## Is it possible to know if Maple is going to finish...

Is there an option or a tool to know if maple is trying to finish the calculation or if it is in a bucle?

## Create a polynomiograph...

Hi.

I have to make a picture Polynomiograph from metrics such as

m:= Matrix([[1, 2, 3], [4, 5, 6]])

By assigning each number a color as follows.

1 = aquamarine

2 = blue

3 = brown

4 = coral

5 = cyan

6 = black

How should I write the code?

## How to perform this kind of integrals?...

Hello!

I am trying to integrate this function numerically from x=0... 1, by using int and evalf(Int) but maple cannot handle it. Is there another kind of numerical integration?

(2*x-1)^2*(2*n+(5*(2*x-1))*(x-1))*(2*n-5+5*x)*ln(1-(5*(1-x))*x/n)/((1-x)^2*(-2*n-(15*(1-x))*x))

Are there another kind of procedures to do numerical integration?

## How can I get a copy of the solutions to the book ...

I have a printed book copy of Derek Richards' book, Advanced Mathematical Methods With Maple and would like to get the solutions to the problems in the book. Unfortunately the web download is no longer available. I have not been able to locate a copy or to contact Derek Richards directly.

Thanks

## How to integrate the indefinite integral for PDE s...

Dear maple users,

A fine day wishes to all.

I have solved the PDE via PDsolve. Here I need to calculate the Psi function. How to calculate the indefinite integral and how to find the constant-coefficient (C1).

Here Psi=0 at x=0

int_c.mw

 > restart:
 > with(PDEtools):
 > with(plots):
 > fcns := {f(x,t),theta(x,t)};
 (1)
 > d:=0.5:xi:=0.1:
 > R:=z->piecewise(d<=z and z<=d+1,1-2*xi*(cos((2*3.14)*((z-d)*(1/2))-1/4)-(7/100)*cos((32*3.14)*(z-d-1/2))),1);
 (2)
 > PDE1 :=(diff(f(x,t),t))=1+(1-2*theta((x,t)))*(1/(R(z)^2))*((diff(f(x,t),x,x))+(1/x)*diff(f(x,t),x))+theta((x,t));
 (3)
 > PDE2 :=2*(diff(theta(x,t),t))=(1/(R(z)^2))*((diff(theta(x,t),x,x))+(1/x)*diff(theta(x,t),x));
 (4)
 > IBC := {D[1](f)(0,t)=0,f(1,t)=0,f(x,0)=0,D[1](theta)(0,t)=0,theta(1,t)=1,theta(x,0)=0};
 (5)
 > z:=0.98:
 >
 > sol:=pdsolve(eval([PDE1,PDE2]),IBC ,numeric, time = t): sol:-value(f(x,t), output=listprocedure); fN:=eval( f(x,t), sol:-value(f(x,t), output=listprocedure)):
 (6)
 > t := 1;
 (7)
 > A1:=x*R(z)*R(z)*(fN)(x, t);
 (8)
 > A2:=eval(int(A1, x))+C1;
 (9)
 > W11:=eval(subs(x=0,A2));
 > Find_c1:=solve(W11,C1);
 (10)
 >

Here u is fN(x,t) and t=1.

## how can maple be used for Heyting Algebra...

Bellissima used kripky modules to find the labels for one and two generators. the number of these labels increses to a very large number as we add another level. Can maple help count these lables? and how?

 >
 >
 (1)
 >
 (2)
 >
 (3)
 >
 (4)
 >
 >
 >

 >
 (1)
 >
 (2)
 >
 (3)
 >
 (4)
 >
 (5)
 >
 (6)
 >
 (7)
 >
 (8)
 >
 (9)
 >
 (10)
 >
 (11)
 >
 (12)
 >
 (13)
 >
 (14)
 >
 >
 (15)
 >
 (16)
 >
 >
 >

## Warning: Solutions may have been lost; Pleas help...

Warning: Solutions may have been lost;  Pleas help, i have uploaded .mw file

## i can not find out the prbl of solve...

solve({-mu*a[1]+2*c[2]*a[1]*a[2]^2-a[1]*k^2*c[1]+2*c[2]*a[1]*a[0]^2+5*c[4]*a[0]^4*a[1]+5*c[4]*a[1]*a[2]^4+3*c[3]*a[1]*a[2]^2+3*c[3]*a[0]^2*a[1]+a[1]*c[1]+30*c[4]*a[0]^2*a[1]*a[2]^2-20*c[4]*a[1]*a[2]*a[0]^3-4*c[2]*a[1]*a[0]*a[2]-8*c[2]*a[1]^3*A*B+24*c[1]*a[1]*A*B-6*c[3]*a[0]*a[1]*a[2]-20*c[4]*a[0]*a[1]*a[2]^3+48*c[2]*a[1]*a[0]^2*A*B+176*c[2]*a[1]*a[2]^2*A*B-224*c[2]*a[1]*A*B*a[0]*a[2] = 0, -16*c[2]*a[1]^3-6*mu*a[1]+156*c[2]*a[1]*a[2]^2-6*a[1]*k^2*c[1]-20*c[2]*a[1]*a[0]^2+30*c[4]*a[0]^4*a[1]-20*c[4]*a[1]^3*a[2]^2+30*c[4]*a[1]*a[2]^4-6*c[3]*a[1]*a[2]^2+18*c[3]*a[0]^2*a[1]+20*c[4]*a[0]^2*a[1]^3+c[4]*a[1]^5+2*a[1]^3*c[3]-10*a[1]*c[1]-60*c[4]*a[0]^2*a[1]*a[2]^2-24*c[2]*a[1]^3*A*B+8*c[1]*a[1]*A*B+16*c[2]*a[1]*a[0]^2*A*B+336*c[2]*a[1]*a[2]^2*A*B+352*c[2]*a[1]*A*B*a[0]*a[2] = 0, -32*c[2]*a[2]*a[0]^2*A*B-8*c[2]*a[1]^2*a[0]*A*B+64*c[2]*a[2]^2*a[0]*A*B+8*c[2]*a[1]^2*a[2]*A*B-5*c[4]*a[0]^4*a[2]+10*c[4]*a[0]^3*a[2]^2-10*c[4]*a[0]^2*a[2]^3+5*c[4]*a[0]*a[2]^4-a[0]*k^2*c[1]+a[2]*k^2*c[1]-3*c[3]*a[0]^2*a[2]+3*c[3]*a[0]*a[2]^2-32*c[2]*a[2]^3*A*B-16*c[1]*a[2]*A*B+c[4]*a[0]^5-c[4]*a[2]^5+c[3]*a[0]^3-c[3]*a[2]^3-a[0]*mu+a[2]*mu = 0, 4*c[2]*a[1]^3-4*mu*a[1]-64*c[2]*a[1]*a[2]^2-4*a[1]*k^2*c[1]-8*c[2]*a[1]*a[0]^2+20*c[4]*a[0]^4*a[1]+10*c[4]*a[1]^3*a[2]^2-20*c[4]*a[1]*a[2]^4+12*c[3]*a[0]^2*a[1]+10*c[4]*a[0]^2*a[1]^3+a[1]^3*c[3]-4*a[1]*c[1]+40*c[4]*a[1]*a[2]*a[0]^3-72*c[2]*a[1]*a[0]*a[2]-8*c[1]*a[1]*A*B+12*c[3]*a[0]*a[1]*a[2]+20*c[4]*a[0]*a[1]^3*a[2]-40*c[4]*a[0]*a[1]*a[2]^3-16*c[2]*a[1]*a[0]^2*A*B-16*c[2]*a[1]*a[2]^2*A*B-32*c[2]*a[1]*A*B*a[0]*a[2] = 0, 4*c[2]*a[1]^3-4*mu*a[1]-64*c[2]*a[1]*a[2]^2-4*a[1]*k^2*c[1]-8*c[2]*a[1]*a[0]^2+20*c[4]*a[0]^4*a[1]+10*c[4]*a[1]^3*a[2]^2-20*c[4]*a[1]*a[2]^4+12*c[3]*a[0]^2*a[1]+10*c[4]*a[0]^2*a[1]^3+a[1]^3*c[3]-4*a[1]*c[1]-40*c[4]*a[1]*a[2]*a[0]^3+72*c[2]*a[1]*a[0]*a[2]+64*c[2]*a[1]^3*A*B+40*c[1]*a[1]*A*B-12*c[3]*a[0]*a[1]*a[2]-20*c[4]*a[0]*a[1]^3*a[2]+40*c[4]*a[0]*a[1]*a[2]^3+80*c[2]*a[1]*a[0]^2*A*B-624*c[2]*a[1]*a[2]^2*A*B+160*c[2]*a[1]*A*B*a[0]*a[2] = 0, 3*c[3]*a[0]*a[2]^2+6*c[2]*a[1]^2*a[0]-32*c[2]*a[2]^2*a[0]-5*a[0]*k^2*c[1]+10*c[4]*a[0]^3*a[2]^2-6*c[2]*a[1]^2*a[2]-15*c[4]*a[0]^4*a[2]-15*c[4]*a[0]*a[2]^4+10*c[4]*a[0]^2*a[2]^3+3*a[2]*k^2*c[1]-9*c[3]*a[0]^2*a[2]+16*c[2]*a[2]*a[0]^2-5*a[0]*mu+3*a[2]*mu-30*c[4]*a[0]^2*a[1]^2*a[2]+30*c[4]*a[0]*a[1]^2*a[2]^2+288*c[2]*a[2]^3*A*B+16*c[1]*a[2]*A*B+32*c[2]*a[2]*a[0]^2*A*B+104*c[2]*a[1]^2*a[0]*A*B-320*c[2]*a[2]^2*a[0]*A*B-216*c[2]*a[1]^2*a[2]*A*B+5*c[4]*a[0]^5+5*c[4]*a[2]^5+5*c[3]*a[0]^3+c[3]*a[2]^3-3*c[3]*a[1]^2*a[2]-10*c[4]*a[1]^2*a[2]^3+3*c[3]*a[0]*a[1]^2+10*c[4]*a[0]^3*a[1]^2+16*c[2]*a[2]^3+8*c[1]*a[2] = 0, -6*c[3]*a[0]*a[2]^2-22*c[2]*a[1]^2*a[0]+64*c[2]*a[2]^2*a[0]-10*a[0]*k^2*c[1]-20*c[4]*a[0]^3*a[2]^2-66*c[2]*a[1]^2*a[2]+10*c[4]*a[0]^4*a[2]+10*c[4]*a[0]*a[2]^4-20*c[4]*a[0]^2*a[2]^3-2*a[2]*k^2*c[1]+6*c[3]*a[0]^2*a[2]-16*c[2]*a[2]*a[0]^2-10*a[0]*mu-2*a[2]*mu+30*c[4]*a[0]^2*a[1]^2*a[2]-30*c[4]*a[0]*a[1]^2*a[2]^2+96*c[2]*a[2]^3*A*B+48*c[1]*a[2]*A*B+5*c[4]*a[1]^4*a[2]+5*c[4]*a[0]*a[1]^4+96*c[2]*a[2]*a[0]^2*A*B-40*c[2]*a[1]^2*a[0]*A*B+192*c[2]*a[2]^2*a[0]*A*B-40*c[2]*a[1]^2*a[2]*A*B+10*c[4]*a[0]^5+10*c[4]*a[2]^5+10*c[3]*a[0]^3-2*c[3]*a[2]^3+3*c[3]*a[1]^2*a[2]-30*c[4]*a[1]^2*a[2]^3+9*c[3]*a[0]*a[1]^2+30*c[4]*a[0]^3*a[1]^2+80*c[2]*a[2]^3-8*c[1]*a[2] = 0, -6*c[3]*a[0]*a[2]^2-22*c[2]*a[1]^2*a[0]+64*c[2]*a[2]^2*a[0]-10*a[0]*k^2*c[1]-20*c[4]*a[0]^3*a[2]^2+66*c[2]*a[1]^2*a[2]-10*c[4]*a[0]^4*a[2]+10*c[4]*a[0]*a[2]^4+20*c[4]*a[0]^2*a[2]^3+2*a[2]*k^2*c[1]-6*c[3]*a[0]^2*a[2]+16*c[2]*a[2]*a[0]^2-10*a[0]*mu+2*a[2]*mu-30*c[4]*a[0]^2*a[1]^2*a[2]-30*c[4]*a[0]*a[1]^2*a[2]^2-352*c[2]*a[2]^3*A*B+80*c[1]*a[2]*A*B-5*c[4]*a[1]^4*a[2]+5*c[4]*a[0]*a[1]^4+160*c[2]*a[2]*a[0]^2*A*B+72*c[2]*a[1]^2*a[0]*A*B-192*c[2]*a[2]^2*a[0]*A*B+312*c[2]*a[1]^2*a[2]*A*B+10*c[4]*a[0]^5-10*c[4]*a[2]^5+10*c[3]*a[0]^3+2*c[3]*a[2]^3-3*c[3]*a[1]^2*a[2]+30*c[4]*a[1]^2*a[2]^3+9*c[3]*a[0]*a[1]^2+30*c[4]*a[0]^3*a[1]^2-80*c[2]*a[2]^3+8*c[1]*a[2] = 0, a[0]^5*c[4]+5*a[0]^4*a[2]*c[4]+10*a[0]^3*a[2]^2*c[4]+10*a[0]^2*a[2]^3*c[4]+5*a[0]*a[2]^4*c[4]+a[2]^5*c[4]-k^2*a[0]*c[1]-k^2*a[2]*c[1]+a[0]^3*c[3]+3*a[0]^2*a[2]*c[3]+3*a[0]*a[2]^2*c[3]+a[2]^3*c[3]-mu*a[0]-mu*a[2] = 0, 5*a[0]^4*a[1]*c[4]+20*a[0]^3*a[1]*a[2]*c[4]+30*a[0]^2*a[1]*a[2]^2*c[4]+20*a[0]*a[1]*a[2]^3*c[4]+5*a[1]*a[2]^4*c[4]-k^2*a[1]*c[1]+2*a[0]^2*a[1]*c[2]+3*a[0]^2*a[1]*c[3]+4*a[0]*a[1]*a[2]*c[2]+6*a[0]*a[1]*a[2]*c[3]+2*a[1]*a[2]^2*c[2]+3*a[1]*a[2]^2*c[3]-mu*a[1]+a[1]*c[1] = 0, 5*a[0]^5*c[4]+15*a[0]^4*a[2]*c[4]+10*a[0]^3*a[1]^2*c[4]+10*a[0]^3*a[2]^2*c[4]+30*a[0]^2*a[1]^2*a[2]*c[4]-10*a[0]^2*a[2]^3*c[4]+30*a[0]*a[1]^2*a[2]^2*c[4]-15*a[0]*a[2]^4*c[4]+10*a[1]^2*a[2]^3*c[4]-5*a[2]^5*c[4]-5*k^2*a[0]*c[1]-3*k^2*a[2]*c[1]+5*a[0]^3*c[3]-16*a[0]^2*a[2]*c[2]+9*a[0]^2*a[2]*c[3]+6*a[0]*a[1]^2*c[2]+3*a[0]*a[1]^2*c[3]-32*a[0]*a[2]^2*c[2]+3*a[0]*a[2]^2*c[3]+6*a[1]^2*a[2]*c[2]+3*a[1]^2*a[2]*c[3]-16*a[2]^3*c[2]-a[2]^3*c[3]-5*mu*a[0]-3*mu*a[2]-8*a[2]*c[1] = 0}, {B, mu, a[0], a[1], a[2]})

## How do I compare two vectors within a tolerance...

Hello everyone !,

I would like to generate two random complex vectors (x1 and x2) several time and I want to check how these two vectors (j iteration) close to their previous values (j-1 iteration): abs (x1(j)-x1(j-1)) < 10^-4 and abs (x2(j)-x2(j-1)) < 10^-4. Therefore, I want that my program stop when this criteria is satisfied for x1 and x2 simultaneously.

I know how to check that for one element of the vector but not all the elements of the vector.
code:
Comp.vect.mw

## State transition diagram...

How to compute and simulate State transition diagram in markov matrix, long run behavior, statistical test analysis?

MArkov.mw