Maple 18 Questions and Posts

These are Posts and Questions associated with the product, Maple 18

Hello guys, i would like to do parallel computation in my code written in the Maple18. The question that can help me is:

Given a procedure that compute an function g, where g = f1+f2+f3+f4+f5+f6+f7+f8, i would like to compute all fi at same time.
Now, i´m using " grid:-seq('f[i]',[i=1,2,3,4,5,6,7,8])" and it works very well. However, i think that for my case an better solution should be;
Calculate the f1 in core 1, f2 in core 2, f3 in core 3 ... f8 in core 8 at same time, and after this, to sum all results(f1+f2+f3+..+f8). How i can do this?

Att,

Griffith.

Dear All

It is well known that the package "PDEtools" is helpful in finding infinitesimal transformations for PDEs which I illustrate as follow:


with(PDEtools):

DepVars := [u(x, y, t)]

[u(x, y, t)]

(1)

declare(u(x, y, t)):

u(x, y, t)*`will now be displayed as`*u

(2)

U := diff_table(u(x, y, t)):

PDE1 := U[t, x]+(3/2)*u(x, y, t)*U[x, x]+(3/2)*U[x]^2+(1/4)*U[x, x, x, x]+(3/4)*sigma*U[y, y] = 0:

G := [seq(xi[j](x, y, t, u), j = [x, y, t]), seq(eta[j](x, y, t, u), j = [u])]:

declare(G):

eta(x, y, t, u)*`will now be displayed as`*eta

 

xi(x, y, t, u)*`will now be displayed as`*xi

(3)

DetSys := DeterminingPDE(PDE1, G, integrabilityconditions = false):

pdsolve(DetSys)

{eta[u](x, y, t, u) = (1/9)*(-2*(diff(diff(diff(_F1(t), t), t), t))*y^2-4*(diff(diff(_F2(t), t), t))*y+6*sigma*(-(3/2)*(diff(_F1(t), t))*u+(1/2)*(diff(diff(_F1(t), t), t))*x+diff(_F3(t), t)))/sigma, xi[t](x, y, t, u) = (3/2)*_F1(t)+_C1, xi[x](x, y, t, u) = (1/6)*(-2*(diff(diff(_F1(t), t), t))*y^2-4*(diff(_F2(t), t))*y+3*sigma*((diff(_F1(t), t))*x+2*_F3(t)))/sigma, xi[y](x, y, t, u) = (diff(_F1(t), t))*y+_F2(t)}

(4)

The set (4) gives infinitesimal transformations. How we can write  vector fields corresponding to arbitrary constant C1and arbitrary functions "F1(t), F2(t), F3(t) "?"" 

``


Download Writing_Vector_fields.mw

Regards


Here, I attached my maple code. I need to find root. I am using fsolve. But I am not geting the root. Please any one help me... to find the root.

reatart:NULL``

m1 := 0.3e-1;

0.3e-1

(1)

m2 := .4;

.4

(2)

m3 := 2.5;

2.5

(3)

m4 := .3;

.3

(4)

be := .1;

.1

(5)

rho := .1;

.1

(6)

ga := 25;

25

(7)

a := 3.142;

3.142

(8)

q := .5;

.5

(9)

z[0] := 3;

3

(10)

x[0] := 1.5152;

1.5152

(11)

w[0] := 1.1152;

1.1152

(12)

a1 := be*z[0];

.3

(13)

a2 := be*x[0];

.15152

(14)

a3 := rho*w[0];

.11152

(15)

a4 := rho*z[0];

.3

(16)

a5 := rho*w[0];

.11152

(17)

a6 := rho*z[0];

.3

(18)

b1 := a1*a4*ga+a4*ga*m1;

2.475

(19)

D1 := a1+m1+m2+m3+m4;

3.53

(20)

D2 := a1*m2+a1*m3+a1*m4-a2*ga+a3*ga+m1*m2+m1*m3+m1*m4+m2*m3+m2*m4+m3*m4;

1.92600

(21)

D3 := a1*a3*ga+a1*m2*m3+a1*m2*m4+a1*m3*m4-a2*ga*m1-a2*ga*m4+a3*ga*m1+a3*ga*m4+m1*m2*m3+m1*m3*m4+m2*m3*m4+m1*m2*m3;

1.4499000

(22)

D4 := a1*a3*a4*ga+a1*m2*m3*m4-a2*ga*m1*m4+a3*ga*m1*m4+m1*m2*m3*m4;

.3409200

(23)

G1 := -a1*a6-a6*m1-a6*m2-a6*m3;

-.969

(24)

G2 := -a1*a6*m2-a1*a6*m3+a2*a6*ga-a3*a6*ga+a4*a5*ga-a6*m1*m2-a6*m1*m3-a6*m2*m3;

.549300

(25)

G3 := -a1*a3*a6*ga-a1*a6*m2*m3+a2*a6*ga*m1-a3*a6*ga*m1-a6*m1*m2*m3;

-.3409200

(26)

A1 := w^(4*q)*cos(4*q*a*(1/2))+D1*w^(3*q)*cos(3*q*a*(1/2))+D2*w^(2*q)*cos(2*q*a*(1/2))+D3*w^q*cos((1/2)*q*a)+D4;

-.9999999170*w^2.0-2.496849400*w^1.5-0.3922745903e-3*w^1.0+1.025129710*w^.5+.3409200

(27)

B1 := w^(4*q)*sin(4*q*a*(1/2))+D1*w^(3*q)*sin(3*q*a*(1/2))+D2*w^(2*q)*sin(2*q*a*(1/2))+D3*w^q*sin((1/2)*q*a);

-0.4073463989e-3*w^2.0+2.495324242*w^1.5+1.925999960*w^1.0+1.025338523*w^.5

(28)

A2 := -w^(3*q)*a6*cos(3*q*a*(1/2))+G1*w^(2*q)*cos(2*q*a*(1/2))+G2*w^q*cos((1/2)*q*a)+G3;

.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200

(29)

B2 := -w^(3*q)*a6*sin(3*q*a*(1/2))+G1*w^(2*q)*sin(2*q*a*(1/2))+G2*w^q*sin((1/2)*q*a);

-.2120672160*w^1.5-.9689999799*w^1.0+.3884533076*w^.5

(30)

C := .27601200;

.27601200

(31)

Q1 := 4*C^2*(A2^2+B2^2);

.3047304966*(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)^2+.3047304966*(-.2120672160*w^1.5-.9689999799*w^1.0+.3884533076*w^.5)^2

(32)

Q2 := -4*C*A2*(A1^2-A2^2+B1^2-B2^2-C^2);

-1.10404800*(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)*((-.9999999170*w^2.0-2.496849400*w^1.5-0.3922745903e-3*w^1.0+1.025129710*w^.5+.3409200)^2-(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)^2+(-0.4073463989e-3*w^2.0+2.495324242*w^1.5+1.925999960*w^1.0+1.025338523*w^.5)^2-(-.2120672160*w^1.5-.9689999799*w^1.0+.3884533076*w^.5)^2-0.7618262414e-1)

(33)

Q3 := (A1^2-A2^2+B1^2-B2^2-C^2)^2-4*C^2*B2^2;

((-.9999999170*w^2.0-2.496849400*w^1.5-0.3922745903e-3*w^1.0+1.025129710*w^.5+.3409200)^2-(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)^2+(-0.4073463989e-3*w^2.0+2.495324242*w^1.5+1.925999960*w^1.0+1.025338523*w^.5)^2-(-.2120672160*w^1.5-.9689999799*w^1.0+.3884533076*w^.5)^2-0.7618262414e-1)^2-.3047304966*(-.2120672160*w^1.5-.9689999799*w^1.0+.3884533076*w^.5)^2

(34)

V := simplify(-4*Q1*Q3+Q2^2);

-0.1e-12-0.5481797400e-1*w^11-40.93358002*w^(19/2)-212.0102604*w^(17/2)-1.048226159*w^(21/2)-8.667039897*w^10-119.4464160*w^9-208.1803245*w^8-54.3436016*w^7-38.4722894*w^6+2.67061391*w^5-2.29413863*w^4-.136247212*w^2+.899997750*w^3+0.1e-10*w^(1/2)-0.150073928e-1*w^(3/2)+0.54469063e-2*w-2.53869438*w^(11/2)-2.40374793*w^(9/2)-84.14780373*w^(15/2)-86.62603442*w^(13/2)+2.023073705*w^(7/2)-0.6906749e-2*w^(5/2)

(35)

x := (-Q2+sqrt(V))/(2*Q1);

(1/2)*(1.10404800*(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)*((-.9999999170*w^2.0-2.496849400*w^1.5-0.3922745903e-3*w^1.0+1.025129710*w^.5+.3409200)^2-(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)^2+(-0.4073463989e-3*w^2.0+2.495324242*w^1.5+1.925999960*w^1.0+1.025338523*w^.5)^2-(-.2120672160*w^1.5-.9689999799*w^1.0+.3884533076*w^.5)^2-0.7618262414e-1)+(-0.1e-12-0.5481797400e-1*w^11-40.93358002*w^(19/2)-212.0102604*w^(17/2)-1.048226159*w^(21/2)-8.667039897*w^10-119.4464160*w^9-208.1803245*w^8-54.3436016*w^7-38.4722894*w^6+2.67061391*w^5-2.29413863*w^4-.136247212*w^2+.899997750*w^3+0.1e-10*w^(1/2)-0.150073928e-1*w^(3/2)+0.54469063e-2*w-2.53869438*w^(11/2)-2.40374793*w^(9/2)-84.14780373*w^(15/2)-86.62603442*w^(13/2)+2.023073705*w^(7/2)-0.6906749e-2*w^(5/2))^(1/2))/(.3047304966*(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)^2+.3047304966*(-.2120672160*w^1.5-.9689999799*w^1.0+.3884533076*w^.5)^2)

(36)

E := -2*A1*C*x-A1^2+A2^2-B1^2+B2^2-C^2;

-.2760120000*(-.9999999170*w^2.0-2.496849400*w^1.5-0.3922745903e-3*w^1.0+1.025129710*w^.5+.3409200)*(1.10404800*(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)*((-.9999999170*w^2.0-2.496849400*w^1.5-0.3922745903e-3*w^1.0+1.025129710*w^.5+.3409200)^2-(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)^2+(-0.4073463989e-3*w^2.0+2.495324242*w^1.5+1.925999960*w^1.0+1.025338523*w^.5)^2-(-.2120672160*w^1.5-.9689999799*w^1.0+.3884533076*w^.5)^2-0.7618262414e-1)+(-0.1e-12-0.5481797400e-1*w^11-40.93358002*w^(19/2)-212.0102604*w^(17/2)-1.048226159*w^(21/2)-8.667039897*w^10-119.4464160*w^9-208.1803245*w^8-54.3436016*w^7-38.4722894*w^6+2.67061391*w^5-2.29413863*w^4-.136247212*w^2+.899997750*w^3+0.1e-10*w^(1/2)-0.150073928e-1*w^(3/2)+0.54469063e-2*w-2.53869438*w^(11/2)-2.40374793*w^(9/2)-84.14780373*w^(15/2)-86.62603442*w^(13/2)+2.023073705*w^(7/2)-0.6906749e-2*w^(5/2))^(1/2))/(.3047304966*(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)^2+.3047304966*(-.2120672160*w^1.5-.9689999799*w^1.0+.3884533076*w^.5)^2)-(-.9999999170*w^2.0-2.496849400*w^1.5-0.3922745903e-3*w^1.0+1.025129710*w^.5+.3409200)^2+(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)^2-(-0.4073463989e-3*w^2.0+2.495324242*w^1.5+1.925999960*w^1.0+1.025338523*w^.5)^2+(-.2120672160*w^1.5-.9689999799*w^1.0+.3884533076*w^.5)^2-0.7618262414e-1

(37)

y := -E/(2*C*B1);

-1.811515442*(-.2760120000*(-.9999999170*w^2.0-2.496849400*w^1.5-0.3922745903e-3*w^1.0+1.025129710*w^.5+.3409200)*(1.10404800*(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)*((-.9999999170*w^2.0-2.496849400*w^1.5-0.3922745903e-3*w^1.0+1.025129710*w^.5+.3409200)^2-(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)^2+(-0.4073463989e-3*w^2.0+2.495324242*w^1.5+1.925999960*w^1.0+1.025338523*w^.5)^2-(-.2120672160*w^1.5-.9689999799*w^1.0+.3884533076*w^.5)^2-0.7618262414e-1)+(-0.1e-12-0.5481797400e-1*w^11-40.93358002*w^(19/2)-212.0102604*w^(17/2)-1.048226159*w^(21/2)-8.667039897*w^10-119.4464160*w^9-208.1803245*w^8-54.3436016*w^7-38.4722894*w^6+2.67061391*w^5-2.29413863*w^4-.136247212*w^2+.899997750*w^3+0.1e-10*w^(1/2)-0.150073928e-1*w^(3/2)+0.54469063e-2*w-2.53869438*w^(11/2)-2.40374793*w^(9/2)-84.14780373*w^(15/2)-86.62603442*w^(13/2)+2.023073705*w^(7/2)-0.6906749e-2*w^(5/2))^(1/2))/(.3047304966*(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)^2+.3047304966*(-.2120672160*w^1.5-.9689999799*w^1.0+.3884533076*w^.5)^2)-(-.9999999170*w^2.0-2.496849400*w^1.5-0.3922745903e-3*w^1.0+1.025129710*w^.5+.3409200)^2+(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)^2-(-0.4073463989e-3*w^2.0+2.495324242*w^1.5+1.925999960*w^1.0+1.025338523*w^.5)^2+(-.2120672160*w^1.5-.9689999799*w^1.0+.3884533076*w^.5)^2-0.7618262414e-1)/(-0.4073463989e-3*w^2.0+2.495324242*w^1.5+1.925999960*w^1.0+1.025338523*w^.5)

(38)

``

fsolve(x^2+y^2 = 1, w)

fsolve((1/4)*(1.10404800*(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)*((-.9999999170*w^2.0-2.496849400*w^1.5-0.3922745903e-3*w^1.0+1.025129710*w^.5+.3409200)^2-(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)^2+(-0.4073463989e-3*w^2.0+2.495324242*w^1.5+1.925999960*w^1.0+1.025338523*w^.5)^2-(-.2120672160*w^1.5-.9689999799*w^1.0+.3884533076*w^.5)^2-0.7618262414e-1)+(-0.1e-12-0.5481797400e-1*w^11-40.93358002*w^(19/2)-212.0102604*w^(17/2)-1.048226159*w^(21/2)-8.667039897*w^10-119.4464160*w^9-208.1803245*w^8-54.3436016*w^7-38.4722894*w^6+2.67061391*w^5-2.29413863*w^4-.136247212*w^2+.899997750*w^3+0.1e-10*w^(1/2)-0.150073928e-1*w^(3/2)+0.54469063e-2*w-2.53869438*w^(11/2)-2.40374793*w^(9/2)-84.14780373*w^(15/2)-86.62603442*w^(13/2)+2.023073705*w^(7/2)-0.6906749e-2*w^(5/2))^(1/2))^2/(.3047304966*(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)^2+.3047304966*(-.2120672160*w^1.5-.9689999799*w^1.0+.3884533076*w^.5)^2)^2+3.281588197*(-.2760120000*(-.9999999170*w^2.0-2.496849400*w^1.5-0.3922745903e-3*w^1.0+1.025129710*w^.5+.3409200)*(1.10404800*(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)*((-.9999999170*w^2.0-2.496849400*w^1.5-0.3922745903e-3*w^1.0+1.025129710*w^.5+.3409200)^2-(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)^2+(-0.4073463989e-3*w^2.0+2.495324242*w^1.5+1.925999960*w^1.0+1.025338523*w^.5)^2-(-.2120672160*w^1.5-.9689999799*w^1.0+.3884533076*w^.5)^2-0.7618262414e-1)+(-0.1e-12-0.5481797400e-1*w^11-40.93358002*w^(19/2)-212.0102604*w^(17/2)-1.048226159*w^(21/2)-8.667039897*w^10-119.4464160*w^9-208.1803245*w^8-54.3436016*w^7-38.4722894*w^6+2.67061391*w^5-2.29413863*w^4-.136247212*w^2+.899997750*w^3+0.1e-10*w^(1/2)-0.150073928e-1*w^(3/2)+0.54469063e-2*w-2.53869438*w^(11/2)-2.40374793*w^(9/2)-84.14780373*w^(15/2)-86.62603442*w^(13/2)+2.023073705*w^(7/2)-0.6906749e-2*w^(5/2))^(1/2))/(.3047304966*(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)^2+.3047304966*(-.2120672160*w^1.5-.9689999799*w^1.0+.3884533076*w^.5)^2)-(-.9999999170*w^2.0-2.496849400*w^1.5-0.3922745903e-3*w^1.0+1.025129710*w^.5+.3409200)^2+(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)^2-(-0.4073463989e-3*w^2.0+2.495324242*w^1.5+1.925999960*w^1.0+1.025338523*w^.5)^2+(-.2120672160*w^1.5-.9689999799*w^1.0+.3884533076*w^.5)^2-0.7618262414e-1)^2/(-0.4073463989e-3*w^2.0+2.495324242*w^1.5+1.925999960*w^1.0+1.025338523*w^.5)^2 = 1, w)

(39)

``

 

Download root.mw

Hello guys,

I was just playing around with the Shanks transformation of a power series, when I noticed that polynomials aren't evaluated as I would expect.
I created this minimal working example; the function s should evaluate for z=0 to a[0], however it return simply 0.
Is there something I messed up?

restart

s := proc (n, z) options operator, arrow; sum(a[k]*z^k, k = 0 .. n) end proc;

proc (n, z) options operator, arrow; sum(a[k]*z^k, k = 0 .. n) end proc

(1)

series(s(n, z), z = 0)

series(a[0]+a[1]*z+a[2]*z^2+a[3]*z^3+a[4]*z^4+a[5]*z^5+O(z^6),z,6)

(2)

The value of s in z=0 should be a[0], however it returns 0:

s(n, 0)

0

(3)

s(1, 0)

0

(4)

Download evaluate_sum.mw

 

Thanks for your help,

Sören

Dear All

Using Lie algebra package in Maple we can easily find nilradical for given abstract algebra, but how we can find all the ideal in lower central series by taking new basis as nilradical itself?

Please see following;

 

with(DifferentialGeometry); with(LieAlgebras)

DGsetup([x, y, t, u, v])

`frame name: Euc`

(1)
Euc > 

VectorFields := evalDG([D_v, D_v*x+D_y*t, 2*D_t*t-2*D_u*u-D_v*v+D_y*y, t*D_v, D_v*y+D_u, D_t, D_x, D_x*t+D_u, 2*D_v*x+D_x*y, -D_t*t+2*D_u*u+2*D_v*v+D_x*x, D_y])

[_DG([["vector", "Euc", []], [[[5], 1]]]), _DG([["vector", "Euc", []], [[[2], t], [[5], x]]]), _DG([["vector", "Euc", []], [[[2], y], [[3], 2*t], [[4], -2*u], [[5], -v]]]), _DG([["vector", "Euc", []], [[[5], t]]]), _DG([["vector", "Euc", []], [[[4], 1], [[5], y]]]), _DG([["vector", "Euc", []], [[[3], 1]]]), _DG([["vector", "Euc", []], [[[1], 1]]]), _DG([["vector", "Euc", []], [[[1], t], [[4], 1]]]), _DG([["vector", "Euc", []], [[[1], y], [[5], 2*x]]]), _DG([["vector", "Euc", []], [[[1], x], [[3], -t], [[4], 2*u], [[5], 2*v]]]), _DG([["vector", "Euc", []], [[[2], 1]]])]

(2)
Euc > 

L1 := LieAlgebraData(VectorFields)

_DG([["LieAlgebra", "L1", [11]], [[[1, 3, 1], -1], [[1, 10, 1], 2], [[2, 3, 2], -1], [[2, 5, 4], 1], [[2, 6, 11], -1], [[2, 7, 1], -1], [[2, 8, 4], -1], [[2, 9, 5], -1], [[2, 9, 8], 1], [[2, 10, 2], 1], [[3, 4, 4], 3], [[3, 5, 5], 2], [[3, 6, 6], -2], [[3, 8, 8], 2], [[3, 9, 9], 1], [[3, 11, 11], -1], [[4, 6, 1], -1], [[4, 10, 4], 3], [[5, 10, 5], 2], [[5, 11, 1], -1], [[6, 8, 7], 1], [[6, 10, 6], -1], [[7, 9, 1], 2], [[7, 10, 7], 1], [[8, 9, 4], 2], [[8, 10, 8], 2], [[9, 10, 9], 1], [[9, 11, 7], -1]]])

(3)
Euc > 

DGsetup(L1)

`Lie algebra: L1`

(4)
L1 > 

MultiplicationTable("LieTable"):

L1 > 

N := Nilradical(L1)

[_DG([["vector", "L1", []], [[[1], 1]]]), _DG([["vector", "L1", []], [[[2], 1]]]), _DG([["vector", "L1", []], [[[4], 1]]]), _DG([["vector", "L1", []], [[[5], 1]]]), _DG([["vector", "L1", []], [[[6], 1]]]), _DG([["vector", "L1", []], [[[7], 1]]]), _DG([["vector", "L1", []], [[[8], 1]]]), _DG([["vector", "L1", []], [[[9], 1]]]), _DG([["vector", "L1", []], [[[11], 1]]])]

(5)
L1 > 

Query(N, "Nilpotent")

true

(6)
L1 > 

Query(N, "Solvable")

true

(7)

Taking N as new basis , how we can find all ideals in lower central series of this solvable ideal N?

 

Download [944]_Structure_of_Lie_algebra.mw

Regards

i'm using maple in a research but i want to add a recursive function h_m(t) in 2 case : if m is integer positive and not, 
la formule est donnée comme suit :  if (mod(m,1) = 0  and m>0) then  h:=proc(m,t)  local  t ;  h[0,t]:=t ;   for  i from -4 to  m  by  2 do  h [m,t]:= h[0, t]-(GAMMA(i/(2)))/(2*GAMMA((i+1)/(2)))*cos(Pi*t)*sin(Pi*t)  od:  fi:  end; 
  if (mod(m,1) = 0  and m>0) then  h:=proc(m,t)  local  t ;  h[0,t]:=t ;   for  i from -4 to  m  by  2 do  h [m,t]:= h[0, t]-(GAMMA(i/(2)))/(2*GAMMA((i+1)/(2)))*cos(Pi*t)*sin(Pi*t)  od:  fi:  end;
and i wanna to know how to programmate a Gaus Hypegeometric function. Thank You

 

Dear All

I have downloaded second version of DGApplications to work with abstract Lie algebra. The file is actually .mla file and it is executale(as when we open it, a prompt ask, "do you want to execute this file"), but when I press ok for execution, a file open with command like as

"march('open',"C:\\Users\\Manjit\\Downloads\\DGApplications.mla");",

what should I do after this, is it a some sort installation procedure. I keep all my Maple file in E drive with following path:

E:\Maple work\General Maple Workout

Please guide me in simple way, as I failed to install Maple package many times.

Regards

I'm trying to implement the QR algorithm to find the Eigenvalues of the input matrix which will be forwarded to another implementation (of the SVD alg.) to find the singular values. My implementation goes as follows:

1. feeding input: A::Matrix(datatype=float) # a bidiagonal matrix
2. construct input matrix for the QR alg. of matrix A and Z (zeros of size A): C := Matrix([[Z,Transpose(A)],[A,Z]], datatype=float); # therefore C should be symmetric
3. find the eigenvalues of matrix C with an implementation of the QR alg.:

for k from 1 to 400 do
Q, R := QRDecomposition(C);
C:=R.Q;
end do:

At this point, the eigenvalues of C should be placed in the diagonal of the matrix, but they're randomly placed around the diagonal, with only ~0 elements (like 2,xxx * 10^(-13)) in the diagonal.

If anyone knows how to resolve this, let the knowledge flow through. Any help will be appriciated, thanks in advance.

Please check why Maple is not returning location of Minima in following case:

 

-0.6159648936e-1*sin(.9960622471*x)+0.1077739351e-1*sin(1.992124494*x)-0.6872829504e-3*sin(2.988186741*x)+0.3984248988e-4*sin(3.984248988*x)

-0.6159648936e-1*sin(.9960622471*x)+0.1077739351e-1*sin(1.992124494*x)-0.6872829504e-3*sin(2.988186741*x)+0.3984248988e-4*sin(3.984248988*x)

(1)

plot(-0.6159648936e-1*sin(.9960622471*x)+0.1077739351e-1*sin(1.992124494*x)-0.6872829504e-3*sin(2.988186741*x)+0.3984248988e-4*sin(3.984248988*x), x = -3.2 .. 3.2)

 

readlib(extrema):

{-0.6447467154e-1, 0.6447467152e-1}

(2)

Minima := op(1, {-0.6447467154e-1, 0.6447467152e-1}); 1; Maxima := op(2, {-0.6447467154e-1, 0.6447467152e-1})

-0.6447467154e-1

 

0.6447467152e-1

(3)

minimize(-0.6159648936e-1*sin(.9960622471*x)+0.1077739351e-1*sin(1.992124494*x)-0.6872829504e-3*sin(2.988186741*x)+0.3984248988e-4*sin(3.984248988*x), x = 0 .. 3.5, location)

minimize(-0.6159648936e-1*sin(.9960622471*x)+0.1077739351e-1*sin(1.992124494*x)-0.6872829504e-3*sin(2.988186741*x)+0.3984248988e-4*sin(3.984248988*x), x = 0 .. 3.5, location), {}

(4)

Why Maple is not returning location of minima?

 

Download Location_for_Max_Min.mw

Regards

i use the pdsolve to find the solutions of a system of partial differential equations,

but the result contains some indefinite integrals, how to simplify it further?

thank you

code:

eq1 := {6*(diff(_xi[t](x, t, u), u))-3*(diff(_xi[x](x, t, u), u)), 12*(diff(_xi[t](x, t, u), u, u))-6*(diff(_xi[x](x, t, u), u, u)), 2*(diff(_xi[t](x, t, u), u, u, u))-(diff(_xi[x](x, t, u), u, u, u)), diff(_eta[u](x, t, u), t)+diff(_eta[u](x, t, u), x, x, x)+(diff(_eta[u](x, t, u), x))*u, 18*(diff(_xi[t](x, t, u), x, u))+3*(diff(_eta[u](x, t, u), u, u))-9*(diff(_xi[x](x, t, u), x, u)), 6*(diff(_xi[t](x, t, u), x, x))+3*(diff(_eta[u](x, t, u), x, u))-3*(diff(_xi[x](x, t, u), x, x)), 6*(diff(_xi[t](x, t, u), x, u, u))+diff(_eta[u](x, t, u), u, u, u)-3*(diff(_xi[x](x, t, u), x, u, u)), 12*(diff(_xi[t](x, t, u), u))-6*(diff(_xi[x](x, t, u), u))+6*(diff(_xi[t](x, t, u), x, x, u))-6*(diff(_xi[t](x, t, u), u))*u+3*u*(diff(_xi[x](x, t, u), u))-3*(diff(_xi[x](x, t, u), x, x, u))+3*(diff(_eta[u](x, t, u), x, u, u)), 12*(diff(_xi[t](x, t, u), x))-6*(diff(_xi[x](x, t, u), x))+2*(diff(_xi[t](x, t, u), t))+2*(diff(_xi[t](x, t, u), x, x, x))-4*(diff(_xi[t](x, t, u), x))*u+2*(diff(_xi[x](x, t, u), x))*u+_eta[u](x, t, u)-(diff(_xi[x](x, t, u), t))+3*(diff(_eta[u](x, t, u), x, x, u))-(diff(_xi[x](x, t, u), x, x, x))};

simplify(pdsolve(eq1))

 

Hello,

Calculated a Grobasis basis. Used the 19 of the 29 equations to produce a Sylvester type matrix to get a univarite polynomial. The problem I am having is I can't produce a consistant matrix. I think the problem may lie in how I sort the equations. I have used this method once before and it worked to produce the result then. Run the worksheet and the run it again and most likely a different outcome occurs. I copy and pasted the polynmial list to make this worksheet. The coefficients are very long. Have annotated the worksheet to help explain.

restart

with(Groebner):

mon := proc (p) local t; coeffs(p, indets(p), t); t end proc;

NULL

NULL

J1 := [-(369972662122035673446693308255804217189855305850497117179237965728829873694992987443599722267132573103416572206812629161280951985300384050087647230169774989632624415867556931144370073798025/1073811661664954263665467908762277951741093442667658652901575176094186464779404398510208853191815721004415968249856658036295805664573864843681739012700322414012236392346505732970926225773136)*u1^2*u0*u2+(3031800928769969873317528579535345777964427869123306325149671526353707122574251266348791870434195813400548574992090537845553537855446877708028695802179775505314374383748258107926352611646341/6442869969989725581992807452573667710446560656005951917409451056565118788676426391061253119150894326026495809499139948217774833987443189062090434076201934484073418354079034397825557354638816)*u2^2*u0*u3+(713912403177585893712424883783703939112114423425436062138466051045039293001023670515133086473227497296592815098690404827386164296017445/6423915613793437833785637667094066356722121329274380754735375666137533866022494065427153776460417327315347647984006755554352315161513546)*u1^2*u3*u2-(1572506612441882048991827151757104950834437247567955808548541007014650572692370290498125722134523437855024765054039254109584767966516364939036576029295732122878868964525967033940194476743429/6442869969989725581992807452573667710446560656005951917409451056565118788676426391061253119150894326026495809499139948217774833987443189062090434076201934484073418354079034397825557354638816)*u0^2*u1*u2-(1463777461887932407618160427274142470481757567972412934191458196286352850765035244535767449565530583573614908739634529012368709022939236866433059757631769496148904614419051917252505478500842699/2592718257090032069620272265706520114478870117321061817430853262679413219209871920202899276031639058365162355339278900828636222777113596665069558846164928468632544769320638092258301372129236872)*u2^2*u1*u0+(683650766065738476744408052448471366911225536767574233307406546084832530501599945421471990970177132854466287001716429223041199077425155283965927237192054761288486636681829416475450376614341/6442869969989725581992807452573667710446560656005951917409451056565118788676426391061253119150894326026495809499139948217774833987443189062090434076201934484073418354079034397825557354638816)*u1^2*u0*u3+(418972992517465445251627743594739931124359763169827759386382982134047509886127245147227644854404951907498481484048249422878276613746749964453979762484320490447560460543928592446916637225531/6442869969989725581992807452573667710446560656005951917409451056565118788676426391061253119150894326026495809499139948217774833987443189062090434076201934484073418354079034397825557354638816)*u3^2*u1*u2+(10641180636388100853949188525155418754515490278134735711031443960068175426589004576367143862930506588779894759704608549638965736568282653593922229340106714683952373723553692556912033655665/1073811661664954263665467908762277951741093442667658652901575176094186464779404398510208853191815721004415968249856658036295805664573864843681739012700322414012236392346505732970926225773136)*u2^2*u1*u3-(76050105015903839301698240101788197232511198255479637639857188622468030826499974357073716349160952207823351406596697783914993864927234138188349888789401625303568028116748828909276906631945/1073811661664954263665467908762277951741093442667658652901575176094186464779404398510208853191815721004415968249856658036295805664573864843681739012700322414012236392346505732970926225773136)*u3^2*u0*u2-(3210015410447899416876623738628474852157521197379945146515477473850625691312471673504823937954633148378986136194085800672287429666672605/6423915613793437833785637667094066356722121329274380754735375666137533866022494065427153776460417327315347647984006755554352315161513546)*u0^2*u3*u2+(30232064643600956661135604924743505961774402707385878963064777040576671131000809488384331920637864530417233509374598496106053189344166271715910135484952445104681221801407658008242278212145/1073811661664954263665467908762277951741093442667658652901575176094186464779404398510208853191815721004415968249856658036295805664573864843681739012700322414012236392346505732970926225773136)*u0^2*u1*u3+(1082482647375537342269749370241622039362587872400372739720016236548088561215948284999182054107262404423834434214047985675262165122330670048673420852020813400713822652790453973141767940107601109/1885613277883659686996561647786560083257360085324408594495166009221391432152634123783926746204828406083754440246748291511735434746991706665505133706301766159005487104960464067096946452457626816)*u0^4+(520100124743301361596137016018654919033456720030007472685438459653229252652053390640058309882245803314897278933165930976150147422499412224437417510882896327182500522826717281425075957118612741/2592718257090032069620272265706520114478870117321061817430853262679413219209871920202899276031639058365162355339278900828636222777113596665069558846164928468632544769320638092258301372129236872)*u3^2*u1*u0-(13878833337864796973880631264774516836251236670313682024563221364955337832734888822915374340964691386582485072898691142229607431737957875893685951261565133353037232752863284184924483706415/1073811661664954263665467908762277951741093442667658652901575176094186464779404398510208853191815721004415968249856658036295805664573864843681739012700322414012236392346505732970926225773136)*u1^3*u3-(1648471920379484348185181139957697759692713123991056245268121279984951929461844775706362291881889864405351268147921772237611117003406661977395463617307241933180601642102994165490312843397499/6442869969989725581992807452573667710446560656005951917409451056565118788676426391061253119150894326026495809499139948217774833987443189062090434076201934484073418354079034397825557354638816)*u0^3*u3+(70557103651580964097904671586917168298524162949249167081032645513707942179602752543953555836111553922356984177464821763778485329345992239704114836402849804792699162135518506228363822270859281/2592718257090032069620272265706520114478870117321061817430853262679413219209871920202899276031639058365162355339278900828636222777113596665069558846164928468632544769320638092258301372129236872)*u0^3*u1-(306599021188115685354219152128621797763004014322016639566263091246541519586729556371129138693160748230630055295878449250652031743383044179916261149945956004042646850257386033405627066958878519/2592718257090032069620272265706520114478870117321061817430853262679413219209871920202899276031639058365162355339278900828636222777113596665069558846164928468632544769320638092258301372129236872)*u1^3*u0-(847672331068941983715815174279895140162086536884839170332263349191495038987076062817139940916367994758355045251452213928767179986115007102280660968622654623779872173642721835839226762727109/6442869969989725581992807452573667710446560656005951917409451056565118788676426391061253119150894326026495809499139948217774833987443189062090434076201934484073418354079034397825557354638816)*u1^3*u2-(400000309047210204379180590154527405016113740907766071245166710828691096623611525952808397730388121857792765421439073812414498379028140298732414796817856100057218682301783482502584744345917267/20741746056720256556962178125652160915830960938568494539446826101435305753678975361623194208253112466921298842714231206629089782216908773320556470769319427749060358154565104738066410977033894976)*u3^2*u1^2-(837746928514163771936283768086059426740426902390752093488424974202994239177998249871048436280896110780380176997033819320586930777340923591362957526699419196769108804649518929457139508887099/6442869969989725581992807452573667710446560656005951917409451056565118788676426391061253119150894326026495809499139948217774833987443189062090434076201934484073418354079034397825557354638816)*u3^3*u0+(25392006952859491738559190380277737637380249146503715063148078161547781178389972597148791387038733165373569800354233593778320410636478525808066937622773858517610216497930233039530493820785/1073811661664954263665467908762277951741093442667658652901575176094186464779404398510208853191815721004415968249856658036295805664573864843681739012700322414012236392346505732970926225773136)*u3^3*u1-(1979729009226608183299693118428227061832322938808995997034127715929079087636684792279298417145726263076014635452719421563068561668433296028029066933259482500561397617894514425823437010222132747/5185436514180064139240544531413040228957740234642123634861706525358826438419743840405798552063278116730324710678557801657272445554227193330139117692329856937265089538641276184516602744258473744)*u0^2*u1^2+(367457586997525596528078936368738890643516846902812733741351805537703647950818248170511497567264498601592485256245406465561640452016283739624561162276595195970264441506452942067740449313175/1073811661664954263665467908762277951741093442667658652901575176094186464779404398510208853191815721004415968249856658036295805664573864843681739012700322414012236392346505732970926225773136)*u0^3*u2-(207715112860116622033823039495128968415841945982616454439742297979926276285277824958750727911408612219364237443291271585721665581795700352701058444014849293447862549814630041789592225423548971/1885613277883659686996561647786560083257360085324408594495166009221391432152634123783926746204828406083754440246748291511735434746991706665505133706301766159005487104960464067096946452457626816)*u2^2*u0^2-(1048510728137724917959947705525945646185773535296472092543282664616443881938084341530618344269146860851994785605627441108961489647251933014111016916015577819616565548826503758514995895886935507/20741746056720256556962178125652160915830960938568494539446826101435305753678975361623194208253112466921298842714231206629089782216908773320556470769319427749060358154565104738066410977033894976)*u2^2*u1^2+(329276017346929325669209716223140888173209607830871182819287558223516282886560504219057701823842111973264832798881360582136657177869325976118042529154007208504921732746599751091261170979575/1073811661664954263665467908762277951741093442667658652901575176094186464779404398510208853191815721004415968249856658036295805664573864843681739012700322414012236392346505732970926225773136)*u2^3*u0+(44487093465677578675999409260657347043318602200372030116660007645178441644534416225036630655459847700284843720390456557575594843584031729839110111206779890374184557363018058247872163883771/6442869969989725581992807452573667710446560656005951917409451056565118788676426391061253119150894326026495809499139948217774833987443189062090434076201934484073418354079034397825557354638816)*u2^3*u1-(289779041515979642084285221089914992357348370650481896212640515098120143955366683276863034598508932047313938278821390010070076415774746634106526502331230747894438702300469411696566347890830251/1885613277883659686996561647786560083257360085324408594495166009221391432152634123783926746204828406083754440246748291511735434746991706665505133706301766159005487104960464067096946452457626816)*u3^2*u0^2-(1457287335200856873456924498792244109332540739385008346560768394273583614382799643409398016071070502419799224267344521153790921647454440/3211957806896718916892818833547033178361060664637190377367687833068766933011247032713576888230208663657673823992003377777176157580756773)*u3*u2*u1*u0+(106331137690998284555751960125908846306064586929660938586484845693166000799846644584048009740256877146821308619567764972295460351759444476778877115534568784652006411157454894150628323719735213/20741746056720256556962178125652160915830960938568494539446826101435305753678975361623194208253112466921298842714231206629089782216908773320556470769319427749060358154565104738066410977033894976)*u1^4, -(8103059200827940665136786239185907004780013304771197379069423800128048560799218566314780745996182391886020443423168694450505501505677457288908499972373929364954046274015791840956385788472283/38128209663088706906180474495684119330571619372368556138689018568814900282498116473572048176935868505370034637342336776891709158486964656839258218325954830421066834842950560180269137825429954)*u1^2*u0*u2-(2882636752645004637244997297850014963333779728046513568913323919916332409124726986098115489103077872781776818235059844281058506198443503635139207132767288924348792444422483510630222837255721/16686843167112032628288156175102301621746549427649633579603239019658331257987912599857758815971932797201366727847330013378189688026475280225709147843378461584119354911154549266344658871306432)*u2^2*u0*u3-(13878833337864796973880631264774516836251236670313682024563221364955337832734888822915374340964691386582485072898691142229607431737957875893685951261565133353037232752863284184924483706415/1073811661664954263665467908762277951741093442667658652901575176094186464779404398510208853191815721004415968249856658036295805664573864843681739012700322414012236392346505732970926225773136)*u1^2*u3*u2+(1719022583542587128988437260765206802861686551894640530126866838968760732091674178313903398851313996921620800488176183481526805341227298695680869663563208679594160773169645986809082039063906093/20741746056720256556962178125652160915830960938568494539446826101435305753678975361623194208253112466921298842714231206629089782216908773320556470769319427749060358154565104738066410977033894976)*u0^2*u1*u2-(943555187005625023478174328546318104198699067965606485835210751181278909753977922425944401863070622723117224007999978014350393766619812695379110957376657313342185199656409591918330201325/63165391862644368450909876986016350102417261333391685464798539770246262634082611677071109011283277706142115779403332825664459156739639108451867000747077789059543317196853278410054483869008)*u2^2*u1*u0+(445050107667546372143605327702799645558545910689727129757613153329607819606200320105254850927911943175753695308018683915968222600227425023793384934810955681187063420776952313822298030509399/16686843167112032628288156175102301621746549427649633579603239019658331257987912599857758815971932797201366727847330013378189688026475280225709147843378461584119354911154549266344658871306432)*u1^2*u0*u3-(400000309047210204379180590154527405016113740907766071245166710828691096623611525952808397730388121857792765421439073812414498379028140298732414796817856100057218682301783482502584744345917267/20741746056720256556962178125652160915830960938568494539446826101435305753678975361623194208253112466921298842714231206629089782216908773320556470769319427749060358154565104738066410977033894976)*u3^2*u1*u2+(713912403177585893712424883783703939112114423425436062138466051045039293001023670515133086473227497296592815098690404827386164296017445/6423915613793437833785637667094066356722121329274380754735375666137533866022494065427153776460417327315347647984006755554352315161513546)*u2^2*u1*u3+(13037596315195560193577755195432089857684008717360271981042502455081426984967509322765173935232571285760502461179436269559583588034034927977497436472412578713815386247881262720807269427773157/38128209663088706906180474495684119330571619372368556138689018568814900282498116473572048176935868505370034637342336776891709158486964656839258218325954830421066834842950560180269137825429954)*u3^2*u0*u2-(119272873292859530180933757239432375395035070775417914980211113540503637558416179597340284482028084352195475017076351873025034463116612696279430716167576146984480024690838910702427067360015/1073811661664954263665467908762277951741093442667658652901575176094186464779404398510208853191815721004415968249856658036295805664573864843681739012700322414012236392346505732970926225773136)*u0^2*u3*u2+(133541553948438347517689037953078632841106902842246308247836883154569532554364010920992822708261767307067175787813947133956482288560205/6423915613793437833785637667094066356722121329274380754735375666137533866022494065427153776460417327315347647984006755554352315161513546)*u0^2*u1*u3-(11268857723492252938986397324203505122352704782831595975705091259360520875790687490139463966565162756290792424813602766891073709618046366579903976010588335587407599274074328806058654861361/378992351175866210705459261916098100614503568000350112788791238621477575804495670062426654067699666236852694676419996953986754940437834650711202004482466734357259903181119670460326903214048)*u0^4-(532619242457279662709202988412988751979374119960923873926252821490580845700117447711402612881235932266060013127536322704950026956773888927679870969831850227113946502112961564708085773325/63165391862644368450909876986016350102417261333391685464798539770246262634082611677071109011283277706142115779403332825664459156739639108451867000747077789059543317196853278410054483869008)*u3^2*u1*u0-(981496015648521267144082426671667773797675585345938701908539995456010333226884008233530267859281409018945840455129999414260717946727789426599015834251795983122908900807167419937230466830121/16686843167112032628288156175102301621746549427649633579603239019658331257987912599857758815971932797201366727847330013378189688026475280225709147843378461584119354911154549266344658871306432)*u0^3*u3+(1894923480186342334588500054217303623792739198183970782858651680350940084381384173742981743611738901645354367828858617091554189394853942395684923039055555847602983557260938966564899449235/63165391862644368450909876986016350102417261333391685464798539770246262634082611677071109011283277706142115779403332825664459156739639108451867000747077789059543317196853278410054483869008)*u0^3*u1+(560351116563755218830078916954341662886959475780474466969377518057227020523063061636183553739593646314013630771421655568387967809805796543300121906765172770046594401790870034726562294675/63165391862644368450909876986016350102417261333391685464798539770246262634082611677071109011283277706142115779403332825664459156739639108451867000747077789059543317196853278410054483869008)*u1^3*u0+(106331137690998284555751960125908846306064586929660938586484845693166000799846644584048009740256877146821308619567764972295460351759444476778877115534568784652006411157454894150628323719735213/20741746056720256556962178125652160915830960938568494539446826101435305753678975361623194208253112466921298842714231206629089782216908773320556470769319427749060358154565104738066410977033894976)*u1^3*u2-(70559116645104354614739784690265812455467989099955127025110206143787656407095055516675267757352836111372274924947574959823004890260649372751438044455147173611026022757117232989347172451241/16686843167112032628288156175102301621746549427649633579603239019658331257987912599857758815971932797201366727847330013378189688026475280225709147843378461584119354911154549266344658871306432)*u3^3*u0-(33151630947328528119973781390929781129432846042591391896923058948922793485533958514187344407583674349434141792101471265222145256090669018275149822107146161675045899431283963035606494745201/378992351175866210705459261916098100614503568000350112788791238621477575804495670062426654067699666236852694676419996953986754940437834650711202004482466734357259903181119670460326903214048)*u0^2*u1^2-(4729788603305075610142525295892584307332531383890455763983454637555802549843709940697218641905884459051612138581112987925690095946647715286078705091183367944429510605129499020271418161876244/19064104831544353453090237247842059665285809686184278069344509284407450141249058236786024088467934252685017318671168388445854579243482328419629109162977415210533417421475280090134568912714977)*u0^3*u2-(1079545771989084440532376765856491025703493636882675219934370395283191163937436125593960991036790866165678227115806923647346505601936008379750548425780468476603139642986800828550057822226723/3221434984994862790996403726286833855223280328002975958704725528282559394338213195530626559575447163013247904749569974108887416993721594531045217038100967242036709177039517198912778677319408)*u2^2*u0^2-(847672331068941983715815174279895140162086536884839170332263349191495038987076062817139940916367994758355045251452213928767179986115007102280660968622654623779872173642721835839226762727109/6442869969989725581992807452573667710446560656005951917409451056565118788676426391061253119150894326026495809499139948217774833987443189062090434076201934484073418354079034397825557354638816)*u2^2*u1^2-(4613237500240032397852984543153077644845382138777025453227665730221944329420204985674860510166783838155144811638514099254607197771411833206021106674558206031595885327521033416734845935910584/19064104831544353453090237247842059665285809686184278069344509284407450141249058236786024088467934252685017318671168388445854579243482328419629109162977415210533417421475280090134568912714977)*u2^3*u0-(1048510728137724917959947705525945646185773535296472092543282664616443881938084341530618344269146860851994785605627441108961489647251933014111016916015577819616565548826503758514995895886935507/20741746056720256556962178125652160915830960938568494539446826101435305753678975361623194208253112466921298842714231206629089782216908773320556470769319427749060358154565104738066410977033894976)*u2^3*u1+(45054058537014292300188265657931355363907767964953011878574167330306285109380899665373163050432291990243465349021957775929544243082464692363167763794434345938893509963459405762549084802959/378992351175866210705459261916098100614503568000350112788791238621477575804495670062426654067699666236852694676419996953986754940437834650711202004482466734357259903181119670460326903214048)*u3^2*u0^2+(25392006952859491738559190380277737637380249146503715063148078161547781178389972597148791387038733165373569800354233593778320410636478525808066937622773858517610216497930233039530493820785/1073811661664954263665467908762277951741093442667658652901575176094186464779404398510208853191815721004415968249856658036295805664573864843681739012700322414012236392346505732970926225773136)*u3^3*u2+(418972992517465445251627743594739931124359763169827759386382982134047509886127245147227644854404951907498481484048249422878276613746749964453979762484320490447560460543928592446916637225531/6442869969989725581992807452573667710446560656005951917409451056565118788676426391061253119150894326026495809499139948217774833987443189062090434076201934484073418354079034397825557354638816)*u2^2*u3^2+(10641180636388100853949188525155418754515490278134735711031443960068175426589004576367143862930506588779894759704608549638965736568282653593922229340106714683952373723553692556912033655665/1073811661664954263665467908762277951741093442667658652901575176094186464779404398510208853191815721004415968249856658036295805664573864843681739012700322414012236392346505732970926225773136)*u2^3*u3+(193857542190032577660877782696726292398457213880952308214749877977589514171655877801258599135683698552770392773047747536632695782567880/1070652602298906305630939611182344392787020221545730125789229277689588977670415677571192296076736221219224607997334459259058719193585591)*u3*u2*u1*u0+(44487093465677578675999409260657347043318602200372030116660007645178441644534416225036630655459847700284843720390456557575594843584031729839110111206779890374184557363018058247872163883771/6442869969989725581992807452573667710446560656005951917409451056565118788676426391061253119150894326026495809499139948217774833987443189062090434076201934484073418354079034397825557354638816)*u2^4, -(482790751580026101633847912601182593690931952749734705015713721357460928691687878082344505823225089820995910913354971817975215825879676536643640980752280285120105221418831450932615320586142311/20741746056720256556962178125652160915830960938568494539446826101435305753678975361623194208253112466921298842714231206629089782216908773320556470769319427749060358154565104738066410977033894976)*u1^2*u0*u2+(40086038075782372082535137836970921878198670142877616455287106893126981574938805863322781480969182320450340428290257247835978655512425279061042047216570183103526004685054435449107848422125/536905830832477131832733954381138975870546721333829326450787588047093232389702199255104426595907860502207984124928329018147902832286932421840869506350161207006118196173252866485463112886568)*u2^2*u0*u3-(847672331068941983715815174279895140162086536884839170332263349191495038987076062817139940916367994758355045251452213928767179986115007102280660968622654623779872173642721835839226762727109/6442869969989725581992807452573667710446560656005951917409451056565118788676426391061253119150894326026495809499139948217774833987443189062090434076201934484073418354079034397825557354638816)*u1^2*u3*u2+(813996428727168100575115216626842704983873508700642508813355417402667810372429872985720109822552098770028980928284004286913673076967045/6423915613793437833785637667094066356722121329274380754735375666137533866022494065427153776460417327315347647984006755554352315161513546)*u0^2*u1*u2-(36587706300412498841582533683050660514539909043948426525138562752610813512248695917316410178733480294129703510367904304777619272803531901120675599279651251505677978473528936500356972044209/378992351175866210705459261916098100614503568000350112788791238621477575804495670062426654067699666236852694676419996953986754940437834650711202004482466734357259903181119670460326903214048)*u2^2*u1*u0-(11168193919319765248958867018906567758603081619417034834467233752960751432274202630244525255350791380895944054792631204201016977686533993930265829702391278697738271839472556447688307944275/536905830832477131832733954381138975870546721333829326450787588047093232389702199255104426595907860502207984124928329018147902832286932421840869506350161207006118196173252866485463112886568)*u1^2*u0*u3+(713912403177585893712424883783703939112114423425436062138466051045039293001023670515133086473227497296592815098690404827386164296017445/6423915613793437833785637667094066356722121329274380754735375666137533866022494065427153776460417327315347647984006755554352315161513546)*u3^2*u1*u2-(1048510728137724917959947705525945646185773535296472092543282664616443881938084341530618344269146860851994785605627441108961489647251933014111016916015577819616565548826503758514995895886935507/20741746056720256556962178125652160915830960938568494539446826101435305753678975361623194208253112466921298842714231206629089782216908773320556470769319427749060358154565104738066410977033894976)*u2^2*u1*u3-(11303660872012085564462146710004120572769598586933154421837101972591009949594786738153642784819499620840034684762130503891061206882525240212765126211749804864871249088372499192525576315521580391/20741746056720256556962178125652160915830960938568494539446826101435305753678975361623194208253112466921298842714231206629089782216908773320556470769319427749060358154565104738066410977033894976)*u3^2*u0*u2-(1798406111797725916868207348393999072283667678437480832438473170058026295677126707837607058092438623305912643085256935136621223446343789926587615547814565366017749539825011890042515642417669/6442869969989725581992807452573667710446560656005951917409451056565118788676426391061253119150894326026495809499139948217774833987443189062090434076201934484073418354079034397825557354638816)*u0^2*u3*u2+(119467107543112546231582464579751610763323735451590974857723109234085988081532548648860942462875845080594461854196272389307353638272547425918967567073768340224801234931529774476145507972483373/20741746056720256556962178125652160915830960938568494539446826101435305753678975361623194208253112466921298842714231206629089782216908773320556470769319427749060358154565104738066410977033894976)*u0^2*u1*u3+(25392006952859491738559190380277737637380249146503715063148078161547781178389972597148791387038733165373569800354233593778320410636478525808066937622773858517610216497930233039530493820785/1073811661664954263665467908762277951741093442667658652901575176094186464779404398510208853191815721004415968249856658036295805664573864843681739012700322414012236392346505732970926225773136)*u3^4+(12566237119281011604062524818953982962166090553516466345059185866361159057067050077167443843603078525779954908442296080789877042652051685893920447531906076261478224003523412822922394372955/63165391862644368450909876986016350102417261333391685464798539770246262634082611677071109011283277706142115779403332825664459156739639108451867000747077789059543317196853278410054483869008)*u0^4-(21381804710523659923354843263134374997150001717336106147506739016375662388834595855016684075421397967259701982005024286843128309858467803025203508985604002185394123267099460047441576544369/378992351175866210705459261916098100614503568000350112788791238621477575804495670062426654067699666236852694676419996953986754940437834650711202004482466734357259903181119670460326903214048)*u3^2*u1*u0+(106331137690998284555751960125908846306064586929660938586484845693166000799846644584048009740256877146821308619567764972295460351759444476778877115534568784652006411157454894150628323719735213/20741746056720256556962178125652160915830960938568494539446826101435305753678975361623194208253112466921298842714231206629089782216908773320556470769319427749060358154565104738066410977033894976)*u1^3*u3-(52079374875640972909408966074440091903975998568614589516561983397395738096494344827415964726180641542244563647694163197359045274778324363288355114295538082554835257941678599569688199148935/536905830832477131832733954381138975870546721333829326450787588047093232389702199255104426595907860502207984124928329018147902832286932421840869506350161207006118196173252866485463112886568)*u0^3*u3+(5029922162067407393831530715140255654587665066708153131207797315459619168583259831306571333658924808619547695875824836293743949341304097810843277926669096118658453892149622131736870966351/378992351175866210705459261916098100614503568000350112788791238621477575804495670062426654067699666236852694676419996953986754940437834650711202004482466734357259903181119670460326903214048)*u0^3*u1+(8770546471344889663618272953967884875217001441014569101996217594804367607662869975153266706814093165296893840851501700080351973751730834901281662157130903678074326485118048969229148578191/378992351175866210705459261916098100614503568000350112788791238621477575804495670062426654067699666236852694676419996953986754940437834650711202004482466734357259903181119670460326903214048)*u1^3*u0-(13878833337864796973880631264774516836251236670313682024563221364955337832734888822915374340964691386582485072898691142229607431737957875893685951261565133353037232752863284184924483706415/1073811661664954263665467908762277951741093442667658652901575176094186464779404398510208853191815721004415968249856658036295805664573864843681739012700322414012236392346505732970926225773136)*u3^2*u1^2+(50507615811386567601606576911659180673657501215312982426542647634148383120428888169088963575251965330071014438073105855106166717928412286422640294300701273379980914076907996518964040671865/536905830832477131832733954381138975870546721333829326450787588047093232389702199255104426595907860502207984124928329018147902832286932421840869506350161207006118196173252866485463112886568)*u3^3*u0-(400000309047210204379180590154527405016113740907766071245166710828691096623611525952808397730388121857792765421439073812414498379028140298732414796817856100057218682301783482502584744345917267/20741746056720256556962178125652160915830960938568494539446826101435305753678975361623194208253112466921298842714231206629089782216908773320556470769319427749060358154565104738066410977033894976)*u3^3*u1+(2900056245870501399214717349901485933773008593829747957384675759824496757219241873394094331215120144997426922655991710748872237733980364344447828659778812454304123898624672530234513090395/63165391862644368450909876986016350102417261333391685464798539770246262634082611677071109011283277706142115779403332825664459156739639108451867000747077789059543317196853278410054483869008)*u0^2*u1^2+(16279764979183133244022813816562335242959085515427940411940609360887401564929841315102629826382632183566517727525183187752769941811409638033430717429110606153658249540126866197956344063840095769/20741746056720256556962178125652160915830960938568494539446826101435305753678975361623194208253112466921298842714231206629089782216908773320556470769319427749060358154565104738066410977033894976)*u0^3*u2+(15193216712528139475946340097635885910500726389067400412502386833637573743838311396398614558819805177631526585977254633737635002771511757369313538551535476155786321715416914103528012487355/63165391862644368450909876986016350102417261333391685464798539770246262634082611677071109011283277706142115779403332825664459156739639108451867000747077789059543317196853278410054483869008)*u2^2*u0^2+(5542791107163311785644960556987459296680030946898158598689613857689513528294563755832463753868988084082141420753107347828249770995935914811558301741318737842055177019814906214580163533920696089/20741746056720256556962178125652160915830960938568494539446826101435305753678975361623194208253112466921298842714231206629089782216908773320556470769319427749060358154565104738066410977033894976)*u2^3*u0-(66187240637863127675703100783958679307371213099542471033708265509531694163952521745998199901457502017631758738381890660650305657475727953613012938433991152405714312935776663000039850693345/268452915416238565916366977190569487935273360666914663225393794023546616194851099627552213297953930251103992062464164509073951416143466210920434753175080603503059098086626433242731556443284)*u3^2*u0^2+(418972992517465445251627743594739931124359763169827759386382982134047509886127245147227644854404951907498481484048249422878276613746749964453979762484320490447560460543928592446916637225531/6442869969989725581992807452573667710446560656005951917409451056565118788676426391061253119150894326026495809499139948217774833987443189062090434076201934484073418354079034397825557354638816)*u3^3*u2+(10641180636388100853949188525155418754515490278134735711031443960068175426589004576367143862930506588779894759704608549638965736568282653593922229340106714683952373723553692556912033655665/1073811661664954263665467908762277951741093442667658652901575176094186464779404398510208853191815721004415968249856658036295805664573864843681739012700322414012236392346505732970926225773136)*u2^2*u3^2+(44487093465677578675999409260657347043318602200372030116660007645178441644534416225036630655459847700284843720390456557575594843584031729839110111206779890374184557363018058247872163883771/6442869969989725581992807452573667710446560656005951917409451056565118788676426391061253119150894326026495809499139948217774833987443189062090434076201934484073418354079034397825557354638816)*u2^3*u3-(965470783776924528467446979786002119757950782664136514159864801667371337821161574417172436938704661802508167896691715869526714822696020/3211957806896718916892818833547033178361060664637190377367687833068766933011247032713576888230208663657673823992003377777176157580756773)*u3*u2*u1*u0, (876176238222638169289746339498010459108270755193693138023943427516825189330764849766463369766747186293243576572641260884891004728632771164345194308781921698349068294977063971827530007268403371/1885613277883659686996561647786560083257360085324408594495166009221391432152634123783926746204828406083754440246748291511735434746991706665505133706301766159005487104960464067096946452457626816)*u1^2*u0*u2+(3210015410447899416876623738628474852157521197379945146515477473850625691312471673504823937954633148378986136194085800672287429666672605/6423915613793437833785637667094066356722121329274380754735375666137533866022494065427153776460417327315347647984006755554352315161513546)*u2^2*u0*u3+(482926454547488844645827133777295447058127120471719204862253667988554682709765392662370342833947911969874590310769160767041618649460265983005660662099823063987388575476847140984146330996539/6442869969989725581992807452573667710446560656005951917409451056565118788676426391061253119150894326026495809499139948217774833987443189062090434076201934484073418354079034397825557354638816)*u1^2*u3*u2-(147817012570112082641807436700830116814195160728587937664688854052867485806242970486389581929035377998214171676226172731760683035429712470203110111576680025933964092862524409398483473242085/536905830832477131832733954381138975870546721333829326450787588047093232389702199255104426595907860502207984124928329018147902832286932421840869506350161207006118196173252866485463112886568)*u0^2*u1*u2-(34504995972722754827819198820933947092502942717493801842364693150101867951911880040576250584650487910372452304563211363829896661020920695321442401309717931195730018908684389597642421630001/378992351175866210705459261916098100614503568000350112788791238621477575804495670062426654067699666236852694676419996953986754940437834650711202004482466734357259903181119670460326903214048)*u2^2*u1*u0+(133541553948438347517689037953078632841106902842246308247836883154569532554364010920992822708261767307067175787813947133956482288560205/6423915613793437833785637667094066356722121329274380754735375666137533866022494065427153776460417327315347647984006755554352315161513546)*u1^2*u0*u3+(75886606893766148595392490633822155992763692845411269833392360176497780560310052455575381593201293045520167410858508045951860957509828717753656692739937673505269360536179039881925525775515/536905830832477131832733954381138975870546721333829326450787588047093232389702199255104426595907860502207984124928329018147902832286932421840869506350161207006118196173252866485463112886568)*u3^2*u1*u2+(4688298693549433879780257953364597503551526250761966604101767804717911334593293657534138615938465482301980088452239029426919396988650358455365641267524976215769792953058198341779816040417239/16686843167112032628288156175102301621746549427649633579603239019658331257987912599857758815971932797201366727847330013378189688026475280225709147843378461584119354911154549266344658871306432)*u2^2*u1*u3+(289779041515979642084285221089914992357348370650481896212640515098120143955366683276863034598508932047313938278821390010070076415774746634106526502331230747894438702300469411696566347890830251/1885613277883659686996561647786560083257360085324408594495166009221391432152634123783926746204828406083754440246748291511735434746991706665505133706301766159005487104960464067096946452457626816)*u3^2*u0*u2+(1648471920379484348185181139957697759692713123991056245268121279984951929461844775706362291881889864405351268147921772237611117003406661977395463617307241933180601642102994165490312843397499/6442869969989725581992807452573667710446560656005951917409451056565118788676426391061253119150894326026495809499139948217774833987443189062090434076201934484073418354079034397825557354638816)*u0^2*u3*u2-(981496015648521267144082426671667773797675585345938701908539995456010333226884008233530267859281409018945840455129999414260717946727789426599015834251795983122908900807167419937230466830121/16686843167112032628288156175102301621746549427649633579603239019658331257987912599857758815971932797201366727847330013378189688026475280225709147843378461584119354911154549266344658871306432)*u0^2*u1*u3+(45054058537014292300188265657931355363907767964953011878574167330306285109380899665373163050432291990243465349021957775929544243082464692363167763794434345938893509963459405762549084802959/378992351175866210705459261916098100614503568000350112788791238621477575804495670062426654067699666236852694676419996953986754940437834650711202004482466734357259903181119670460326903214048)*u3^2*u1*u0+(445050107667546372143605327702799645558545910689727129757613153329607819606200320105254850927911943175753695308018683915968222600227425023793384934810955681187063420776952313822298030509399/16686843167112032628288156175102301621746549427649633579603239019658331257987912599857758815971932797201366727847330013378189688026475280225709147843378461584119354911154549266344658871306432)*u1^3*u3-(11268857723492252938986397324203505122352704782831595975705091259360520875790687490139463966565162756290792424813602766891073709618046366579903976010588335587407599274074328806058654861361/378992351175866210705459261916098100614503568000350112788791238621477575804495670062426654067699666236852694676419996953986754940437834650711202004482466734357259903181119670460326903214048)*u0^3*u1-(33151630947328528119973781390929781129432846042591391896923058948922793485533958514187344407583674349434141792101471265222145256090669018275149822107146161675045899431283963035606494745201/378992351175866210705459261916098100614503568000350112788791238621477575804495670062426654067699666236852694676419996953986754940437834650711202004482466734357259903181119670460326903214048)*u1^3*u0-(50612757189518384732880992366125466672610662746412255583031212914095212786833155133211006840873815369148754370862916125902328092566374594269935151827598093347324145035346409562933768204025/536905830832477131832733954381138975870546721333829326450787588047093232389702199255104426595907860502207984124928329018147902832286932421840869506350161207006118196173252866485463112886568)*u1^3*u2-(532619242457279662709202988412988751979374119960923873926252821490580845700117447711402612881235932266060013127536322704950026956773888927679870969831850227113946502112961564708085773325/63165391862644368450909876986016350102417261333391685464798539770246262634082611677071109011283277706142115779403332825664459156739639108451867000747077789059543317196853278410054483869008)*u3^2*u1^2-(70559116645104354614739784690265812455467989099955127025110206143787656407095055516675267757352836111372274924947574959823004890260649372751438044455147173611026022757117232989347172451241/16686843167112032628288156175102301621746549427649633579603239019658331257987912599857758815971932797201366727847330013378189688026475280225709147843378461584119354911154549266344658871306432)*u3^3*u1+(1894923480186342334588500054217303623792739198183970782858651680350940084381384173742981743611738901645354367828858617091554189394853942395684923039055555847602983557260938966564899449235/63165391862644368450909876986016350102417261333391685464798539770246262634082611677071109011283277706142115779403332825664459156739639108451867000747077789059543317196853278410054483869008)*u0^2*u1^2-(1082482647375537342269749370241622039362587872400372739720016236548088561215948284999182054107262404423834434214047985675262165122330670048673420852020813400713822652790453973141767940107601109/1885613277883659686996561647786560083257360085324408594495166009221391432152634123783926746204828406083754440246748291511735434746991706665505133706301766159005487104960464067096946452457626816)*u0^3*u2-(367457586997525596528078936368738890643516846902812733741351805537703647950818248170511497567264498601592485256245406465561640452016283739624561162276595195970264441506452942067740449313175/1073811661664954263665467908762277951741093442667658652901575176094186464779404398510208853191815721004415968249856658036295805664573864843681739012700322414012236392346505732970926225773136)*u2^2*u0^2+(88483055985735012011891086167629202354619355423770451730009845739687033057293840690589666858865093129280894849669157383759248822816961808566550585973592953826451816868349492020439615093875/268452915416238565916366977190569487935273360666914663225393794023546616194851099627552213297953930251103992062464164509073951416143466210920434753175080603503059098086626433242731556443284)*u2^2*u1^2+(207715112860116622033823039495128968415841945982616454439742297979926276285277824958750727911408612219364237443291271585721665581795700352701058444014849293447862549814630041789592225423548971/1885613277883659686996561647786560083257360085324408594495166009221391432152634123783926746204828406083754440246748291511735434746991706665505133706301766159005487104960464067096946452457626816)*u2^3*u0+(173198832440523504143747055167803667588069082025002582843755571956133448325509912297367243773627662369955521713977347590337985116178759070286640971193177360913618598027788646215896962355975/536905830832477131832733954381138975870546721333829326450787588047093232389702199255104426595907860502207984124928329018147902832286932421840869506350161207006118196173252866485463112886568)*u2^3*u1+(837746928514163771936283768086059426740426902390752093488424974202994239177998249871048436280896110780380176997033819320586930777340923591362957526699419196769108804649518929457139508887099/6442869969989725581992807452573667710446560656005951917409451056565118788676426391061253119150894326026495809499139948217774833987443189062090434076201934484073418354079034397825557354638816)*u3^3*u2+(76050105015903839301698240101788197232511198255479637639857188622468030826499974357073716349160952207823351406596697783914993864927234138188349888789401625303568028116748828909276906631945/1073811661664954263665467908762277951741093442667658652901575176094186464779404398510208853191815721004415968249856658036295805664573864843681739012700322414012236392346505732970926225773136)*u2^2*u3^2-(3031800928769969873317528579535345777964427869123306325149671526353707122574251266348791870434195813400548574992090537845553537855446877708028695802179775505314374383748258107926352611646341/6442869969989725581992807452573667710446560656005951917409451056565118788676426391061253119150894326026495809499139948217774833987443189062090434076201934484073418354079034397825557354638816)*u2^3*u3-(447195322716149254229506457345225051394501650516575063980958590191563524557911657213510454531782949231581027162390098324785767273143380/3211957806896718916892818833547033178361060664637190377367687833068766933011247032713576888230208663657673823992003377777176157580756773)*u3*u2*u1*u0-(329276017346929325669209716223140888173209607830871182819287558223516282886560504219057701823842111973264832798881360582136657177869325976118042529154007208504921732746599751091261170979575/1073811661664954263665467908762277951741093442667658652901575176094186464779404398510208853191815721004415968249856658036295805664573864843681739012700322414012236392346505732970926225773136)*u2^4+(560351116563755218830078916954341662886959475780474466969377518057227020523063061636183553739593646314013630771421655568387967809805796543300121906765172770046594401790870034726562294675/63165391862644368450909876986016350102417261333391685464798539770246262634082611677071109011283277706142115779403332825664459156739639108451867000747077789059543317196853278410054483869008)*u1^4, (813996428727168100575115216626842704983873508700642508813355417402667810372429872985720109822552098770028980928284004286913673076967045/6423915613793437833785637667094066356722121329274380754735375666137533866022494065427153776460417327315347647984006755554352315161513546)*u1^2*u0*u2+(207715112860116622033823039495128968415841945982616454439742297979926276285277824958750727911408612219364237443291271585721665581795700352701058444014849293447862549814630041789592225423548971/1885613277883659686996561647786560083257360085324408594495166009221391432152634123783926746204828406083754440246748291511735434746991706665505133706301766159005487104960464067096946452457626816)*u2^2*u0*u3+(47199497297021688584208404004182069624796114683341451536138658385001593163968369023737924142341699756082610725695820442576363098097698022418706739915029787452920976352700099340460744589385/1073811661664954263665467908762277951741093442667658652901575176094186464779404398510208853191815721004415968249856658036295805664573864843681739012700322414012236392346505732970926225773136)*u1^2*u3*u2+(16279764979183133244022813816562335242959085515427940411940609360887401564929841315102629826382632183566517727525183187752769941811409638033430717429110606153658249540126866197956344063840095769/20741746056720256556962178125652160915830960938568494539446826101435305753678975361623194208253112466921298842714231206629089782216908773320556470769319427749060358154565104738066410977033894976)*u0^2*u1*u2+(15193216712528139475946340097635885910500726389067400412502386833637573743838311396398614558819805177631526585977254633737635002771511757369313538551535476155786321715416914103528012487355/63165391862644368450909876986016350102417261333391685464798539770246262634082611677071109011283277706142115779403332825664459156739639108451867000747077789059543317196853278410054483869008)*u2^2*u1*u0+(730762104040867752675486812572059987099328680971597723908566724813672939875297428887823146458707354307695727605915814421961963664727793776185021390919245303860944700591780679797263049896455851/1885613277883659686996561647786560083257360085324408594495166009221391432152634123783926746204828406083754440246748291511735434746991706665505133706301766159005487104960464067096946452457626816)*u1^2*u0*u3-(1892988112392398487799754432744357276431163255274213566779342958870644976153287078118750932252861230470924849749818003872044673220967569634267599650186519295703847439304011649979897990574091111/20741746056720256556962178125652160915830960938568494539446826101435305753678975361623194208253112466921298842714231206629089782216908773320556470769319427749060358154565104738066410977033894976)*u3^2*u1*u2+(8124279116450419031395699058278799275644994833786122274774704095457171788188307539459574320280052769603282366018863633638081617403964404603033489233532288776254076916878332284491408228094531/12709403221029568968726824831894706443523873124122852046229672856271633427499372157857349392311956168456678212447445592297236386162321552279752739441984943473688944947650186726756379275143318)*u2^2*u1*u3+(3210015410447899416876623738628474852157521197379945146515477473850625691312471673504823937954633148378986136194085800672287429666672605/6423915613793437833785637667094066356722121329274380754735375666137533866022494065427153776460417327315347647984006755554352315161513546)*u3^2*u0*u2-(367457586997525596528078936368738890643516846902812733741351805537703647950818248170511497567264498601592485256245406465561640452016283739624561162276595195970264441506452942067740449313175/1073811661664954263665467908762277951741093442667658652901575176094186464779404398510208853191815721004415968249856658036295805664573864843681739012700322414012236392346505732970926225773136)*u0^2*u3*u2-(1578668651598290305281571415492099863249138529593573626747600310488882163958695802527182595582538587891450892314607528646202524319855493088350890604588251007107836385960217958580333999809149/12709403221029568968726824831894706443523873124122852046229672856271633427499372157857349392311956168456678212447445592297236386162321552279752739441984943473688944947650186726756379275143318)*u0^2*u1*u3+(837746928514163771936283768086059426740426902390752093488424974202994239177998249871048436280896110780380176997033819320586930777340923591362957526699419196769108804649518929457139508887099/6442869969989725581992807452573667710446560656005951917409451056565118788676426391061253119150894326026495809499139948217774833987443189062090434076201934484073418354079034397825557354638816)*u3^4-(17351825129120792197879294591798719011250544417973868417523402298747261634518288027786890089792227800055545203700127125806310342308651652127527169954171591454561086679089077059317745940325/63165391862644368450909876986016350102417261333391685464798539770246262634082611677071109011283277706142115779403332825664459156739639108451867000747077789059543317196853278410054483869008)*u3^2*u1*u0+(619283854783628771977933292388044073668406208779048476349560831993857967941856450660976289791842589834028287880600081288150295975820518439281881025277226762772717489079835927254265264450918/6354701610514784484363412415947353221761936562061426023114836428135816713749686078928674696155978084228339106223722796148618193081160776139876369720992471736844472473825093363378189637571659)*u1^3*u3-(1082482647375537342269749370241622039362587872400372739720016236548088561215948284999182054107262404423834434214047985675262165122330670048673420852020813400713822652790453973141767940107601109/1885613277883659686996561647786560083257360085324408594495166009221391432152634123783926746204828406083754440246748291511735434746991706665505133706301766159005487104960464067096946452457626816)*u0^3*u3+(12566237119281011604062524818953982962166090553516466345059185866361159057067050077167443843603078525779954908442296080789877042652051685893920447531906076261478224003523412822922394372955/63165391862644368450909876986016350102417261333391685464798539770246262634082611677071109011283277706142115779403332825664459156739639108451867000747077789059543317196853278410054483869008)*u0^3*u1+(2900056245870501399214717349901485933773008593829747957384675759824496757219241873394094331215120144997426922655991710748872237733980364344447828659778812454304123898624672530234513090395/63165391862644368450909876986016350102417261333391685464798539770246262634082611677071109011283277706142115779403332825664459156739639108451867000747077789059543317196853278410054483869008)*u1^3*u0-(482790751580026101633847912601182593690931952749734705015713721357460928691687878082344505823225089820995910913354971817975215825879676536643640980752280285120105221418831450932615320586142311/20741746056720256556962178125652160915830960938568494539446826101435305753678975361623194208253112466921298842714231206629089782216908773320556470769319427749060358154565104738066410977033894976)*u1^3*u2-(523570723072320347720720193960877870931387782981144018907510554681609395555894037478377810126170449148940610347900921049687190172509553967697193444973661399220093366111260118640978588934307/3221434984994862790996403726286833855223280328002975958704725528282559394338213195530626559575447163013247904749569974108887416993721594531045217038100967242036709177039517198912778677319408)*u3^2*u1^2+(289779041515979642084285221089914992357348370650481896212640515098120143955366683276863034598508932047313938278821390010070076415774746634106526502331230747894438702300469411696566347890830251/1885613277883659686996561647786560083257360085324408594495166009221391432152634123783926746204828406083754440246748291511735434746991706665505133706301766159005487104960464067096946452457626816)*u3^3*u0-(676957960760087320215634451255521410687168251620737942518784348597859584714466396253744374454299173372510662283605153926084481229468405130643351788492181073604344825366001387830878933122982/6354701610514784484363412415947353221761936562061426023114836428135816713749686078928674696155978084228339106223722796148618193081160776139876369720992471736844472473825093363378189637571659)*u3^3*u1+(5029922162067407393831530715140255654587665066708153131207797315459619168583259831306571333658924808619547695875824836293743949341304097810843277926669096118658453892149622131736870966351/378992351175866210705459261916098100614503568000350112788791238621477575804495670062426654067699666236852694676419996953986754940437834650711202004482466734357259903181119670460326903214048)*u0^2*u1^2-(36587706300412498841582533683050660514539909043948426525138562752610813512248695917316410178733480294129703510367904304777619272803531901120675599279651251505677978473528936500356972044209/378992351175866210705459261916098100614503568000350112788791238621477575804495670062426654067699666236852694676419996953986754940437834650711202004482466734357259903181119670460326903214048)*u2^2*u1^2+(5542791107163311785644960556987459296680030946898158598689613857689513528294563755832463753868988084082141420753107347828249770995935914811558301741318737842055177019814906214580163533920696089/20741746056720256556962178125652160915830960938568494539446826101435305753678975361623194208253112466921298842714231206629089782216908773320556470769319427749060358154565104738066410977033894976)*u2^3*u1+(1648471920379484348185181139957697759692713123991056245268121279984951929461844775706362291881889864405351268147921772237611117003406661977395463617307241933180601642102994165490312843397499/6442869969989725581992807452573667710446560656005951917409451056565118788676426391061253119150894326026495809499139948217774833987443189062090434076201934484073418354079034397825557354638816)*u3^2*u0^2+(76050105015903839301698240101788197232511198255479637639857188622468030826499974357073716349160952207823351406596697783914993864927234138188349888789401625303568028116748828909276906631945/1073811661664954263665467908762277951741093442667658652901575176094186464779404398510208853191815721004415968249856658036295805664573864843681739012700322414012236392346505732970926225773136)*u3^3*u2-(3031800928769969873317528579535345777964427869123306325149671526353707122574251266348791870434195813400548574992090537845553537855446877708028695802179775505314374383748258107926352611646341/6442869969989725581992807452573667710446560656005951917409451056565118788676426391061253119150894326026495809499139948217774833987443189062090434076201934484073418354079034397825557354638816)*u2^2*u3^2-(329276017346929325669209716223140888173209607830871182819287558223516282886560504219057701823842111973264832798881360582136657177869325976118042529154007208504921732746599751091261170979575/1073811661664954263665467908762277951741093442667658652901575176094186464779404398510208853191815721004415968249856658036295805664573864843681739012700322414012236392346505732970926225773136)*u2^3*u3-(37539153819635450256014404436599601154992904055224448781827286619181573231757090948822676102408749570016282664000397860218680693285240/1070652602298906305630939611182344392787020221545730125789229277689588977670415677571192296076736221219224607997334459259058719193585591)*u3*u2*u1*u0+(8770546471344889663618272953967884875217001441014569101996217594804367607662869975153266706814093165296893840851501700080351973751730834901281662157130903678074326485118048969229148578191/378992351175866210705459261916098100614503568000350112788791238621477575804495670062426654067699666236852694676419996953986754940437834650711202004482466734357259903181119670460326903214048)*u1^4, (2900056245870501399214717349901485933773008593829747957384675759824496757219241873394094331215120144997426922655991710748872237733980364344447828659778812454304123898624672530234513090395/63165391862644368450909876986016350102417261333391685464798539770246262634082611677071109011283277706142115779403332825664459156739639108451867000747077789059543317196853278410054483869008)*u1^2*u0*u2+(21216790128261350835090951959940175242548211489874682790015742382844472482220326079430289645949594648555518302726877185768928691619307460759616547279198328658148808596975868650447058943281/378992351175866210705459261916098100614503568000350112788791238621477575804495670062426654067699666236852694676419996953986754940437834650711202004482466734357259903181119670460326903214048)*u2^2*u0*u3+(6292111610378542010659229056080276716692995235244007095709855020451390297061958708961446560375334570505099700154200697943641305280225246062740814006184553316272114328104567975938574614597611/32819218444177621134433826148183798917454052117988124271276623578220420496327492660796193367489102004622308295433910137071344592115361983102146314508416816058639807206590355598206346482648568)*u1^2*u3*u2+(5029922162067407393831530715140255654587665066708153131207797315459619168583259831306571333658924808619547695875824836293743949341304097810843277926669096118658453892149622131736870966351/378992351175866210705459261916098100614503568000350112788791238621477575804495670062426654067699666236852694676419996953986754940437834650711202004482466734357259903181119670460326903214048)*u0^2*u1*u2+(813996428727168100575115216626842704983873508700642508813355417402667810372429872985720109822552098770028980928284004286913673076967045/6423915613793437833785637667094066356722121329274380754735375666137533866022494065427153776460417327315347647984006755554352315161513546)*u2^2*u1*u0+(33151630947328528119973781390929781129432846042591391896923058948922793485533958514187344407583674349434141792101471265222145256090669018275149822107146161675045899431283963035606494745201/378992351175866210705459261916098100614503568000350112788791238621477575804495670062426654067699666236852694676419996953986754940437834650711202004482466734357259903181119670460326903214048)*u1^2*u0*u3-(90003994158360561181603971864650069936523687437294543686898516314810204342444321624654468416840518251044459470974764874495058764381139642258826326591008580142798547511727492839182559345009/378992351175866210705459261916098100614503568000350112788791238621477575804495670062426654067699666236852694676419996953986754940437834650711202004482466734357259903181119670460326903214048)*u3^2*u1*u2-(18043101567406962321373878862725572929040076883043550316700042621985090533247470219918867252536392515355351098410635828968272481951185247755735035528196589873699193595335168749488100928595/63165391862644368450909876986016350102417261333391685464798539770246262634082611677071109011283277706142115779403332825664459156739639108451867000747077789059543317196853278410054483869008)*u2^2*u1*u3-(8557417015211351795404626229200137754967634213103057009095408735154302299846700434508971477870701395195974113908894751151540480399194065774860061033434615449316307473662808311631313847845/63165391862644368450909876986016350102417261333391685464798539770246262634082611677071109011283277706142115779403332825664459156739639108451867000747077789059543317196853278410054483869008)*u3^2*u0*u2+(4958986693354683858225918266682534961935749001534963685142683707361583892541434946370000527043974283842028518890079142757557258441007100361863760069212463794748278249332226701707450080062811/32819218444177621134433826148183798917454052117988124271276623578220420496327492660796193367489102004622308295433910137071344592115361983102146314508416816058639807206590355598206346482648568)*u0^2*u3*u2-(1894923480186342334588500054217303623792739198183970782858651680350940084381384173742981743611738901645354367828858617091554189394853942395684923039055555847602983557260938966564899449235/63165391862644368450909876986016350102417261333391685464798539770246262634082611677071109011283277706142115779403332825664459156739639108451867000747077789059543317196853278410054483869008)*u0^2*u1*u3+(70559116645104354614739784690265812455467989099955127025110206143787656407095055516675267757352836111372274924947574959823004890260649372751438044455147173611026022757117232989347172451241/16686843167112032628288156175102301621746549427649633579603239019658331257987912599857758815971932797201366727847330013378189688026475280225709147843378461584119354911154549266344658871306432)*u3^4-(133541553948438347517689037953078632841106902842246308247836883154569532554364010920992822708261767307067175787813947133956482288560205/6423915613793437833785637667094066356722121329274380754735375666137533866022494065427153776460417327315347647984006755554352315161513546)*u3^2*u1*u0-(560351116563755218830078916954341662886959475780474466969377518057227020523063061636183553739593646314013630771421655568387967809805796543300121906765172770046594401790870034726562294675/63165391862644368450909876986016350102417261333391685464798539770246262634082611677071109011283277706142115779403332825664459156739639108451867000747077789059543317196853278410054483869008)*u1^3*u3+(11268857723492252938986397324203505122352704782831595975705091259360520875790687490139463966565162756290792424813602766891073709618046366579903976010588335587407599274074328806058654861361/378992351175866210705459261916098100614503568000350112788791238621477575804495670062426654067699666236852694676419996953986754940437834650711202004482466734357259903181119670460326903214048)*u0^3*u3+(8770546471344889663618272953967884875217001441014569101996217594804367607662869975153266706814093165296893840851501700080351973751730834901281662157130903678074326485118048969229148578191/378992351175866210705459261916098100614503568000350112788791238621477575804495670062426654067699666236852694676419996953986754940437834650711202004482466734357259903181119670460326903214048)*u1^3*u2-(445050107667546372143605327702799645558545910689727129757613153329607819606200320105254850927911943175753695308018683915968222600227425023793384934810955681187063420776952313822298030509399/16686843167112032628288156175102301621746549427649633579603239019658331257987912599857758815971932797201366727847330013378189688026475280225709147843378461584119354911154549266344658871306432)*u3^2*u1^2-(45054058537014292300188265657931355363907767964953011878574167330306285109380899665373163050432291990243465349021957775929544243082464692363167763794434345938893509963459405762549084802959/378992351175866210705459261916098100614503568000350112788791238621477575804495670062426654067699666236852694676419996953986754940437834650711202004482466734357259903181119670460326903214048)*u3^3*u0+(532619242457279662709202988412988751979374119960923873926252821490580845700117447711402612881235932266060013127536322704950026956773888927679870969831850227113946502112961564708085773325/63165391862644368450909876986016350102417261333391685464798539770246262634082611677071109011283277706142115779403332825664459156739639108451867000747077789059543317196853278410054483869008)*u3^3*u1+(12566237119281011604062524818953982962166090553516466345059185866361159057067050077167443843603078525779954908442296080789877042652051685893920447531906076261478224003523412822922394372955/63165391862644368450909876986016350102417261333391685464798539770246262634082611677071109011283277706142115779403332825664459156739639108451867000747077789059543317196853278410054483869008)*u0^3*u2+(16279764979183133244022813816562335242959085515427940411940609360887401564929841315102629826382632183566517727525183187752769941811409638033430717429110606153658249540126866197956344063840095769/20741746056720256556962178125652160915830960938568494539446826101435305753678975361623194208253112466921298842714231206629089782216908773320556470769319427749060358154565104738066410977033894976)*u2^2*u0^2-(482790751580026101633847912601182593690931952749734705015713721357460928691687878082344505823225089820995910913354971817975215825879676536643640980752280285120105221418831450932615320586142311/20741746056720256556962178125652160915830960938568494539446826101435305753678975361623194208253112466921298842714231206629089782216908773320556470769319427749060358154565104738066410977033894976)*u2^2*u1^2+(15193216712528139475946340097635885910500726389067400412502386833637573743838311396398614558819805177631526585977254633737635002771511757369313538551535476155786321715416914103528012487355/63165391862644368450909876986016350102417261333391685464798539770246262634082611677071109011283277706142115779403332825664459156739639108451867000747077789059543317196853278410054483869008)*u2^3*u0-(36587706300412498841582533683050660514539909043948426525138562752610813512248695917316410178733480294129703510367904304777619272803531901120675599279651251505677978473528936500356972044209/378992351175866210705459261916098100614503568000350112788791238621477575804495670062426654067699666236852694676419996953986754940437834650711202004482466734357259903181119670460326903214048)*u2^3*u1+(981496015648521267144082426671667773797675585345938701908539995456010333226884008233530267859281409018945840455129999414260717946727789426599015834251795983122908900807167419937230466830121/16686843167112032628288156175102301621746549427649633579603239019658331257987912599857758815971932797201366727847330013378189688026475280225709147843378461584119354911154549266344658871306432)*u3^2*u0^2-(8134876869368510863482648017506075023410386321667748133836907867344740416319487759234192689758520339908876438465147318427139302600481926219429059480328720296044537098462495567402746439039729/32819218444177621134433826148183798917454052117988124271276623578220420496327492660796193367489102004622308295433910137071344592115361983102146314508416816058639807206590355598206346482648568)*u3^3*u2-(1930135847118586200091653767194137993336427596242834513919460085033752191263187773608421307966093456243071524923987779362426370919464991298571772936430016182976425019988838047203052332203179797/5185436514180064139240544531413040228957740234642123634861706525358826438419743840405798552063278116730324710678557801657272445554227193330139117692329856937265089538641276184516602744258473744)*u2^2*u3^2+(10392098454437942796133773145361406853782194291058626221538531373380944592740852804629958748788389663475372003937361642385145820561791278336767627262642195373467942799582131815945327181193431/32819218444177621134433826148183798917454052117988124271276623578220420496327492660796193367489102004622308295433910137071344592115361983102146314508416816058639807206590355598206346482648568)*u2^3*u3-(247698756153477759011561820958248111265792099048473159633219290072255844016004826945453417743468290242790850828252470686928961642921560/3211957806896718916892818833547033178361060664637190377367687833068766933011247032713576888230208663657673823992003377777176157580756773)*u3*u2*u1*u0+(5542791107163311785644960556987459296680030946898158598689613857689513528294563755832463753868988084082141420753107347828249770995935914811558301741318737842055177019814906214580163533920696089/20741746056720256556962178125652160915830960938568494539446826101435305753678975361623194208253112466921298842714231206629089782216908773320556470769319427749060358154565104738066410977033894976)*u2^4, (174133193631013803102964642427169657090522029316213197107175246234647174844281584231626367702592918738424458839232828130596141062389858307977536647386288819058679125983470081443378038055148165807227963506186072635999131338391005210408785611338432260105678247484856356022667965542647975072227593288422169225914004443055600936699376820679631150280545286985422220634198412372328601970830976599223271174279031627149697119502639675661/1664759734444630279346477614135713330760784321879680132893279526806309411266758835641062360498689384698790018881128897775948859033775552731757326002218492170996688782966767365558306118909914199787815208249915684796104307338533542759969081430712394445213325763822047605241748386193180526687584490737125045213849593076667881864193219690342805512113887900141551423970117527894360345562854406621545624147464166694357330527466752000)*u1^2*u0*u2+(3657222746687332786416432787834464351259481633934989537980859260626275595783876117106021707475532816085046084505082181817510161768910026251747325050458465171942298666820554899074024179911428026205483462046599768266460487221483014612891532486020532406200082283024320186501419339316956845738238333774398285974269243297987947324248379101533129244992304702987731236270628215181761328163301761890789096728586795330362933043964843/38451674039517765077427023001577202555649929563253177316517160360993604911395981870124582673926384172622053863764426934349318999407481156199024899082469198575141955101125081035385736452925452704757762247411140199999769525148928276930891065962921234843113270948559819829119389644933953510852794905234126509572061186867048455274636835230841137795307972246755998626662430032140149997822178966656611702585094788099217702176000)*u2^2*u0*u3+(1977805285360034775236001317258814299174295824587468871469338672104245971160585627803043026108904194589444849387723412608030358495190178551233928774541276983062218117564079590009963633672984195395450007653447042993492474356691019606108478199551867191756193944566361425928607198679332274655488180613769272706879020131556343647823101554607620158609365110998441116413936319714290559030228496108581712826306879294833254705251634884183327/37515915535621224888499321860419678479804528288332551688127685229755784686033499280783220647958131513982132672159200087680266187945810005994395260568661127237467380620417091505311614491674553130285011656314599928775142600642966230610156573068247379621030700529651116799991213798992054229080279026924691935575838529847069607103548936795105236483990501792323241856307921863608708507374111671352071155371154151179573895879972411904000)*u1^2*u3*u2+(75088231451856691061958963619535527278784644182282754277975043109080280783968202628899812815629343026939209308066567657250891004558150534012587885529241418043696910832798400260694632128233706160443924558175827581512255557188911467830058454617764045822722081091017555864864621126420043675801796049001270775971152118304017530550454376403094358006678565358703061500183005688825838862847783477219878475809867906583676095393509/2401866479638056652950454287038394459127026938827711940999122112736483687389383155670714501966048245609758185903038863383561403749148532232795018157377720075489227342887918065242118109403525512825552222062479758664194338602964110321619046306957856487293164471474844105888696985052950442644732863833753931858549766422991327928031413204649109642489104051998868036733522465847665353664303720194588408251380353680899801164000)*u0^2*u1*u2+(90678747418681891814982749964692458788883831654289112681943921256221178731239519686631077960934763997410894331184167843830490742557571432139031771845397350398176638049730286316300053765079977616244714745388112311115056111862753662374386001441541715730663481299973694012355442473378827991171653688805480364306795877129872142140335418154985152648836771335570674829304611936696265968216041117440350236497887788977047192673257691225671/2885839656586248068346101681570744498446502176025580899086745017673521898925653790829478511381394731844779436319938468283097399072754615845722712351435471325959029278493622423485508807051888702329616281254969225290395584664843556200781274851403644586233130809973162830768554907614773402236944540532668610428910656142082277469503764368854248960306961676332557065869840143354516039028777820873236242720858011629197991990767108608000)*u2^2*u1*u0+(3380952575692543769408395051780808516294638260960341872106951011877289559783305343014172848533677019815225809212601203259785492475465480590345488657862784240507546627076623369355565604228310458791270198461243468623506721966830529957878933427269927149393072419419601580113490941234839524946405641894426335209740908941736884789050935660165041827987873126291804961332688789834299197745013728553849850365831721513142140241124723/38451674039517765077427023001577202555649929563253177316517160360993604911395981870124582673926384172622053863764426934349318999407481156199024899082469198575141955101125081035385736452925452704757762247411140199999769525148928276930891065962921234843113270948559819829119389644933953510852794905234126509572061186867048455274636835230841137795307972246755998626662430032140149997822178966656611702585094788099217702176000)*u1^2*u0*u3+(632722569208863409371272898428455003789853533771032019989720390957317252921045548687314243260034884690998339001896068729393722198133003224538204008388398038327709513184501525724799028056476805443313182049822655970553020380459717066496248503466898645075445850263164865467111073169697253353790802116605846519918046117784491152137159318658176825001980102597838746136055722048069687643894403715336233974502810717115677037666927/6455016164027277254804345896415685108903884898099475841435140677979299909858967230865045224033754660076225124614416945343321272575836680375636611297952622702877298484011279800338192419021974815718671596792914351410022284995466046489351186949949239309600379517088643534575873147329804314607719571553213691869852497261789193806584422987494482164189467139746957848721341626965600637972816248022956347175584700517418215628250)*u3^2*u1*u2+(412827136323013957187860395639836133039251815407212351467611235060924090270623741198057992853419788034111215114250238440305418579047046268496280014588924896755121272078434995733966223433179424180849744508089829974251982276909105720592639237861973309189596399110594223458414426417228336278916842531788193511137062252802898048293254585513826962719651525559529179248054955295398399620511435598636201809462643003495465980833937685803/3884439380370803985141781099649997771775163417719253643417652229214721959622437283162478841163608564297176710722634094810547337745476289707433760671843148398992273826922457186302714277456466466171568819249803264524243383789911599773261190004995587038831093448918111078897412901117421228937697145053291772165649050512225057683117512610799879528265738433663619989263607565086840806313326948783606456344083055620167104564089088000)*u2^2*u1*u3+(636211415861781310676439371909252878377182207814922963723509766587687129495828191097974903047647169601582335235023107977356320671539130564110127633201599006315041480297812079409388464920067744338775711868699745926049836969651440670680468079361630875626264880499362009217804418272267578218765323270178192042136631301424070648255062695806885231908493008619598906861260252521077102884569742625708005422075018132461682992136893029467/11653318141112411955425343298949993315325490253157760930252956687644165878867311849487436523490825692891530132167902284431642013236428869122301282015529445196976821480767371558908142832369399398514706457749409793572730151369734799319783570014986761116493280346754333236692238703352263686813091435159875316496947151536675173049352537832399638584797215300990859967790822695260522418939980846350819369032249166860501313692267264000)*u3^2*u0*u2-(5362395886468970469908807415085994845870750838716049064234813904014974042006672172414614399112723583261859453893193882522649121018732089958178599183952831904300649279204235558904543217064649587178953937395845620672261264517701675509791833778593192290501923953116924002050687328206502232132505496156231820461409021492714630015133272576849373918803504234509377184552269675956392937333160211951406534713793969593228513430787885769574113/37515915535621224888499321860419678479804528288332551688127685229755784686033499280783220647958131513982132672159200087680266187945810005994395260568661127237467380620417091505311614491674553130285011656314599928775142600642966230610156573068247379621030700529651116799991213798992054229080279026924691935575838529847069607103548936795105236483990501792323241856307921863608708507374111671352071155371154151179573895879972411904000)*u0^2*u3*u2-(56106123574012393092130023315303495844803926129651089126758935265300583897181125361428567436004442378988724253511722338232857850473112941150355354141854296015124461977344105066966372904027106083300157960839392428712260385081696056864578688630891863059433469744179390445011454231693505218452922418604998438247735686420739300262238413212774882972766339402159113822628476178756966542428596551697700166320992150402046062393993963477/3884439380370803985141781099649997771775163417719253643417652229214721959622437283162478841163608564297176710722634094810547337745476289707433760671843148398992273826922457186302714277456466466171568819249803264524243383789911599773261190004995587038831093448918111078897412901117421228937697145053291772165649050512225057683117512610799879528265738433663619989263607565086840806313326948783606456344083055620167104564089088000)*u0^2*u1*u3-(89039692873184624975222186887878168109630929344876954296437388967970175166710170168908093355157387298125625268708391143901670103922279130227966813107001553613097079202759919069032580980246724513632520634029260882259780795201033886468379118141532270139312363509350219713201455322969340193508494029015497702619024969755851353575453180037600313371183083837726395404355840524071516590417937624865314106031901693368164326687847686663929807/46305358603966769005233448696289431723644446344456178083631885769298568526761347683709575199765465182972232326779355536793928551978828350255939293044747448475959738365771952943698907029724019863666071530079734769231033152793604033210250398758522479989386464653740807021703441031898764077036230113232762617625034985411240200767808973415672749031668276497953258519785777843082748786244617834354556397486681695170216922914708805550080000)*u3^4+(12154919600942708329374262149445383438491249594799126145168577338020638004806440977766466620434669356496340898437506232019823463269742569285342334797258877379850591316648694609337682811934315540577663198019305483479885353105689792987431064542525173974412813827804056033908202868335412397783249060280608249049888037509741875910566886840695567773507161083369051076966360655717454824705232683442712787445499288691341228291113524713288849751/324137510227767383036634140874026022065511124411193246585423200385089979687329433785967026398358256280805626287455488757557499863851798451791575051313232139331718168560403670605892349208068139045662500710558143384617232069555228232471752791309657359925705252576185649151924087223291348539253610792629338323375244897878681405374662813909709243221677935485672809638500444901579241503712324840481894782406771866191518460402961638850560000)*u0^4-(6370983304663581727666092887496222192059870384075673575789376052686000920706160338189795224604087087453355165858743331603036050529976106391067407597869985394650076658061902416810143743629915530940934068035146207996884727253620178845847620619429795179566327824360976844228667924438621063839765137871343129529972980850021984309009124028707007299314852793848152365205036118723603807370006495480661996099472014659264127554401449105849/2885839656586248068346101681570744498446502176025580899086745017673521898925653790829478511381394731844779436319938468283097399072754615845722712351435471325959029278493622423485508807051888702329616281254969225290395584664843556200781274851403644586233130809973162830768554907614773402236944540532668610428910656142082277469503764368854248960306961676332557065869840143354516039028777820873236242720858011629197991990767108608000)*u3^2*u1*u0+1070652602298906305630939611182344392787020221545730125789229277689588977670415677571192296076736221219224607997334459259058719193585591/77820291690459076990129981685432529421378521972323225946926460512343483339498462898082957205648874757383953822500295291867036096307600+(133777417498625788521403433238044866254479376845819735802073804207276124668732065550610787139670113587125832442607512027185906663573059357602069938757409984686922283351292207647582403380049076286845623633686001557007826522244569937254517096070950776927078942872446769750944354687386006406909395263851125607777965550863491118990362254635536741519516666057369058556659345632387549515587546882307542323902969181481180142823837248043/3884439380370803985141781099649997771775163417719253643417652229214721959622437283162478841163608564297176710722634094810547337745476289707433760671843148398992273826922457186302714277456466466171568819249803264524243383789911599773261190004995587038831093448918111078897412901117421228937697145053291772165649050512225057683117512610799879528265738433663619989263607565086840806313326948783606456344083055620167104564089088000)*u1^3*u3-(5002896729635272590592088995818485503961593599164456737752129840460083790537299998320818137010767434310166619122348385025826206945181375200538809607564476640742561378955470664923551673866127354323058160218670416587536934976689295953625795521605174637190791014180605144085219035592642178148254465565962395770066363673178360252354041386192855625162074655413623635761028156383458960135761477470687420859514679972359740060984257/38451674039517765077427023001577202555649929563253177316517160360993604911395981870124582673926384172622053863764426934349318999407481156199024899082469198575141955101125081035385736452925452704757762247411140199999769525148928276930891065962921234843113270948559819829119389644933953510852794905234126509572061186867048455274636835230841137795307972246755998626662430032140149997822178966656611702585094788099217702176000)*u0^3*u3-(187587737279794477956520823086114989058325895659294789864474516915204681800200946916612528553262773895789058331561432077730039986792613525266107250946459517024151753367501947315580264410823926719690049197925981967852816505827271795003272942009476847651540220288078377219629114804116135575840431386364802783099819013897837325691434969368122047483227944449855401577320394034316541253020576950562570785287471487860297647351763851727289/2885839656586248068346101681570744498446502176025580899086745017673521898925653790829478511381394731844779436319938468283097399072754615845722712351435471325959029278493622423485508807051888702329616281254969225290395584664843556200781274851403644586233130809973162830768554907614773402236944540532668610428910656142082277469503764368854248960306961676332557065869840143354516039028777820873236242720858011629197991990767108608000)*u0^3*u1+(137954003792422020993998047118448354122876724207583393741187643023314569711744028161825942869399115186997712256073579547977805067612293451002132981615387984610913082660179602479892229897287397708889187165035409342526799771844176703149419451084325631005059019659956819216550437029802755204384702671714994691862608162576371208312628718859273884697431681776020634164094207585269911867095950357626753328752076747507264946447506661690951/2885839656586248068346101681570744498446502176025580899086745017673521898925653790829478511381394731844779436319938468283097399072754615845722712351435471325959029278493622423485508807051888702329616281254969225290395584664843556200781274851403644586233130809973162830768554907614773402236944540532668610428910656142082277469503764368854248960306961676332557065869840143354516039028777820873236242720858011629197991990767108608000)*u1^3*u0+(7906733655884797865338697575999223941658399893586088405397499799282530563763396489255207116957668322459024445045112546140790439285491146180522164093622830724890152638993127417908558351038688807303996321532608018120056055609675513773716170715720706377078153469219878319641439241807543794949537059718366254480867501234344946454737298687556818837809264608916329759085918997647721267932089032264747265187007222187366690887772239/206560517248872872153739068685301923484924316739183226925924501695337597115486951387681447169080149122439203987661342250986280722426773772020371561534483926492073551488360953610822157408703194102997491097373259245120713119854913487659237982398375657907212144546836593106427940714553738067447026289702838139835279912377254201810701535599823429254062948471902651159082932062899220415130119936734603109618710416557382900104000)*u1^3*u2-(6189904133858378675307252999961168253304725538524546233902265631825303727897949292207158141167783895944017269733702266556433454390525072883108361697519353619084127177921806265906946225799404068667446269720388392212522242687438041585509249413657995493548463229218400394687162554737947987804011150631912679956458658986174809695381377891927829464009763105808921195962089408663949551351217030514344393780782004194934912463484705082477450409/162068755113883691518317070437013011032755562205596623292711600192544989843664716892983513199179128140402813143727744378778749931925899225895787525656616069665859084280201835302946174604034069522831250355279071692308616034777614116235876395654828679962852626288092824575962043611645674269626805396314669161687622448939340702687331406954854621610838967742836404819250222450789620751856162420240947391203385933095759230201480819425280000)*u3^2*u1^2+(1249588811468205409464609337138742282407885462166191727588016770069728940739637509572488320157007183152818792453385260907037025756529259161961873951551409009242899945285997750368493406157436626747892545437522412035811786913299360842015443806896666056582574103746895992364715311135983488771404314923503643787069886225572804306309147579708372535688429695002587988434455918339477020283541303005455026500412721061702602494110143/38451674039517765077427023001577202555649929563253177316517160360993604911395981870124582673926384172622053863764426934349318999407481156199024899082469198575141955101125081035385736452925452704757762247411140199999769525148928276930891065962921234843113270948559819829119389644933953510852794905234126509572061186867048455274636835230841137795307972246755998626662430032140149997822178966656611702585094788099217702176000)*u3^3*u0-(77236020908963551422104277733978851224973112290985576355250470917293156205688725601563139984873349171766262644107028401725074404041590615621166100099826256211165780660163088534861046090137877233811736684953385208941438300891845837336252354631637513664959497265298583992364469504546550115728312130339008074637269252606167459037318781826535166299778068824014414652169293008610401633859828949454220276171690157774302466728911321557/3884439380370803985141781099649997771775163417719253643417652229214721959622437283162478841163608564297176710722634094810547337745476289707433760671843148398992273826922457186302714277456466466171568819249803264524243383789911599773261190004995587038831093448918111078897412901117421228937697145053291772165649050512225057683117512610799879528265738433663619989263607565086840806313326948783606456344083055620167104564089088000)*u3^3*u1-(3445040450013270800438944809890101679775971253873908908001977519926625941534702367849965261153432351443457755169787138670817897152538756128211107217402184175569483345097414037305111438370268838265776452375197035978884790866362786059113382345553571905002582786420002850318631879038165675406418001040090967500530358981318478415262265987768038887369380615518929770687103240031233753116246443125605861795283773866529781331062432265122429609/162068755113883691518317070437013011032755562205596623292711600192544989843664716892983513199179128140402813143727744378778749931925899225895787525656616069665859084280201835302946174604034069522831250355279071692308616034777614116235876395654828679962852626288092824575962043611645674269626805396314669161687622448939340702687331406954854621610838967742836404819250222450789620751856162420240947391203385933095759230201480819425280000)*u0^2*u1^2+(1109523089496016643252476465227117514757921898982716303980755472939160634781630138878583041569126526695579570938610566011594921630604730735335144393310637738275982995551624977547831714277352967931331853403203441470095298016720971806379441659805663325607616590089010933420099350686470186194598353346553557771232784841919357384246049839625707593717480704976868710607018777585964372599521558832049540244368389651370182852272162436187/11653318141112411955425343298949993315325490253157760930252956687644165878867311849487436523490825692891530132167902284431642013236428869122301282015529445196976821480767371558908142832369399398514706457749409793572730151369734799319783570014986761116493280346754333236692238703352263686813091435159875316496947151536675173049352537832399638584797215300990859967790822695260522418939980846350819369032249166860501313692267264000)*u0^3*u2+(130488104459401854795154358100971452024819285633085460673015184182364261180640936303677744315803324728805418572132700079726576299082158933599422705692788398270169281560510452853396651553869330977818431123522947839151488292062226487551885224656460082742076537333698410126947810875364755849825966020760957100751911786341106747054098365291489190445376973353250769073566139487068985499509271149587634471117508620399047129795382171192249389/8529934479678089027279845812474369001723976958189295962774294746976052097034985099630711221009427796863305954933039177830460522732942064520830922402979793140308372856852728173839272347580740501201644755541003773279400843935663900854519810297622562103308032962531201293471686505876088119454042389279719429562506444681017931720385863523939716926886261460149284464171064339515243197466113811591628810063336101741882064747446358917120000)*u2^2*u0^2+(5148993314829410984512508169998026798320098546958726279579463131361019992185172997957158647980118583752614015296366800635787393575111368335831916766496570167040844550829671876292931047190242839492366894941609808853215284746256823763019202467199507206154198104792643877900750617734521512447617930252732968032212896586476497707251095214538275241775128232157082775674523183977731456452686061078706887502708749364118199903805354228622783831/162068755113883691518317070437013011032755562205596623292711600192544989843664716892983513199179128140402813143727744378778749931925899225895787525656616069665859084280201835302946174604034069522831250355279071692308616034777614116235876395654828679962852626288092824575962043611645674269626805396314669161687622448939340702687331406954854621610838967742836404819250222450789620751856162420240947391203385933095759230201480819425280000)*u2^2*u1^2+(663755260081569435425597837255371644190472183678022485848128843216428711684199466838970339734106870376963003558313181999282626430566652306311723956648737347195968922188138837374557547175998099757601657019439968555962527352966840452149935078679994481289381385697956054958663998388265227463241441033404367285981989686002474531142057512271897630932479074469051347014213505981774359418676448010727241709795165005891127200275192226907/11653318141112411955425343298949993315325490253157760930252956687644165878867311849487436523490825692891530132167902284431642013236428869122301282015529445196976821480767371558908142832369399398514706457749409793572730151369734799319783570014986761116493280346754333236692238703352263686813091435159875316496947151536675173049352537832399638584797215300990859967790822695260522418939980846350819369032249166860501313692267264000)*u2^3*u0+(8258018162477141528371562046987872891863344145358219208823029143994589199819176043695213982086755669130137939913941807885273635150552482914326554961550471865188511116449957405254576086730303533027900640946997466221580130533076964418414844769368019544179273260213381592408666770299609839638464756014416350034890878132565641254067882707901028436510925637903397545840197547802795188071551907068834588073112235870080212426635759/206560517248872872153739068685301923484924316739183226925924501695337597115486951387681447169080149122439203987661342250986280722426773772020371561534483926492073551488360953610822157408703194102997491097373259245120713119854913487659237982398375657907212144546836593106427940714553738067447026289702838139835279912377254201810701535599823429254062948471902651159082932062899220415130119936734603109618710416557382900104000)*u2^3*u1-(3810454417732406130091811326058712125042528666238773384023004113359381904234792003647701494867343682945079393428145966226128056283374386585054144966273008806254786232902880624304831808438783145671577156989968651933962849888900784078350948199897400727127766204768777057129173148309268056820529285063418042336018979708306253564068253636686687183718409631513530424174883619470823297162508098744614005242578923198047853457182867970546209449/162068755113883691518317070437013011032755562205596623292711600192544989843664716892983513199179128140402813143727744378778749931925899225895787525656616069665859084280201835302946174604034069522831250355279071692308616034777614116235876395654828679962852626288092824575962043611645674269626805396314669161687622448939340702687331406954854621610838967742836404819250222450789620751856162420240947391203385933095759230201480819425280000)*u3^2*u0^2+(4405387561809023447593508759474009960855301294458507263416652923279797842944271376095600750995368537827876134489995851532917083909306904512829171452829864404473690373073187530371688697379416677714745875124484235958899239737422534593019281240202852877237552481099526869701520635797621584882290133663970708309992762478752596457371218218570643931472231200680738732501146175428862588224211554259276789953793541047585394535210535679447327/37515915535621224888499321860419678479804528288332551688127685229755784686033499280783220647958131513982132672159200087680266187945810005994395260568661127237467380620417091505311614491674553130285011656314599928775142600642966230610156573068247379621030700529651116799991213798992054229080279026924691935575838529847069607103548936795105236483990501792323241856307921863608708507374111671352071155371154151179573895879972411904000)*u3^3*u2-(20375841997831023694615123450904434873868102572213795930446619905578513038720298391970035694448787669242765558982038092973305861397209080995327913057000249603439687985367407838520153110045551052289869358589807702653911796630206687576585831400317773535301645163489076889474718800041521819920310688821269653191739030064891065409896280087122997237120854247705184592770465684818676287844474208353405376207916962185109280643831118482981578409/162068755113883691518317070437013011032755562205596623292711600192544989843664716892983513199179128140402813143727744378778749931925899225895787525656616069665859084280201835302946174604034069522831250355279071692308616034777614116235876395654828679962852626288092824575962043611645674269626805396314669161687622448939340702687331406954854621610838967742836404819250222450789620751856162420240947391203385933095759230201480819425280000)*u2^2*u3^2-(6875966303511095901270936025694559261836265376995096303063652155921540117573351690799946423334657516396182415503925720967921860439700552412005627071042624251238072921742880003403455825058081794080018559691031213512639093118489218823835757632588723610587240461702583122081049974551993826532093365350773293797836625149427084411267544719380733762742156467036974039692993207522945288266794517572965389219447305695318547775773568603130593/37515915535621224888499321860419678479804528288332551688127685229755784686033499280783220647958131513982132672159200087680266187945810005994395260568661127237467380620417091505311614491674553130285011656314599928775142600642966230610156573068247379621030700529651116799991213798992054229080279026924691935575838529847069607103548936795105236483990501792323241856307921863608708507374111671352071155371154151179573895879972411904000)*u2^3*u3-(401473977848693599759553133028097339271505084655036698003169167486271824216744927027275723206958810070325457502237055110757959131875502583277901590378933331441118948060735056231944213974436347265827288172309925339694485480931010390055577031220696058520487274670271444967333641632010840625670614901582316560546891570950043933549917533708715635516578951/7217767113630868245105083706053876888267171079186744852041703520148923057603810454463155453809798949757877134425675934105761294730134051027751230274361179680992884710224426193079783456615305630578774774913988132320631736847887366378555243810245427166254358257111174892009957276908638875202675651720305494048441599211919393016716335988571160369731200)*u3*u2*u1*u0-(18581451278368880518116261167278826611451434356511873444201954866121137088628325906366951601023903356102449285527075382839334125567446469061199075236997316031257245198860109818681022165298783043002922589659949628175173859363463150948925288037645596737631416972708102567004141000814900686575284014350422994866563817507507751381158779212325614208837129694156375768625928526238185882441477228850770732807071954278428258200330339074159543/273996204757199816599014489327156400731623942866604604045159087392299222051842293986447190531156598715812025602244707318307269538336262427549936645235192002816329812815218656471591165856355147122284446923548726445154042324222509072250002359517884496978618134045803591844399059360347716432167042090134690045118550209533965685016621144471436384802770866851794429111158448775637566782512531564228144363826518906332644514288217784320000)*u2^4-(152862222292078814269860845248332363183087156146891591925277267943015777386755234187423283240209854341195103713448330061958549138166007026694340198438174366227294554032107350310122005410915824873280813801919572104101013346072804712330600470572800289385765009037013453503285117813264422935374055754298889377588853169106316772772045437545175384389078124849602408310387025047591173571914862074683362793015232921017812310081493997582891/22417699026749248429119174277199392908604407248854917116358199072210386588791025228990042630773791844581618804029012293903969836354644059187466287524257012195291387271623464320208337312958582131935991473169523714269121797465608149420551406826866129049429784395614195252225194496389193480825341364729880235381094466967195615559489785871063645011527625388040169419634860287819298810686238663841337214358307757534512653738360995840000)*u1^4, u0^2+u1^2+u2^2+u3^2-1]:

infolevel[GroebnerBasis] := 3

NULL

``

``

GrB1 := Basis[Groebner](J1, tdeg(u0, u1, u2, u3)):

for n to nops(GrB1) do n; sm[n] := [coeffs(collect(GrB1[n], [u0, u1, u2], 'distributed'), [u0, u1, u2], 't')]; ss[n] := [t] end do:

interface(displayprecision = 3)

NULL

for n to nops(GrB1) do "GrB1", n, evalf(collect(GrB1[n], [u0, u1, u2], 'distributed')); ss[n], nops(ss[n]); evalf(sm[n]) end do

ReqVarList := [1, u2, u1, u0, u2^2, u1*u2, u0*u2, u1^2, u0*u1, u2^3, u1*u2^2, u0*u2^2, u1^2*u2, u0*u1*u2, u1^3, u0*u1^2, u2^4, u2^3*u1, u2^3*u0]

ReqVarSet := convert(ReqVarList, set)

nops(RequiredSequence)

ss[14]

for m to nops(GrB1) do m, `subset`(convert(ss[m], set), ReqVarSet) end do

M := Matrix(19, [sm[8], sm[9], sm[10], seq(sm[n], n = 14 .. 29)])

M1 := Matrix(20, 19, [ss[14]]); -1; for m from 2 to 20 do for n to 19 do M1[m, n] := degree(M[m-1, n]) end do end do; -1; DegPoly := 0; -1; for n to 19 do DegPoly := DegPoly+degree(add(M[m, n], m = 1 .. 19)) end do; -1; "DegPoly=", DegPoly; 1; M1

"(->)"

length(Poly)

degree(Poly)

digits := 10``interface(displayprecision = 5)

PolyRoots := [fsolve(Poly)]

nops(PolyRoots)

NULL

 

Download Test_Equations_Matrix_Groebner.mw

Hi,

I have a linear mathematical model that is in deterministic form, but actually one of the input parameters has a stochastic nature and follows a log normal distribution function. and I need to include this in the formulation. Please help me with this questions:

1) Do I need to use stochastic programming methods to solve it? if yes, how?

2) How can I include the distribution function in my model?

3) Can I solve the these kinds of problems using Maple?

Hi,

I am designing a power transformer using Maple, and I am trying to solve for the minimum number of turns around my core for the desired effect. The equations to solve include numbers of turns (must be positive integers) and other constraints (positive floats).

To validate my worksheet, I am beta-testing it on an existing transformer, so I know of at least one solution that works. But when I submit the equations to Maple, it can't find the solution I know with integer solutions.

 

The equation is :

SOL := `assuming`([solve({N__2/N__1 = m__t, k__c*L__L(g__ap*Unit('m'), N__1)*I__M__pk = (1/2)*V__sec*T__res/m__t, g__ap <= 2*10^(-3), B__max(g__ap*Unit('m'), N__1, I__M__pk) <= B__max__core}, {N__1, N__2, g__ap, I__M__pk}, UseAssumptions)], [N__1::posint, N__2::posint, g__ap::positive])

 

And Maple's answer : 

{N__1 = 7.701193685, N__2 = 12.50000000*N__1, I__M__pk = (-1.855203719*10^9*g__ap^2+1.523613883*10^11*g__ap+5.590656409*10^6)*Unit('A')/(5.000000*10^6+2.43902439*10^8*g__ap), I__M__pk = (-1.100291349*10^11*g__ap^2+9.036307746*10^12*g__ap+3.315727980*10^8)*Unit('A')/(N__1^2*(5.000000*10^6+2.43902439*10^8*g__ap)), g__ap <= 0.2000000000e-2, 0. < g__ap}

 

Except I know there is a solution with N__1 = 6 and N_82 = 75. If I force n__1:=75 and solve again for the other variables, the solution is OK : 

X := `assuming`([solve({N__2/N__1 = m__t, k__c*L__L(g__ap*Unit('m'), N__1)*I__M__pk = (1/2)*V__sec*T__res/m__t, g__ap <= 2*10^(-3), B__max(g__ap*Unit('m'), N__1, I__M__pk) <= B__max__core}, {N__2, g__ap, I__M__pk}, UseAssumptions)], [N__2::posint, g__ap::positive])

And the answer :

X := {N__2 = 75., I__M__pk = -0.3759328777e-1*Unit('Wb')*(8.130081300*10^10*g__ap^2-6.676951220*10^12*g__ap-2.45000000*10^8)/(Unit('H')*(5.000000*10^6+2.43902439*10^8*g__ap)), g__ap <= 0.2000000000e-2, 0. < g__ap}

 

I am a bit puzzled about why Maple doesn't find this solution...

 

Thank you very much for your help.

 

Hi everyone, I got a problem. I'm a new user and I'm getting to know this beautiful software.

The problem is that when I enter a function in math mode (the easyest with simple inputs I guess), once I right click and plot only the cartesian plot is shown, without the actual function. 

What should I try? Math without plots is boring... :)

 

Thank you!

Hello All,

 

I am running Maple 18 on Ubuntu 14.04.4 with x86_64 architecture. When running the xmaple command for a specific user, the java loading window takes about 5-10 minutes to appear. With other users, it takes around 15 seconds. All users are running the same xmaple script, I did not see and conflicting environment variables.

 

I was wondering if the community had any other ideas as to what could be causing this slow response?

 

Thank you in advance,

Michael

First 6 7 8 9 10 11 12 Last Page 8 of 87