Maple 18 Questions and Posts

These are Posts and Questions associated with the product, Maple 18

Bellissima used kripky modules to find the labels for one and two generators. the number of these labels increses to a very large number as we add another level. Can maple help count these lables? and how?


 

restart

sigma := 7.500*10^7+2.005*10^7*sinh(22985.642*z)-2.097*10^7*cosh(22985.642*z)

75000000.00+20050000.00*sinh(22985.642*z)-20970000.00*cosh(22985.642*z)

(1)

sigma_debond := 5.403*10^7

54030000.00

(2)

mid := 0.1653e-3

0.1653e-3

(3)

L := 0.2184e-3

0.2184e-3

(4)

plot(sigma, z = mid .. L)

 

plot(sigma_debond, z = 0 .. mid)

 

``


 

Download join_curves.mw


 

restart; eq2 := ef*epsilon+x1*sinh(y1*L/r1)+x2*cosh(y1*L/r1)-.1*(ef*epsilon+x2) = 0; eq3 := ef*epsilon+x1*sinh(-y1*L/r1)+x2*cosh(-y1*L/r1)-.1*(ef*epsilon+x2) = 0; sol1 := solve({eq2, eq3}, {x1, x2})

.9*ef*epsilon+x1*sinh(y1*L/r1)+x2*cosh(y1*L/r1)-.1*x2 = 0

 

.9*ef*epsilon-x1*sinh(y1*L/r1)+x2*cosh(y1*L/r1)-.1*x2 = 0

 

{x1 = 0., x2 = -9.*ef*epsilon/(10.*cosh(y1*L/r1)-1.)}

(1)

assign(sol1); 1; x1, x2

0., -9.*ef*epsilon/(10.*cosh(y1*L/r1)-1.)

(2)

x1;

0.

(3)

x2;

-9.*ef*epsilon/(10.*cosh(y1*L/r1)-1.)

(4)

eq4 := ef*epsilon+x1*sinh(y1*z/r1)+x2*cosh(y1*z/r1);

ef*epsilon-9.*ef*epsilon*cosh(y1*z/r1)/(10.*cosh(y1*L/r1)-1.)

(5)

avg_eq4 := Typesetting:-delayDotProduct(1/L, int(eq4, z));

1/L.(ef*epsilon*z-9.*ef*epsilon*r1*sinh(y1*z/r1)/((10.*cosh(y1*L/r1)-1.)*y1))

(6)

Ecomp := Typesetting:-delayDotProduct(simplify((eval(subs(z = L, avg_eq4)-subs(z = 0, avg_eq4)))/epsilon), Vf)+(1-Vf)*Em;

(1/L.(ef*epsilon*(10.*L*y1*cosh(y1*L/r1)-L*y1-9.*r1*sinh(y1*L/r1))/((10.*cosh(y1*L/r1)-1.)*y1)))/epsilon.Vf+(1-Vf)*Em

(7)

tau := .5*(diff(eq4, z))*r1;

-4.5*ef*epsilon*sinh(y1*z/r1)*y1/(10.*cosh(y1*L/r1)-1.)

(8)

L := lfact*r1;

lfact*r1

 

0.65e-5

(9)

ef := 0.75e11;

0.75e11

 

0.326e10

 

.3

 

.5

(10)

Theo_Ecomp := Vf*ef+(1-Vf)*Em;

0.39130e11

(11)

y1 := 2*Em/((1+nu)*ef*ln(1/Vf))

0.9647560684e-1

(12)

Ecomp

0.5979989095e17*(1/lfact.(epsilon*(0.6270914445e-5*lfact*cosh(0.9647560685e-1*lfact)-0.6270914445e-6*lfact-0.585e-4*sinh(0.9647560685e-1*lfact))/(10.*cosh(0.9647560685e-1*lfact)-1.)))/epsilon+0.1630e10

(13)

epsilon := 0.1e-2;

0.1e-2

(14)

plot(Ecomp, lfact = 1 .. 500)

 

lfact := 90.81506;

90.81506

(15)

eq4

0.75e8-21149.64968*cosh(14842.40105*z)

(16)

plot(eq4, z = 0 .. L)

 

plot(tau, z = 0 .. L)

 

NULL


 

Download Fuly_bonded_updated.mw

Warning: Solutions may have been lost;  Pleas help, i have uploaded .mw file

solve({-mu*a[1]+2*c[2]*a[1]*a[2]^2-a[1]*k^2*c[1]+2*c[2]*a[1]*a[0]^2+5*c[4]*a[0]^4*a[1]+5*c[4]*a[1]*a[2]^4+3*c[3]*a[1]*a[2]^2+3*c[3]*a[0]^2*a[1]+a[1]*c[1]+30*c[4]*a[0]^2*a[1]*a[2]^2-20*c[4]*a[1]*a[2]*a[0]^3-4*c[2]*a[1]*a[0]*a[2]-8*c[2]*a[1]^3*A*B+24*c[1]*a[1]*A*B-6*c[3]*a[0]*a[1]*a[2]-20*c[4]*a[0]*a[1]*a[2]^3+48*c[2]*a[1]*a[0]^2*A*B+176*c[2]*a[1]*a[2]^2*A*B-224*c[2]*a[1]*A*B*a[0]*a[2] = 0, -16*c[2]*a[1]^3-6*mu*a[1]+156*c[2]*a[1]*a[2]^2-6*a[1]*k^2*c[1]-20*c[2]*a[1]*a[0]^2+30*c[4]*a[0]^4*a[1]-20*c[4]*a[1]^3*a[2]^2+30*c[4]*a[1]*a[2]^4-6*c[3]*a[1]*a[2]^2+18*c[3]*a[0]^2*a[1]+20*c[4]*a[0]^2*a[1]^3+c[4]*a[1]^5+2*a[1]^3*c[3]-10*a[1]*c[1]-60*c[4]*a[0]^2*a[1]*a[2]^2-24*c[2]*a[1]^3*A*B+8*c[1]*a[1]*A*B+16*c[2]*a[1]*a[0]^2*A*B+336*c[2]*a[1]*a[2]^2*A*B+352*c[2]*a[1]*A*B*a[0]*a[2] = 0, -32*c[2]*a[2]*a[0]^2*A*B-8*c[2]*a[1]^2*a[0]*A*B+64*c[2]*a[2]^2*a[0]*A*B+8*c[2]*a[1]^2*a[2]*A*B-5*c[4]*a[0]^4*a[2]+10*c[4]*a[0]^3*a[2]^2-10*c[4]*a[0]^2*a[2]^3+5*c[4]*a[0]*a[2]^4-a[0]*k^2*c[1]+a[2]*k^2*c[1]-3*c[3]*a[0]^2*a[2]+3*c[3]*a[0]*a[2]^2-32*c[2]*a[2]^3*A*B-16*c[1]*a[2]*A*B+c[4]*a[0]^5-c[4]*a[2]^5+c[3]*a[0]^3-c[3]*a[2]^3-a[0]*mu+a[2]*mu = 0, 4*c[2]*a[1]^3-4*mu*a[1]-64*c[2]*a[1]*a[2]^2-4*a[1]*k^2*c[1]-8*c[2]*a[1]*a[0]^2+20*c[4]*a[0]^4*a[1]+10*c[4]*a[1]^3*a[2]^2-20*c[4]*a[1]*a[2]^4+12*c[3]*a[0]^2*a[1]+10*c[4]*a[0]^2*a[1]^3+a[1]^3*c[3]-4*a[1]*c[1]+40*c[4]*a[1]*a[2]*a[0]^3-72*c[2]*a[1]*a[0]*a[2]-8*c[1]*a[1]*A*B+12*c[3]*a[0]*a[1]*a[2]+20*c[4]*a[0]*a[1]^3*a[2]-40*c[4]*a[0]*a[1]*a[2]^3-16*c[2]*a[1]*a[0]^2*A*B-16*c[2]*a[1]*a[2]^2*A*B-32*c[2]*a[1]*A*B*a[0]*a[2] = 0, 4*c[2]*a[1]^3-4*mu*a[1]-64*c[2]*a[1]*a[2]^2-4*a[1]*k^2*c[1]-8*c[2]*a[1]*a[0]^2+20*c[4]*a[0]^4*a[1]+10*c[4]*a[1]^3*a[2]^2-20*c[4]*a[1]*a[2]^4+12*c[3]*a[0]^2*a[1]+10*c[4]*a[0]^2*a[1]^3+a[1]^3*c[3]-4*a[1]*c[1]-40*c[4]*a[1]*a[2]*a[0]^3+72*c[2]*a[1]*a[0]*a[2]+64*c[2]*a[1]^3*A*B+40*c[1]*a[1]*A*B-12*c[3]*a[0]*a[1]*a[2]-20*c[4]*a[0]*a[1]^3*a[2]+40*c[4]*a[0]*a[1]*a[2]^3+80*c[2]*a[1]*a[0]^2*A*B-624*c[2]*a[1]*a[2]^2*A*B+160*c[2]*a[1]*A*B*a[0]*a[2] = 0, 3*c[3]*a[0]*a[2]^2+6*c[2]*a[1]^2*a[0]-32*c[2]*a[2]^2*a[0]-5*a[0]*k^2*c[1]+10*c[4]*a[0]^3*a[2]^2-6*c[2]*a[1]^2*a[2]-15*c[4]*a[0]^4*a[2]-15*c[4]*a[0]*a[2]^4+10*c[4]*a[0]^2*a[2]^3+3*a[2]*k^2*c[1]-9*c[3]*a[0]^2*a[2]+16*c[2]*a[2]*a[0]^2-5*a[0]*mu+3*a[2]*mu-30*c[4]*a[0]^2*a[1]^2*a[2]+30*c[4]*a[0]*a[1]^2*a[2]^2+288*c[2]*a[2]^3*A*B+16*c[1]*a[2]*A*B+32*c[2]*a[2]*a[0]^2*A*B+104*c[2]*a[1]^2*a[0]*A*B-320*c[2]*a[2]^2*a[0]*A*B-216*c[2]*a[1]^2*a[2]*A*B+5*c[4]*a[0]^5+5*c[4]*a[2]^5+5*c[3]*a[0]^3+c[3]*a[2]^3-3*c[3]*a[1]^2*a[2]-10*c[4]*a[1]^2*a[2]^3+3*c[3]*a[0]*a[1]^2+10*c[4]*a[0]^3*a[1]^2+16*c[2]*a[2]^3+8*c[1]*a[2] = 0, -6*c[3]*a[0]*a[2]^2-22*c[2]*a[1]^2*a[0]+64*c[2]*a[2]^2*a[0]-10*a[0]*k^2*c[1]-20*c[4]*a[0]^3*a[2]^2-66*c[2]*a[1]^2*a[2]+10*c[4]*a[0]^4*a[2]+10*c[4]*a[0]*a[2]^4-20*c[4]*a[0]^2*a[2]^3-2*a[2]*k^2*c[1]+6*c[3]*a[0]^2*a[2]-16*c[2]*a[2]*a[0]^2-10*a[0]*mu-2*a[2]*mu+30*c[4]*a[0]^2*a[1]^2*a[2]-30*c[4]*a[0]*a[1]^2*a[2]^2+96*c[2]*a[2]^3*A*B+48*c[1]*a[2]*A*B+5*c[4]*a[1]^4*a[2]+5*c[4]*a[0]*a[1]^4+96*c[2]*a[2]*a[0]^2*A*B-40*c[2]*a[1]^2*a[0]*A*B+192*c[2]*a[2]^2*a[0]*A*B-40*c[2]*a[1]^2*a[2]*A*B+10*c[4]*a[0]^5+10*c[4]*a[2]^5+10*c[3]*a[0]^3-2*c[3]*a[2]^3+3*c[3]*a[1]^2*a[2]-30*c[4]*a[1]^2*a[2]^3+9*c[3]*a[0]*a[1]^2+30*c[4]*a[0]^3*a[1]^2+80*c[2]*a[2]^3-8*c[1]*a[2] = 0, -6*c[3]*a[0]*a[2]^2-22*c[2]*a[1]^2*a[0]+64*c[2]*a[2]^2*a[0]-10*a[0]*k^2*c[1]-20*c[4]*a[0]^3*a[2]^2+66*c[2]*a[1]^2*a[2]-10*c[4]*a[0]^4*a[2]+10*c[4]*a[0]*a[2]^4+20*c[4]*a[0]^2*a[2]^3+2*a[2]*k^2*c[1]-6*c[3]*a[0]^2*a[2]+16*c[2]*a[2]*a[0]^2-10*a[0]*mu+2*a[2]*mu-30*c[4]*a[0]^2*a[1]^2*a[2]-30*c[4]*a[0]*a[1]^2*a[2]^2-352*c[2]*a[2]^3*A*B+80*c[1]*a[2]*A*B-5*c[4]*a[1]^4*a[2]+5*c[4]*a[0]*a[1]^4+160*c[2]*a[2]*a[0]^2*A*B+72*c[2]*a[1]^2*a[0]*A*B-192*c[2]*a[2]^2*a[0]*A*B+312*c[2]*a[1]^2*a[2]*A*B+10*c[4]*a[0]^5-10*c[4]*a[2]^5+10*c[3]*a[0]^3+2*c[3]*a[2]^3-3*c[3]*a[1]^2*a[2]+30*c[4]*a[1]^2*a[2]^3+9*c[3]*a[0]*a[1]^2+30*c[4]*a[0]^3*a[1]^2-80*c[2]*a[2]^3+8*c[1]*a[2] = 0, a[0]^5*c[4]+5*a[0]^4*a[2]*c[4]+10*a[0]^3*a[2]^2*c[4]+10*a[0]^2*a[2]^3*c[4]+5*a[0]*a[2]^4*c[4]+a[2]^5*c[4]-k^2*a[0]*c[1]-k^2*a[2]*c[1]+a[0]^3*c[3]+3*a[0]^2*a[2]*c[3]+3*a[0]*a[2]^2*c[3]+a[2]^3*c[3]-mu*a[0]-mu*a[2] = 0, 5*a[0]^4*a[1]*c[4]+20*a[0]^3*a[1]*a[2]*c[4]+30*a[0]^2*a[1]*a[2]^2*c[4]+20*a[0]*a[1]*a[2]^3*c[4]+5*a[1]*a[2]^4*c[4]-k^2*a[1]*c[1]+2*a[0]^2*a[1]*c[2]+3*a[0]^2*a[1]*c[3]+4*a[0]*a[1]*a[2]*c[2]+6*a[0]*a[1]*a[2]*c[3]+2*a[1]*a[2]^2*c[2]+3*a[1]*a[2]^2*c[3]-mu*a[1]+a[1]*c[1] = 0, 5*a[0]^5*c[4]+15*a[0]^4*a[2]*c[4]+10*a[0]^3*a[1]^2*c[4]+10*a[0]^3*a[2]^2*c[4]+30*a[0]^2*a[1]^2*a[2]*c[4]-10*a[0]^2*a[2]^3*c[4]+30*a[0]*a[1]^2*a[2]^2*c[4]-15*a[0]*a[2]^4*c[4]+10*a[1]^2*a[2]^3*c[4]-5*a[2]^5*c[4]-5*k^2*a[0]*c[1]-3*k^2*a[2]*c[1]+5*a[0]^3*c[3]-16*a[0]^2*a[2]*c[2]+9*a[0]^2*a[2]*c[3]+6*a[0]*a[1]^2*c[2]+3*a[0]*a[1]^2*c[3]-32*a[0]*a[2]^2*c[2]+3*a[0]*a[2]^2*c[3]+6*a[1]^2*a[2]*c[2]+3*a[1]^2*a[2]*c[3]-16*a[2]^3*c[2]-a[2]^3*c[3]-5*mu*a[0]-3*mu*a[2]-8*a[2]*c[1] = 0}, {B, mu, a[0], a[1], a[2]})

Hello everyone !,


I would like to generate two random complex vectors (x1 and x2) several time and I want to check how these two vectors (j iteration) close to their previous values (j-1 iteration): abs (x1(j)-x1(j-1)) < 10^-4 and abs (x2(j)-x2(j-1)) < 10^-4. Therefore, I want that my program stop when this criteria is satisfied for x1 and x2 simultaneously.

I know how to check that for one element of the vector but not all the elements of the vector.
code:
Comp.vect.mw

How to compute and simulate State transition diagram in markov matrix, long run behavior, statistical test analysis?

MArkov.mw

Hi please  help me in this problem in maple 18 

How do I solve the system K=B and find values 

x_{0},y_{0},z{0}

I posed the problem in the form pdf and mw

thank you 

problem.mw

problem.pdf

 

 

Please how draw this curve 

ExpODE4 := Y(1)*(sum(lambda^k*t^(k*d)/factorial(k*d), k = 0 .. infinity))

Statistics[NonlinearFit](ExpODE4, X, Y, t)

4 5 6 7 8 9 10 Last Page 6 of 80