))+2352430080*Pi^(3/2)*c[1]*c[4]*2^(1/2)*x^(3/2)*cos(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))-2352430080*Pi^(3/2)*c[1]*c[4]*2^(1/2)*x^(3/2)*sin(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))+11762150400*Pi^(3/2)*c[2]*c[3]*2^(1/2)*x^(3/2)*cos(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))-11762150400*Pi^(3/2)*c[2]*c[3]*2^(1/2)*x^(3/2)*sin(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))-289348899840*Pi^(3/2)*c[5]*c[2]*2^(1/2)*x^(3/2)*cos(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))+289348899840*Pi^(3/2)*c[5]*c[2]*2^(1/2)*x^(3/2)*sin(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))-1176215040*Pi^(3/2)*c[0]*c[1]*2^(1/2)*x^(3/2)*cos(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))+1176215040*Pi^(3/2)*c[0]*c[1]*2^(1/2)*x^(3/2)*sin(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))-11762150400*Pi^(3/2)*c[3]*c[4]*2^(1/2)*x^(3/2)*cos(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))+11762150400*Pi^(3/2)*c[3]*c[4]*2^(1/2)*x^(3/2)*sin(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))+289348899840*Pi^(3/2)*c[5]*c[4]*2^(1/2)*x^(3/2)*cos(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))-289348899840*Pi^(3/2)*c[5]*c[4]*2^(1/2)*x^(3/2)*sin(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))+5881075200*Pi^(3/2)*c[0]*c[3]*2^(1/2)*x^(3/2)*cos(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))-5881075200*Pi^(3/2)*c[0]*c[3]*2^(1/2)*x^(3/2)*sin(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))-144674449920*Pi^(3/2)*c[5]*c[0]*2^(1/2)*x^(3/2)*cos(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))+144674449920*Pi^(3/2)*c[5]*c[0]*2^(1/2)*x^(3/2)*sin(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))-2352430080*Pi^(3/2)*c[1]*c[2]*2^(1/2)*x^(3/2)*cos(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))+2352430080*Pi^(3/2)*c[1]*c[2]*2^(1/2)*x^(3/2)*sin(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))+1176215040*Pi^(3/2)*c[1]*c[2]*2^(1/2)*x^(1/2)*sin(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))-1176215040*Pi^(3/2)*c[1]*c[4]*2^(1/2)*x^(1/2)*cos(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))-1176215040*Pi^(3/2)*c[1]*c[4]*2^(1/2)*x^(1/2)*sin(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))-5881075200*Pi^(3/2)*c[2]*c[3]*2^(1/2)*x^(1/2)*cos(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))-5881075200*Pi^(3/2)*c[2]*c[3]*2^(1/2)*x^(1/2)*sin(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))+144674449920*Pi^(3/2)*c[5]*c[2]*2^(1/2)*x^(1/2)*cos(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))+144674449920*Pi^(3/2)*c[5]*c[2]*2^(1/2)*x^(1/2)*sin(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))+588107520*Pi^(3/2)*c[0]*c[1]*2^(1/2)*x^(1/2)*cos(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))+588107520*Pi^(3/2)*c[0]*c[1]*2^(1/2)*x^(1/2)*sin(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))-405536768*c[3]^2*x^10*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+358465536*x^4*c[0]^2*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-1568286720*x^2*c[0]^2*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-173801472*c[1]^2*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+3136573440*c[1]^2*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+40495742976*c[5]^2*x^12*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-1679392931840*c[5]^2*x^10*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+279155036160*c[5]^2*x^10*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+538280810496*c[5]^2*x^10*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+43491569811456*c[5]^2*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-13830328512000*c[5]^2*x^8*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-8754008440320*c[5]^2*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-539983223749632*c[5]^2*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+464578475961600*c[5]^2*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-219223333023552*c[5]^2*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-521404416*c[4]^2*x^12*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+358465536*c[3]^2*x^10*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-3136573440*c[3]^2*x^8*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+7676231680*c[3]^2*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-268849152*c[3]^2*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-80075407360*c[3]^2*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+92528916480*c[3]^2*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-56928807936*c[3]^2*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-1337160464640*c[3]^2*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+358465536*c[1]^2*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-3136573440*c[1]^2*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+69004615680*x^2*c[4]^2*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+55517349888*c[4]^2*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-5045766485760*c[4]^2*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+358465536*c[2]^2*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-3136573440*c[2]^2*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+19885785088*c[4]^2*x^10*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-6810845184*c[4]^2*x^10*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-454255493120*c[4]^2*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+174863969280*c[4]^2*x^8*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+5341870616576*c[4]^2*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+2630800972800*c[4]^2*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+87989363542080*c[4]^2*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-87979326507072*c[4]^2*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+1337160464640*c[3]^2*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-289669120*c[2]^2*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+1781465088*c[2]^2*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+3763888128*c[2]^2*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+32149877760*c[2]^2*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-29999084544*c[2]^2*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-8800821839169360*c[5]^2*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+8800821839169360*c[5]^2*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2))/(Pi^(3/2)*x^(1/2))

(3)

subs(x = 0, asa)

Error, numeric exception: division by zero

 

``

``


 

Download prpblem_maple_2.mw

 

A way of cutting holes on an implicit plot. This is from the field of numerical parameterization of surfaces. On the example of the surface  x3 = 0.01*exp (x1) / (0.01 + x1^4 + x2^4 + x3^4)  consider the approach to producing holes. The surface is locally parameterized in some suitable way and the place for the hole and its size are selected. In the first example, the parametrization is performed on the basis of the section of the initial surface by perpendicular planes. In the second example, "round"  parametrization. It is made on the basis of the cylinder and the planes passing through its axis. Holes can be of any size and any shape. In the figures, the cut out surface sections are colored green and are located above their own holes at an equidistant to the original surface.
HOLE_1.mwHOLE_2.mw

How to solve this DE by using  Differential transformation method?

diff(f(x),x$3)+1/2 * f(x) *diff(f(x),x$2)=0;

with boundary conditions

  f(0)=1 ; f '(0)= lamda * f ''(0)   and   f ' (x) -> 1  as x -> infinity
where lamda is some constant...

How to solve this DE with IC by using DTM.
D^m u(x,t)=u''(x,t)-u^2 (x,t), where n-1< m < n 

IC: u(x,0)=1+sin(x), and u'(x,0)=0

I have functions with sin(x) and  cos(x) terms with x values are degrees.

How to calculate sin(30 degree)?

How to insert degree symbol in maple?

Suppose evaluate  sin(Pi/2), my out put becomes sin(Pi/2)...How to solve this problem?

f(x):=1+B*x-(1/12)*B*x^3+0.1666666667e-4*B^3*x^3-4.166666667*10^(-8)*B^4*x^4+(1/160)*B*x^5+8.333333333*10^(-11)*B^5*x^5-0.5000000000e-2*B^2*x^2+0.1666666667e-4*B*x^3*C^2-4.166666667*10^(-8)*B*x^4*C^3+8.333333333*10^(-11)*B*x^5*C^4-0.5000000000e-2*B*C*x^2+0.3333333333e-4*B^2*x^3*C-1.250000000*10^(-7)*B^3*x^4*C-1.250000000*10^(-7)*B^2*x^4*C^2+3.333333333*10^(-10)*B^4*x^5*C+5.000000000*10^(-10)*B^3*x^5*C^2+3.333333333*10^(-10)*B^2*x^5*C^3+0.7291666667e-3*B*x^4*C-0.3333333333e-5*B*x^5*C^2+0.6250000000e-3*B^2*x^4-0.2083333333e-5*B^3*x^5-0.5416666667e-5*B^2*x^5*C;

How to plot f(x) with B and C are animation variables wih range -5 to 5?

First 9 10 11 12 13 14 15 Last Page 11 of 60