## how can maple be used for Heyting Algebra...

Bellissima used kripky modules to find the labels for one and two generators. the number of these labels increses to a very large number as we add another level. Can maple help count these lables? and how?

 >
 >
 (1)
 >
 (2)
 >
 (3)
 >
 (4)
 >
 >
 >

 >
 (1)
 >
 (2)
 >
 (3)
 >
 (4)
 >
 (5)
 >
 (6)
 >
 (7)
 >
 (8)
 >
 (9)
 >
 (10)
 >
 (11)
 >
 (12)
 >
 (13)
 >
 (14)
 >
 >
 (15)
 >
 (16)
 >
 >
 >

## Warning: Solutions may have been lost; Pleas help...

Warning: Solutions may have been lost;  Pleas help, i have uploaded .mw file

## i can not find out the prbl of solve...

solve({-mu*a[1]+2*c[2]*a[1]*a[2]^2-a[1]*k^2*c[1]+2*c[2]*a[1]*a[0]^2+5*c[4]*a[0]^4*a[1]+5*c[4]*a[1]*a[2]^4+3*c[3]*a[1]*a[2]^2+3*c[3]*a[0]^2*a[1]+a[1]*c[1]+30*c[4]*a[0]^2*a[1]*a[2]^2-20*c[4]*a[1]*a[2]*a[0]^3-4*c[2]*a[1]*a[0]*a[2]-8*c[2]*a[1]^3*A*B+24*c[1]*a[1]*A*B-6*c[3]*a[0]*a[1]*a[2]-20*c[4]*a[0]*a[1]*a[2]^3+48*c[2]*a[1]*a[0]^2*A*B+176*c[2]*a[1]*a[2]^2*A*B-224*c[2]*a[1]*A*B*a[0]*a[2] = 0, -16*c[2]*a[1]^3-6*mu*a[1]+156*c[2]*a[1]*a[2]^2-6*a[1]*k^2*c[1]-20*c[2]*a[1]*a[0]^2+30*c[4]*a[0]^4*a[1]-20*c[4]*a[1]^3*a[2]^2+30*c[4]*a[1]*a[2]^4-6*c[3]*a[1]*a[2]^2+18*c[3]*a[0]^2*a[1]+20*c[4]*a[0]^2*a[1]^3+c[4]*a[1]^5+2*a[1]^3*c[3]-10*a[1]*c[1]-60*c[4]*a[0]^2*a[1]*a[2]^2-24*c[2]*a[1]^3*A*B+8*c[1]*a[1]*A*B+16*c[2]*a[1]*a[0]^2*A*B+336*c[2]*a[1]*a[2]^2*A*B+352*c[2]*a[1]*A*B*a[0]*a[2] = 0, -32*c[2]*a[2]*a[0]^2*A*B-8*c[2]*a[1]^2*a[0]*A*B+64*c[2]*a[2]^2*a[0]*A*B+8*c[2]*a[1]^2*a[2]*A*B-5*c[4]*a[0]^4*a[2]+10*c[4]*a[0]^3*a[2]^2-10*c[4]*a[0]^2*a[2]^3+5*c[4]*a[0]*a[2]^4-a[0]*k^2*c[1]+a[2]*k^2*c[1]-3*c[3]*a[0]^2*a[2]+3*c[3]*a[0]*a[2]^2-32*c[2]*a[2]^3*A*B-16*c[1]*a[2]*A*B+c[4]*a[0]^5-c[4]*a[2]^5+c[3]*a[0]^3-c[3]*a[2]^3-a[0]*mu+a[2]*mu = 0, 4*c[2]*a[1]^3-4*mu*a[1]-64*c[2]*a[1]*a[2]^2-4*a[1]*k^2*c[1]-8*c[2]*a[1]*a[0]^2+20*c[4]*a[0]^4*a[1]+10*c[4]*a[1]^3*a[2]^2-20*c[4]*a[1]*a[2]^4+12*c[3]*a[0]^2*a[1]+10*c[4]*a[0]^2*a[1]^3+a[1]^3*c[3]-4*a[1]*c[1]+40*c[4]*a[1]*a[2]*a[0]^3-72*c[2]*a[1]*a[0]*a[2]-8*c[1]*a[1]*A*B+12*c[3]*a[0]*a[1]*a[2]+20*c[4]*a[0]*a[1]^3*a[2]-40*c[4]*a[0]*a[1]*a[2]^3-16*c[2]*a[1]*a[0]^2*A*B-16*c[2]*a[1]*a[2]^2*A*B-32*c[2]*a[1]*A*B*a[0]*a[2] = 0, 4*c[2]*a[1]^3-4*mu*a[1]-64*c[2]*a[1]*a[2]^2-4*a[1]*k^2*c[1]-8*c[2]*a[1]*a[0]^2+20*c[4]*a[0]^4*a[1]+10*c[4]*a[1]^3*a[2]^2-20*c[4]*a[1]*a[2]^4+12*c[3]*a[0]^2*a[1]+10*c[4]*a[0]^2*a[1]^3+a[1]^3*c[3]-4*a[1]*c[1]-40*c[4]*a[1]*a[2]*a[0]^3+72*c[2]*a[1]*a[0]*a[2]+64*c[2]*a[1]^3*A*B+40*c[1]*a[1]*A*B-12*c[3]*a[0]*a[1]*a[2]-20*c[4]*a[0]*a[1]^3*a[2]+40*c[4]*a[0]*a[1]*a[2]^3+80*c[2]*a[1]*a[0]^2*A*B-624*c[2]*a[1]*a[2]^2*A*B+160*c[2]*a[1]*A*B*a[0]*a[2] = 0, 3*c[3]*a[0]*a[2]^2+6*c[2]*a[1]^2*a[0]-32*c[2]*a[2]^2*a[0]-5*a[0]*k^2*c[1]+10*c[4]*a[0]^3*a[2]^2-6*c[2]*a[1]^2*a[2]-15*c[4]*a[0]^4*a[2]-15*c[4]*a[0]*a[2]^4+10*c[4]*a[0]^2*a[2]^3+3*a[2]*k^2*c[1]-9*c[3]*a[0]^2*a[2]+16*c[2]*a[2]*a[0]^2-5*a[0]*mu+3*a[2]*mu-30*c[4]*a[0]^2*a[1]^2*a[2]+30*c[4]*a[0]*a[1]^2*a[2]^2+288*c[2]*a[2]^3*A*B+16*c[1]*a[2]*A*B+32*c[2]*a[2]*a[0]^2*A*B+104*c[2]*a[1]^2*a[0]*A*B-320*c[2]*a[2]^2*a[0]*A*B-216*c[2]*a[1]^2*a[2]*A*B+5*c[4]*a[0]^5+5*c[4]*a[2]^5+5*c[3]*a[0]^3+c[3]*a[2]^3-3*c[3]*a[1]^2*a[2]-10*c[4]*a[1]^2*a[2]^3+3*c[3]*a[0]*a[1]^2+10*c[4]*a[0]^3*a[1]^2+16*c[2]*a[2]^3+8*c[1]*a[2] = 0, -6*c[3]*a[0]*a[2]^2-22*c[2]*a[1]^2*a[0]+64*c[2]*a[2]^2*a[0]-10*a[0]*k^2*c[1]-20*c[4]*a[0]^3*a[2]^2-66*c[2]*a[1]^2*a[2]+10*c[4]*a[0]^4*a[2]+10*c[4]*a[0]*a[2]^4-20*c[4]*a[0]^2*a[2]^3-2*a[2]*k^2*c[1]+6*c[3]*a[0]^2*a[2]-16*c[2]*a[2]*a[0]^2-10*a[0]*mu-2*a[2]*mu+30*c[4]*a[0]^2*a[1]^2*a[2]-30*c[4]*a[0]*a[1]^2*a[2]^2+96*c[2]*a[2]^3*A*B+48*c[1]*a[2]*A*B+5*c[4]*a[1]^4*a[2]+5*c[4]*a[0]*a[1]^4+96*c[2]*a[2]*a[0]^2*A*B-40*c[2]*a[1]^2*a[0]*A*B+192*c[2]*a[2]^2*a[0]*A*B-40*c[2]*a[1]^2*a[2]*A*B+10*c[4]*a[0]^5+10*c[4]*a[2]^5+10*c[3]*a[0]^3-2*c[3]*a[2]^3+3*c[3]*a[1]^2*a[2]-30*c[4]*a[1]^2*a[2]^3+9*c[3]*a[0]*a[1]^2+30*c[4]*a[0]^3*a[1]^2+80*c[2]*a[2]^3-8*c[1]*a[2] = 0, -6*c[3]*a[0]*a[2]^2-22*c[2]*a[1]^2*a[0]+64*c[2]*a[2]^2*a[0]-10*a[0]*k^2*c[1]-20*c[4]*a[0]^3*a[2]^2+66*c[2]*a[1]^2*a[2]-10*c[4]*a[0]^4*a[2]+10*c[4]*a[0]*a[2]^4+20*c[4]*a[0]^2*a[2]^3+2*a[2]*k^2*c[1]-6*c[3]*a[0]^2*a[2]+16*c[2]*a[2]*a[0]^2-10*a[0]*mu+2*a[2]*mu-30*c[4]*a[0]^2*a[1]^2*a[2]-30*c[4]*a[0]*a[1]^2*a[2]^2-352*c[2]*a[2]^3*A*B+80*c[1]*a[2]*A*B-5*c[4]*a[1]^4*a[2]+5*c[4]*a[0]*a[1]^4+160*c[2]*a[2]*a[0]^2*A*B+72*c[2]*a[1]^2*a[0]*A*B-192*c[2]*a[2]^2*a[0]*A*B+312*c[2]*a[1]^2*a[2]*A*B+10*c[4]*a[0]^5-10*c[4]*a[2]^5+10*c[3]*a[0]^3+2*c[3]*a[2]^3-3*c[3]*a[1]^2*a[2]+30*c[4]*a[1]^2*a[2]^3+9*c[3]*a[0]*a[1]^2+30*c[4]*a[0]^3*a[1]^2-80*c[2]*a[2]^3+8*c[1]*a[2] = 0, a[0]^5*c[4]+5*a[0]^4*a[2]*c[4]+10*a[0]^3*a[2]^2*c[4]+10*a[0]^2*a[2]^3*c[4]+5*a[0]*a[2]^4*c[4]+a[2]^5*c[4]-k^2*a[0]*c[1]-k^2*a[2]*c[1]+a[0]^3*c[3]+3*a[0]^2*a[2]*c[3]+3*a[0]*a[2]^2*c[3]+a[2]^3*c[3]-mu*a[0]-mu*a[2] = 0, 5*a[0]^4*a[1]*c[4]+20*a[0]^3*a[1]*a[2]*c[4]+30*a[0]^2*a[1]*a[2]^2*c[4]+20*a[0]*a[1]*a[2]^3*c[4]+5*a[1]*a[2]^4*c[4]-k^2*a[1]*c[1]+2*a[0]^2*a[1]*c[2]+3*a[0]^2*a[1]*c[3]+4*a[0]*a[1]*a[2]*c[2]+6*a[0]*a[1]*a[2]*c[3]+2*a[1]*a[2]^2*c[2]+3*a[1]*a[2]^2*c[3]-mu*a[1]+a[1]*c[1] = 0, 5*a[0]^5*c[4]+15*a[0]^4*a[2]*c[4]+10*a[0]^3*a[1]^2*c[4]+10*a[0]^3*a[2]^2*c[4]+30*a[0]^2*a[1]^2*a[2]*c[4]-10*a[0]^2*a[2]^3*c[4]+30*a[0]*a[1]^2*a[2]^2*c[4]-15*a[0]*a[2]^4*c[4]+10*a[1]^2*a[2]^3*c[4]-5*a[2]^5*c[4]-5*k^2*a[0]*c[1]-3*k^2*a[2]*c[1]+5*a[0]^3*c[3]-16*a[0]^2*a[2]*c[2]+9*a[0]^2*a[2]*c[3]+6*a[0]*a[1]^2*c[2]+3*a[0]*a[1]^2*c[3]-32*a[0]*a[2]^2*c[2]+3*a[0]*a[2]^2*c[3]+6*a[1]^2*a[2]*c[2]+3*a[1]^2*a[2]*c[3]-16*a[2]^3*c[2]-a[2]^3*c[3]-5*mu*a[0]-3*mu*a[2]-8*a[2]*c[1] = 0}, {B, mu, a[0], a[1], a[2]})

## How do I compare two vectors within a tolerance...

Hello everyone !,

I would like to generate two random complex vectors (x1 and x2) several time and I want to check how these two vectors (j iteration) close to their previous values (j-1 iteration): abs (x1(j)-x1(j-1)) < 10^-4 and abs (x2(j)-x2(j-1)) < 10^-4. Therefore, I want that my program stop when this criteria is satisfied for x1 and x2 simultaneously.

I know how to check that for one element of the vector but not all the elements of the vector.
code:
Comp.vect.mw

## State transition diagram...

How to compute and simulate State transition diagram in markov matrix, long run behavior, statistical test analysis?

MArkov.mw

## How do I solve the system in Maple 18?...

Hi please  help me in this problem in maple 18

How do I solve the system K=B and find values

x_{0},y_{0},z{0}

I posed the problem in the form pdf and mw

thank you

problem.mw

problem.pdf