Maple 18 Questions and Posts

These are Posts and Questions associated with the product, Maple 18


psif := (0.5731939284e-1*(x-97.79105004))/((x-97.79105004)^2+(y+.3750470777)^2)+(0.2599707238e-1*(y+.3750470777))/((x-97.79105004)^2+(y+.3750470777)^2)+(0.7176288278e-1*x-7.025711349)/((x-97.90174359)^2+(y-.8198365723)^2)+(-0.6648084910e-2*y+0.5450343145e-2)/((x-97.90174359)^2+(y-.8198365723)^2)+(0.6378426459e-1*x-6.295510046)/((x-98.70004908)^2+(y-1.715776493)^2)+(-0.5683341879e-1*y+0.9751344398e-1)/((x-98.70004908)^2+(y-1.715776493)^2)+(0.6500592479e-2*x-.6493949981)/((x-99.89781703)^2+(y-1.788933400)^2)+(-.1064315267*y+.1903989129)/((x-99.89781703)^2+(y-1.788933400)^2)+(-.1026176004*x+10.33830579)/((x-100.7459320)^2+(y-.9399922915)^2)+(-.1025177385*y+0.9636588393e-1)/((x-100.7459320)^2+(y-.9399922915)^2)+(-.1841914880*x+18.41914880)/((x-100.)^2+y^2)+.1461653667*y/((x-100.)^2+y^2)+3.*y-11.93662073*ln((x-100.)^2+y^2):

xf := 98.17642962:

ode := diff(X(t), t) = evalf(subs(x = X(t), y = Y(t), subs(vvx = Vx, vvx))), diff(Y(t), t) = evalf(subs(x = X(t), y = Y(t), subs(vvy = Vy, vvy))), diff(S(t), t) = -Y(t)*evalf(subs(x = X(t), y = Y(t), subs(vvx = Vx, vvx))):

ds := dsolve(odse, type = numeric, method = rkf45, maxfun = 0, output = listprocedure, abserr = .1^10, relerr = .1^10, minstep = .1^10);

proc (t) local _res, _dat, _solnproc, _xout, _ndsol, _pars, _i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; if 1 < nargs then error "invalid input: too many arguments" end if; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then _xout := evalf[_EnvDSNumericSaveDigits](t) else _xout := evalf(t) end if; _dat := Array(1..4, {(1) = proc (_xin) local _xout, _dtbl, _dat, _vmap, _x0, _y0, _val, _dig, _n, _ne, _nd, _nv, _pars, _ini, _par, _i, _j, _k, _src; option `Copyright (c) 2002 by Waterloo Maple Inc. All rights reserved.`; table( [( "complex" ) = false ] ) _xout := _xin; _pars := []; _dtbl := array( 1 .. 4, [( 1 ) = (array( 1 .. 20, [( 1 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 2 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 3 ) = ([0, 0, 0, Array(1..0, 1..2, {}, datatype = float[8], order = C_order)]), ( 4 ) = (Array(1..53, {(1) = 3, (2) = 3, (3) = 0, (4) = 0, (5) = 0, (6) = 0, (7) = 1, (8) = 0, (9) = 0, (10) = 0, (11) = 0, (12) = 0, (13) = 0, (14) = 0, (15) = 0, (16) = 0, (17) = 0, (18) = 1, (19) = 0, (20) = 0, (21) = 0, (22) = 1, (23) = 4, (24) = 0, (25) = 1, (26) = 15, (27) = 1, (28) = 0, (29) = 1, (30) = 3, (31) = 3, (32) = 0, (33) = 1, (34) = 0, (35) = 0, (36) = 0, (37) = 0, (38) = 0, (39) = 0, (40) = 0, (41) = 0, (42) = 0, (43) = 1, (44) = 0, (45) = 0, (46) = 0, (47) = 0, (48) = 0, (49) = 0, (50) = 50, (51) = 1, (52) = 0, (53) = 0}, datatype = integer[8])), ( 5 ) = (Array(1..28, {(1) = .0, (2) = 0.10e-9, (3) = .0, (4) = 0.500001e-14, (5) = .0, (6) = 0.5313975432658623e-3, (7) = .0, (8) = 0.10e-9, (9) = .0, (10) = .0, (11) = 0.10e-9, (12) = .0, (13) = 1.0, (14) = .0, (15) = .49999999999999, (16) = .0, (17) = 1.0, (18) = 1.0, (19) = .0, (20) = .0, (21) = 1.0, (22) = 1.0, (23) = .0, (24) = .0, (25) = 0.10e-14, (26) = .0, (27) = .0, (28) = .0}, datatype = float[8], order = C_order)), ( 6 ) = (Array(1..3, {(1) = .0, (2) = 98.17642962, (3) = -1.578177289}, datatype = float[8], order = C_order)), ( 7 ) = ([Array(1..4, 1..7, {(1, 1) = .0, (1, 2) = .203125, (1, 3) = .3046875, (1, 4) = .75, (1, 5) = .8125, (1, 6) = .40625, (1, 7) = .8125, (2, 1) = 0.6378173828125e-1, (2, 2) = .0, (2, 3) = .279296875, (2, 4) = .27237892150878906, (2, 5) = -0.9686851501464844e-1, (2, 6) = 0.1956939697265625e-1, (2, 7) = .5381584167480469, (3, 1) = 0.31890869140625e-1, (3, 2) = .0, (3, 3) = -.34375, (3, 4) = -.335235595703125, (3, 5) = .2296142578125, (3, 6) = .41748046875, (3, 7) = 11.480712890625, (4, 1) = 0.9710520505905151e-1, (4, 2) = .0, (4, 3) = .40350341796875, (4, 4) = 0.20297467708587646e-1, (4, 5) = -0.6054282188415527e-2, (4, 6) = -0.4770040512084961e-1, (4, 7) = .77858567237854}, datatype = float[8], order = C_order), Array(1..6, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = 1.0, (2, 1) = .25, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = 1.0, (3, 1) = .1875, (3, 2) = .5625, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = 2.0, (4, 1) = .23583984375, (4, 2) = -.87890625, (4, 3) = .890625, (4, 4) = .0, (4, 5) = .0, (4, 6) = .2681884765625, (5, 1) = .1272735595703125, (5, 2) = -.5009765625, (5, 3) = .44921875, (5, 4) = -0.128936767578125e-1, (5, 5) = .0, (5, 6) = 0.626220703125e-1, (6, 1) = -0.927734375e-1, (6, 2) = .626220703125, (6, 3) = -.4326171875, (6, 4) = .1418304443359375, (6, 5) = -0.861053466796875e-1, (6, 6) = .3131103515625}, datatype = float[8], order = C_order), Array(1..6, {(1) = .0, (2) = .386, (3) = .21, (4) = .63, (5) = 1.0, (6) = 1.0}, datatype = float[8], order = C_order), Array(1..6, {(1) = .25, (2) = -.1043, (3) = .1035, (4) = -0.362e-1, (5) = .0, (6) = .0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 1.544, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = .9466785280815533, (3, 2) = .25570116989825814, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = 3.3148251870684886, (4, 2) = 2.896124015972123, (4, 3) = .9986419139977808, (4, 4) = .0, (4, 5) = .0, (5, 1) = 1.2212245092262748, (5, 2) = 6.019134481287752, (5, 3) = 12.537083329320874, (5, 4) = -.687886036105895, (5, 5) = .0, (6, 1) = 1.2212245092262748, (6, 2) = 6.019134481287752, (6, 3) = 12.537083329320874, (6, 4) = -.687886036105895, (6, 5) = 1.0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = -5.6688, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = -2.4300933568337584, (3, 2) = -.20635991570891224, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = -.10735290581452621, (4, 2) = -9.594562251021896, (4, 3) = -20.470286148096154, (4, 4) = .0, (4, 5) = .0, (5, 1) = 7.496443313968615, (5, 2) = -10.246804314641219, (5, 3) = -33.99990352819906, (5, 4) = 11.708908932061595, (5, 5) = .0, (6, 1) = 8.083246795922411, (6, 2) = -7.981132988062785, (6, 3) = -31.52159432874373, (6, 4) = 16.319305431231363, (6, 5) = -6.0588182388340535}, datatype = float[8], order = C_order), Array(1..3, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 10.126235083446911, (2, 2) = -7.487995877607633, (2, 3) = -34.800918615557414, (2, 4) = -7.9927717075687275, (2, 5) = 1.0251377232956207, (3, 1) = -.6762803392806898, (3, 2) = 6.087714651678606, (3, 3) = 16.43084320892463, (3, 4) = 24.767225114183653, (3, 5) = -6.5943891257167815}, datatype = float[8], order = C_order)]), ( 9 ) = ([Array(1..3, {(1) = 1.0, (2) = 1.0, (3) = 1.0}, datatype = float[8], order = C_order), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order), Array(1..3, 1..3, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0}, datatype = float[8], order = C_order), Array(1..3, 1..3, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0}, datatype = float[8], order = C_order), Array(1..3, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = 0, (2) = 0, (3) = 0}, datatype = integer[8]), Array(1..3, {(1) = .0, (2) = 98.17642962, (3) = -1.578177289}, datatype = float[8], order = C_order), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order)]), ( 8 ) = ([Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = 15.054642426145987, (2) = 9.539259328516408, (3) = -7.5367596882075505}, datatype = float[8], order = C_order)]), ( 11 ) = (Array(1..6, 0..3, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (2, 0) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (3, 0) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (4, 0) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (5, 0) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (6, 0) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0}, datatype = float[8], order = C_order)), ( 10 ) = ([proc (N, X, Y, YP) option `[Y[1] = S(t), Y[2] = X(t), Y[3] = Y(t)]`; YP[1] := -Y[3]*(-0.5731939284e-1*(Y[2]-97.79105004)*(2.*Y[3]+.7500941554)/((Y[2]-97.79105004)^2+(Y[3]+.3750470777)^2)^2+0.2599707238e-1/((Y[2]-97.79105004)^2+(Y[3]+.3750470777)^2)-0.2599707238e-1*(Y[3]+.3750470777)*(2.*Y[3]+.7500941554)/((Y[2]-97.79105004)^2+(Y[3]+.3750470777)^2)^2-1.*(0.7176288278e-1*Y[2]-7.025711349)*(2.*Y[3]-1.639673145)/((Y[2]-97.90174359)^2+(Y[3]-.8198365723)^2)^2-0.6648084910e-2/((Y[2]-97.90174359)^2+(Y[3]-.8198365723)^2)-1.*(-0.6648084910e-2*Y[3]+0.5450343145e-2)*(2.*Y[3]-1.639673145)/((Y[2]-97.90174359)^2+(Y[3]-.8198365723)^2)^2-1.*(0.6378426459e-1*Y[2]-6.295510046)*(2.*Y[3]-3.431552986)/((Y[2]-98.70004908)^2+(Y[3]-1.715776493)^2)^2-0.5683341879e-1/((Y[2]-98.70004908)^2+(Y[3]-1.715776493)^2)-1.*(-0.5683341879e-1*Y[3]+0.9751344398e-1)*(2.*Y[3]-3.431552986)/((Y[2]-98.70004908)^2+(Y[3]-1.715776493)^2)^2-1.*(0.6500592479e-2*Y[2]-.6493949981)*(2.*Y[3]-3.577866800)/((Y[2]-99.89781703)^2+(Y[3]-1.788933400)^2)^2-.1064315267/((Y[2]-99.89781703)^2+(Y[3]-1.788933400)^2)-1.*(-.1064315267*Y[3]+.1903989129)*(2.*Y[3]-3.577866800)/((Y[2]-99.89781703)^2+(Y[3]-1.788933400)^2)^2-1.*(-.1026176004*Y[2]+10.33830579)*(2.*Y[3]-1.879984583)/((Y[2]-100.7459320)^2+(Y[3]-.9399922915)^2)^2-.1025177385/((Y[2]-100.7459320)^2+(Y[3]-.9399922915)^2)-1.*(-.1025177385*Y[3]+0.9636588393e-1)*(2.*Y[3]-1.879984583)/((Y[2]-100.7459320)^2+(Y[3]-.9399922915)^2)^2-2.*(-.1841914880*Y[2]+18.41914880)*Y[3]/((Y[2]-100.)^2+Y[3]^2)^2+.1461653667/((Y[2]-100.)^2+Y[3]^2)-.2923307334*Y[3]^2/((Y[2]-100.)^2+Y[3]^2)^2+3.-23.87324146*Y[3]/((Y[2]-100.)^2+Y[3]^2)); YP[2] := -0.5731939284e-1*(Y[2]-97.79105004)*(2.*Y[3]+.7500941554)/((Y[2]-97.79105004)^2+(Y[3]+.3750470777)^2)^2+0.2599707238e-1/((Y[2]-97.79105004)^2+(Y[3]+.3750470777)^2)-0.2599707238e-1*(Y[3]+.3750470777)*(2.*Y[3]+.7500941554)/((Y[2]-97.79105004)^2+(Y[3]+.3750470777)^2)^2-1.*(0.7176288278e-1*Y[2]-7.025711349)*(2.*Y[3]-1.639673145)/((Y[2]-97.90174359)^2+(Y[3]-.8198365723)^2)^2-0.6648084910e-2/((Y[2]-97.90174359)^2+(Y[3]-.8198365723)^2)-1.*(-0.6648084910e-2*Y[3]+0.5450343145e-2)*(2.*Y[3]-1.639673145)/((Y[2]-97.90174359)^2+(Y[3]-.8198365723)^2)^2-1.*(0.6378426459e-1*Y[2]-6.295510046)*(2.*Y[3]-3.431552986)/((Y[2]-98.70004908)^2+(Y[3]-1.715776493)^2)^2-0.5683341879e-1/((Y[2]-98.70004908)^2+(Y[3]-1.715776493)^2)-1.*(-0.5683341879e-1*Y[3]+0.9751344398e-1)*(2.*Y[3]-3.431552986)/((Y[2]-98.70004908)^2+(Y[3]-1.715776493)^2)^2-1.*(0.6500592479e-2*Y[2]-.6493949981)*(2.*Y[3]-3.577866800)/((Y[2]-99.89781703)^2+(Y[3]-1.788933400)^2)^2-.1064315267/((Y[2]-99.89781703)^2+(Y[3]-1.788933400)^2)-1.*(-.1064315267*Y[3]+.1903989129)*(2.*Y[3]-3.577866800)/((Y[2]-99.89781703)^2+(Y[3]-1.788933400)^2)^2-1.*(-.1026176004*Y[2]+10.33830579)*(2.*Y[3]-1.879984583)/((Y[2]-100.7459320)^2+(Y[3]-.9399922915)^2)^2-.1025177385/((Y[2]-100.7459320)^2+(Y[3]-.9399922915)^2)-1.*(-.1025177385*Y[3]+0.9636588393e-1)*(2.*Y[3]-1.879984583)/((Y[2]-100.7459320)^2+(Y[3]-.9399922915)^2)^2-2.*(-.1841914880*Y[2]+18.41914880)*Y[3]/((Y[2]-100.)^2+Y[3]^2)^2+.1461653667/((Y[2]-100.)^2+Y[3]^2)-.2923307334*Y[3]^2/((Y[2]-100.)^2+Y[3]^2)^2+3.-23.87324146*Y[3]/((Y[2]-100.)^2+Y[3]^2); YP[3] := -0.5731939284e-1/((Y[2]-97.79105004)^2+(Y[3]+.3750470777)^2)+0.5731939284e-1*(Y[2]-97.79105004)*(2.*Y[2]-195.5821001)/((Y[2]-97.79105004)^2+(Y[3]+.3750470777)^2)^2+0.2599707238e-1*(Y[3]+.3750470777)*(2.*Y[2]-195.5821001)/((Y[2]-97.79105004)^2+(Y[3]+.3750470777)^2)^2-0.7176288278e-1/((Y[2]-97.90174359)^2+(Y[3]-.8198365723)^2)+(0.7176288278e-1*Y[2]-7.025711349)*(2.*Y[2]-195.8034872)/((Y[2]-97.90174359)^2+(Y[3]-.8198365723)^2)^2+(-0.6648084910e-2*Y[3]+0.5450343145e-2)*(2.*Y[2]-195.8034872)/((Y[2]-97.90174359)^2+(Y[3]-.8198365723)^2)^2-0.6378426459e-1/((Y[2]-98.70004908)^2+(Y[3]-1.715776493)^2)+(0.6378426459e-1*Y[2]-6.295510046)*(2.*Y[2]-197.4000982)/((Y[2]-98.70004908)^2+(Y[3]-1.715776493)^2)^2+(-0.5683341879e-1*Y[3]+0.9751344398e-1)*(2.*Y[2]-197.4000982)/((Y[2]-98.70004908)^2+(Y[3]-1.715776493)^2)^2-0.6500592479e-2/((Y[2]-99.89781703)^2+(Y[3]-1.788933400)^2)+(0.6500592479e-2*Y[2]-.6493949981)*(2.*Y[2]-199.7956341)/((Y[2]-99.89781703)^2+(Y[3]-1.788933400)^2)^2+(-.1064315267*Y[3]+.1903989129)*(2.*Y[2]-199.7956341)/((Y[2]-99.89781703)^2+(Y[3]-1.788933400)^2)^2+.1026176004/((Y[2]-100.7459320)^2+(Y[3]-.9399922915)^2)+(-.1026176004*Y[2]+10.33830579)*(2.*Y[2]-201.4918640)/((Y[2]-100.7459320)^2+(Y[3]-.9399922915)^2)^2+(-.1025177385*Y[3]+0.9636588393e-1)*(2.*Y[2]-201.4918640)/((Y[2]-100.7459320)^2+(Y[3]-.9399922915)^2)^2+.1841914880/((Y[2]-100.)^2+Y[3]^2)+(-.1841914880*Y[2]+18.41914880)*(2.*Y[2]-200.)/((Y[2]-100.)^2+Y[3]^2)^2+.1461653667*Y[3]*(2.*Y[2]-200.)/((Y[2]-100.)^2+Y[3]^2)^2+11.93662073*(2.*Y[2]-200.)/((Y[2]-100.)^2+Y[3]^2); 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 13 ) = (), ( 12 ) = (), ( 15 ) = ("rkf45"), ( 14 ) = ([0, 0]), ( 18 ) = ([]), ( 19 ) = (0), ( 16 ) = ([0, 0, 0, []]), ( 17 ) = ([proc (N, X, Y, YP) option `[Y[1] = S(t), Y[2] = X(t), Y[3] = Y(t)]`; YP[1] := -Y[3]*(-0.5731939284e-1*(Y[2]-97.79105004)*(2.*Y[3]+.7500941554)/((Y[2]-97.79105004)^2+(Y[3]+.3750470777)^2)^2+0.2599707238e-1/((Y[2]-97.79105004)^2+(Y[3]+.3750470777)^2)-0.2599707238e-1*(Y[3]+.3750470777)*(2.*Y[3]+.7500941554)/((Y[2]-97.79105004)^2+(Y[3]+.3750470777)^2)^2-1.*(0.7176288278e-1*Y[2]-7.025711349)*(2.*Y[3]-1.639673145)/((Y[2]-97.90174359)^2+(Y[3]-.8198365723)^2)^2-0.6648084910e-2/((Y[2]-97.90174359)^2+(Y[3]-.8198365723)^2)-1.*(-0.6648084910e-2*Y[3]+0.5450343145e-2)*(2.*Y[3]-1.639673145)/((Y[2]-97.90174359)^2+(Y[3]-.8198365723)^2)^2-1.*(0.6378426459e-1*Y[2]-6.295510046)*(2.*Y[3]-3.431552986)/((Y[2]-98.70004908)^2+(Y[3]-1.715776493)^2)^2-0.5683341879e-1/((Y[2]-98.70004908)^2+(Y[3]-1.715776493)^2)-1.*(-0.5683341879e-1*Y[3]+0.9751344398e-1)*(2.*Y[3]-3.431552986)/((Y[2]-98.70004908)^2+(Y[3]-1.715776493)^2)^2-1.*(0.6500592479e-2*Y[2]-.6493949981)*(2.*Y[3]-3.577866800)/((Y[2]-99.89781703)^2+(Y[3]-1.788933400)^2)^2-.1064315267/((Y[2]-99.89781703)^2+(Y[3]-1.788933400)^2)-1.*(-.1064315267*Y[3]+.1903989129)*(2.*Y[3]-3.577866800)/((Y[2]-99.89781703)^2+(Y[3]-1.788933400)^2)^2-1.*(-.1026176004*Y[2]+10.33830579)*(2.*Y[3]-1.879984583)/((Y[2]-100.7459320)^2+(Y[3]-.9399922915)^2)^2-.1025177385/((Y[2]-100.7459320)^2+(Y[3]-.9399922915)^2)-1.*(-.1025177385*Y[3]+0.9636588393e-1)*(2.*Y[3]-1.879984583)/((Y[2]-100.7459320)^2+(Y[3]-.9399922915)^2)^2-2.*(-.1841914880*Y[2]+18.41914880)*Y[3]/((Y[2]-100.)^2+Y[3]^2)^2+.1461653667/((Y[2]-100.)^2+Y[3]^2)-.2923307334*Y[3]^2/((Y[2]-100.)^2+Y[3]^2)^2+3.-23.87324146*Y[3]/((Y[2]-100.)^2+Y[3]^2)); YP[2] := -0.5731939284e-1*(Y[2]-97.79105004)*(2.*Y[3]+.7500941554)/((Y[2]-97.79105004)^2+(Y[3]+.3750470777)^2)^2+0.2599707238e-1/((Y[2]-97.79105004)^2+(Y[3]+.3750470777)^2)-0.2599707238e-1*(Y[3]+.3750470777)*(2.*Y[3]+.7500941554)/((Y[2]-97.79105004)^2+(Y[3]+.3750470777)^2)^2-1.*(0.7176288278e-1*Y[2]-7.025711349)*(2.*Y[3]-1.639673145)/((Y[2]-97.90174359)^2+(Y[3]-.8198365723)^2)^2-0.6648084910e-2/((Y[2]-97.90174359)^2+(Y[3]-.8198365723)^2)-1.*(-0.6648084910e-2*Y[3]+0.5450343145e-2)*(2.*Y[3]-1.639673145)/((Y[2]-97.90174359)^2+(Y[3]-.8198365723)^2)^2-1.*(0.6378426459e-1*Y[2]-6.295510046)*(2.*Y[3]-3.431552986)/((Y[2]-98.70004908)^2+(Y[3]-1.715776493)^2)^2-0.5683341879e-1/((Y[2]-98.70004908)^2+(Y[3]-1.715776493)^2)-1.*(-0.5683341879e-1*Y[3]+0.9751344398e-1)*(2.*Y[3]-3.431552986)/((Y[2]-98.70004908)^2+(Y[3]-1.715776493)^2)^2-1.*(0.6500592479e-2*Y[2]-.6493949981)*(2.*Y[3]-3.577866800)/((Y[2]-99.89781703)^2+(Y[3]-1.788933400)^2)^2-.1064315267/((Y[2]-99.89781703)^2+(Y[3]-1.788933400)^2)-1.*(-.1064315267*Y[3]+.1903989129)*(2.*Y[3]-3.577866800)/((Y[2]-99.89781703)^2+(Y[3]-1.788933400)^2)^2-1.*(-.1026176004*Y[2]+10.33830579)*(2.*Y[3]-1.879984583)/((Y[2]-100.7459320)^2+(Y[3]-.9399922915)^2)^2-.1025177385/((Y[2]-100.7459320)^2+(Y[3]-.9399922915)^2)-1.*(-.1025177385*Y[3]+0.9636588393e-1)*(2.*Y[3]-1.879984583)/((Y[2]-100.7459320)^2+(Y[3]-.9399922915)^2)^2-2.*(-.1841914880*Y[2]+18.41914880)*Y[3]/((Y[2]-100.)^2+Y[3]^2)^2+.1461653667/((Y[2]-100.)^2+Y[3]^2)-.2923307334*Y[3]^2/((Y[2]-100.)^2+Y[3]^2)^2+3.-23.87324146*Y[3]/((Y[2]-100.)^2+Y[3]^2); YP[3] := -0.5731939284e-1/((Y[2]-97.79105004)^2+(Y[3]+.3750470777)^2)+0.5731939284e-1*(Y[2]-97.79105004)*(2.*Y[2]-195.5821001)/((Y[2]-97.79105004)^2+(Y[3]+.3750470777)^2)^2+0.2599707238e-1*(Y[3]+.3750470777)*(2.*Y[2]-195.5821001)/((Y[2]-97.79105004)^2+(Y[3]+.3750470777)^2)^2-0.7176288278e-1/((Y[2]-97.90174359)^2+(Y[3]-.8198365723)^2)+(0.7176288278e-1*Y[2]-7.025711349)*(2.*Y[2]-195.8034872)/((Y[2]-97.90174359)^2+(Y[3]-.8198365723)^2)^2+(-0.6648084910e-2*Y[3]+0.5450343145e-2)*(2.*Y[2]-195.8034872)/((Y[2]-97.90174359)^2+(Y[3]-.8198365723)^2)^2-0.6378426459e-1/((Y[2]-98.70004908)^2+(Y[3]-1.715776493)^2)+(0.6378426459e-1*Y[2]-6.295510046)*(2.*Y[2]-197.4000982)/((Y[2]-98.70004908)^2+(Y[3]-1.715776493)^2)^2+(-0.5683341879e-1*Y[3]+0.9751344398e-1)*(2.*Y[2]-197.4000982)/((Y[2]-98.70004908)^2+(Y[3]-1.715776493)^2)^2-0.6500592479e-2/((Y[2]-99.89781703)^2+(Y[3]-1.788933400)^2)+(0.6500592479e-2*Y[2]-.6493949981)*(2.*Y[2]-199.7956341)/((Y[2]-99.89781703)^2+(Y[3]-1.788933400)^2)^2+(-.1064315267*Y[3]+.1903989129)*(2.*Y[2]-199.7956341)/((Y[2]-99.89781703)^2+(Y[3]-1.788933400)^2)^2+.1026176004/((Y[2]-100.7459320)^2+(Y[3]-.9399922915)^2)+(-.1026176004*Y[2]+10.33830579)*(2.*Y[2]-201.4918640)/((Y[2]-100.7459320)^2+(Y[3]-.9399922915)^2)^2+(-.1025177385*Y[3]+0.9636588393e-1)*(2.*Y[2]-201.4918640)/((Y[2]-100.7459320)^2+(Y[3]-.9399922915)^2)^2+.1841914880/((Y[2]-100.)^2+Y[3]^2)+(-.1841914880*Y[2]+18.41914880)*(2.*Y[2]-200.)/((Y[2]-100.)^2+Y[3]^2)^2+.1461653667*Y[3]*(2.*Y[2]-200.)/((Y[2]-100.)^2+Y[3]^2)^2+11.93662073*(2.*Y[2]-200.)/((Y[2]-100.)^2+Y[3]^2); 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 20 ) = ([])  ] ))  ] ); _y0 := Array(0..3, {(1) = 0., (2) = 0., (3) = 98.17642962}); _vmap := array( 1 .. 3, [( 1 ) = (1), ( 2 ) = (2), ( 3 ) = (3)  ] ); _x0 := _dtbl[1][5][5]; _n := _dtbl[1][4][1]; _ne := _dtbl[1][4][3]; _nd := _dtbl[1][4][4]; _nv := _dtbl[1][4][16]; if not type(_xout, 'numeric') then if member(_xout, ["start", "left", "right"]) then if _Env_smart_dsolve_numeric = true or _dtbl[1][4][10] = 1 then if _xout = "left" then if type(_dtbl[2], 'table') then return _dtbl[2][5][1] end if elif _xout = "right" then if type(_dtbl[3], 'table') then return _dtbl[3][5][1] end if end if end if; return _dtbl[1][5][5] elif _xout = "method" then return _dtbl[1][15] elif _xout = "storage" then return evalb(_dtbl[1][4][10] = 1) elif _xout = "leftdata" then if not type(_dtbl[2], 'array') then return NULL else return eval(_dtbl[2]) end if elif _xout = "rightdata" then if not type(_dtbl[3], 'array') then return NULL else return eval(_dtbl[3]) end if elif _xout = "enginedata" then return eval(_dtbl[1]) elif _xout = "enginereset" then _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); return NULL elif _xout = "initial" then return procname(_y0[0]) elif _xout = "laxtol" then return _dtbl[`if`(member(_dtbl[4], {2, 3}), _dtbl[4], 1)][5][18] elif _xout = "numfun" then return `if`(member(_dtbl[4], {2, 3}), _dtbl[_dtbl[4]][4][18], 0) elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return procname(_y0[0]), [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "last" then if _dtbl[4] <> 2 and _dtbl[4] <> 3 or _x0-_dtbl[_dtbl[4]][5][1] = 0. then error "no information is available on last computed point" else _xout := _dtbl[_dtbl[4]][5][1] end if elif _xout = "function" then if _dtbl[1][4][33]-2. = 0 then return eval(_dtbl[1][10], 1) else return eval(_dtbl[1][10][1], 1) end if elif _xout = "map" then return copy(_vmap) elif type(_xin, `=`) and type(rhs(_xin), 'list') and member(lhs(_xin), {"initial", "parameters", "initial_and_parameters"}) then _ini, _par := [], []; if lhs(_xin) = "initial" then _ini := rhs(_xin) elif lhs(_xin) = "parameters" then _par := rhs(_xin) elif select(type, rhs(_xin), `=`) <> [] then _par, _ini := selectremove(type, rhs(_xin), `=`) elif nops(rhs(_xin)) < nops(_pars)+1 then error "insufficient data for specification of initial and parameters" else _par := rhs(_xin)[-nops(_pars) .. -1]; _ini := rhs(_xin)[1 .. -nops(_pars)-1] end if; _xout := lhs(_xout); if _par <> [] then `dsolve/numeric/process_parameters`(_n, _pars, _par, _y0) end if; if _ini <> [] then `dsolve/numeric/process_initial`(_n-_ne, _ini, _y0, _pars, _vmap) end if; `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars); if _Env_smart_dsolve_numeric = true and type(_y0[0], 'numeric') and _dtbl[1][4][10] <> 1 then procname("right") := _y0[0]; procname("left") := _y0[0] end if; if _xout = "initial" then return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)] elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] else return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)], [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] end if elif _xin = "eventstop" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then return 0 end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 10 and 10 <= _dtbl[5-_i][4][9] then _i := 5-_i; _dtbl[4] := _i; _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) elif 10 <= _dtbl[_i][4][9] then _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) else return 0 end if elif _xin = "eventstatus" then if _nv = 0 then error "this solution has no events" end if; _i := [selectremove(proc (a) options operator, arrow; _dtbl[1][3][1][a, 7] = 1 end proc, {seq(_j, _j = 1 .. round(_dtbl[1][3][1][_nv+1, 1]))})]; return ':-enabled' = _i[1], ':-disabled' = _i[2] elif _xin = "eventclear" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then error "no events to clear" end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 10 and 10 < _dtbl[5-_i][4][9] then _dtbl[4] := 5-_i; _i := 5-_i end if; if _dtbl[_i][4][9] < 10 then error "no events to clear" elif _nv < _dtbl[_i][4][9]-10 then error "event error condition cannot be cleared" else _j := _dtbl[_i][4][9]-10; if irem(round(_dtbl[_i][3][1][_j, 4]), 2) = 1 then error "retriggerable events cannot be cleared" end if; _j := round(_dtbl[_i][3][1][_j, 1]); for _k to _nv do if _dtbl[_i][3][1][_k, 1] = _j then if _dtbl[_i][3][1][_k, 2] = 3 then error "range events cannot be cleared" end if; _dtbl[_i][3][1][_k, 8] := _dtbl[_i][3][1][_nv+1, 8] end if end do; _dtbl[_i][4][17] := 0; _dtbl[_i][4][9] := 0; if _dtbl[1][4][10] = 1 then if _i = 2 then try procname(procname("left")) catch:  end try else try procname(procname("right")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and member(lhs(_xin), {"eventdisable", "eventenable"}) then if _nv = 0 then error "this solution has no events" end if; if type(rhs(_xin), {('list')('posint'), ('set')('posint')}) then _i := {op(rhs(_xin))} elif type(rhs(_xin), 'posint') then _i := {rhs(_xin)} else error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; if select(proc (a) options operator, arrow; _nv < a end proc, _i) <> {} then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _k := {}; for _j to _nv do if member(round(_dtbl[1][3][1][_j, 1]), _i) then _k := `union`(_k, {_j}) end if end do; _i := _k; if lhs(_xin) = "eventdisable" then _dtbl[4] := 0; _j := [evalb(assigned(_dtbl[2]) and member(_dtbl[2][4][17], _i)), evalb(assigned(_dtbl[3]) and member(_dtbl[3][4][17], _i))]; for _k in _i do _dtbl[1][3][1][_k, 7] := 0; if assigned(_dtbl[2]) then _dtbl[2][3][1][_k, 7] := 0 end if; if assigned(_dtbl[3]) then _dtbl[3][3][1][_k, 7] := 0 end if end do; if _j[1] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[2][3][4][_k, 1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to defined init `, _dtbl[2][3][4][_k, 1]); _dtbl[2][3][1][_k, 8] := _dtbl[2][3][4][_k, 1] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to rate hysteresis init `, _dtbl[2][5][24]); _dtbl[2][3][1][_k, 8] := _dtbl[2][5][24] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to initial init `, _x0); _dtbl[2][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to fireinitial init `, _x0-1); _dtbl[2][3][1][_k, 8] := _x0-1 end if end do; _dtbl[2][4][17] := 0; _dtbl[2][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("left")) end if end if; if _j[2] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[3][3][4][_k, 2], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to defined init `, _dtbl[3][3][4][_k, 2]); _dtbl[3][3][1][_k, 8] := _dtbl[3][3][4][_k, 2] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to rate hysteresis init `, _dtbl[3][5][24]); _dtbl[3][3][1][_k, 8] := _dtbl[3][5][24] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to initial init `, _x0); _dtbl[3][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to fireinitial init `, _x0+1); _dtbl[3][3][1][_k, 8] := _x0+1 end if end do; _dtbl[3][4][17] := 0; _dtbl[3][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("right")) end if end if else for _k in _i do _dtbl[1][3][1][_k, 7] := 1 end do; _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); _dtbl[4] := 0; if _dtbl[1][4][10] = 1 then if _x0 <= procname("right") then try procname(procname("right")) catch:  end try end if; if procname("left") <= _x0 then try procname(procname("left")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and lhs(_xin) = "eventfired" then if not type(rhs(_xin), 'list') then error "'eventfired' must be specified as a list" end if; if _nv = 0 then error "this solution has no events" end if; if _dtbl[4] <> 2 and _dtbl[4] <> 3 then error "'direction' must be set prior to calling/setting 'eventfired'" end if; _i := _dtbl[4]; _val := NULL; if not assigned(_EnvEventRetriggerWarned) then _EnvEventRetriggerWarned := false end if; for _k in rhs(_xin) do if type(_k, 'integer') then _src := _k elif type(_k, 'integer' = 'anything') and type(evalf(rhs(_k)), 'numeric') then _k := lhs(_k) = evalf[max(Digits, 18)](rhs(_k)); _src := lhs(_k) else error "'eventfired' entry is not valid: %1", _k end if; if _src < 1 or round(_dtbl[1][3][1][_nv+1, 1]) < _src then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _src := {seq(`if`(_dtbl[1][3][1][_j, 1]-_src = 0., _j, NULL), _j = 1 .. _nv)}; if nops(_src) <> 1 then error "'eventfired' can only be set/queried for root-finding events and time/interval events" end if; _src := _src[1]; if _dtbl[1][3][1][_src, 2] <> 0. and _dtbl[1][3][1][_src, 2]-2. <> 0. then error "'eventfired' can only be set/queried for root-finding events and time/interval events" elif irem(round(_dtbl[1][3][1][_src, 4]), 2) = 1 then if _EnvEventRetriggerWarned = false then WARNING(`'eventfired' has no effect on events that retrigger`) end if; _EnvEventRetriggerWarned := true end if; if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then _val := _val, undefined elif type(_dtbl[_i][3][4][_src, _i-1], 'undefined') or _i = 2 and _dtbl[2][3][1][_src, 8] < _dtbl[2][3][4][_src, 1] or _i = 3 and _dtbl[3][3][4][_src, 2] < _dtbl[3][3][1][_src, 8] then _val := _val, _dtbl[_i][3][1][_src, 8] else _val := _val, _dtbl[_i][3][4][_src, _i-1] end if; if type(_k, `=`) then if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then error "cannot set event code for a rate hysteresis event" end if; userinfo(3, {'events', 'eventreset'}, `manual set event code `, _src, ` to value `, rhs(_k)); _dtbl[_i][3][1][_src, 8] := rhs(_k); _dtbl[_i][3][4][_src, _i-1] := rhs(_k) end if end do; return [_val] elif type(_xin, `=`) and lhs(_xin) = "direction" then if not member(rhs(_xin), {-1, 1, ':-left', ':-right'}) then error "'direction' must be specified as either '1' or 'right' (positive) or '-1' or 'left' (negative)" end if; _src := `if`(_dtbl[4] = 2, -1, `if`(_dtbl[4] = 3, 1, undefined)); _i := `if`(member(rhs(_xin), {1, ':-right'}), 3, 2); _dtbl[4] := _i; _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if; return _src elif _xin = "eventcount" then if _dtbl[1][3][1] = 0 or _dtbl[4] <> 2 and _dtbl[4] <> 3 then return 0 else return round(_dtbl[_dtbl[4]][3][1][_nv+1, 12]) end if else return "procname" end if end if; if _xout = _x0 then return [_x0, seq(evalf(_dtbl[1][6][_vmap[_i]]), _i = 1 .. _n-_ne)] end if; _i := `if`(_x0 <= _xout, 3, 2); if _xin = "last" and 0 < _dtbl[_i][4][9] and _dtbl[_i][4][9] < 10 then _dat := eval(_dtbl[_i], 2); _j := _dat[4][20]; return [_dat[11][_j, 0], seq(_dat[11][_j, _vmap[_i]], _i = 1 .. _n-_ne-_nd), seq(_dat[8][1][_vmap[_i]], _i = _n-_ne-_nd+1 .. _n-_ne)] end if; if not type(_dtbl[_i], 'array') then _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if end if; if _xin <> "last" then if 0 < 0 then if `dsolve/numeric/checkglobals`(op(_dtbl[1][14]), _pars, _n, _y0) then `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars, _i) end if end if; if _dtbl[1][4][7] = 0 then error "parameters must be initialized before solution can be computed" end if end if; _dat := eval(_dtbl[_i], 2); _dtbl[4] := _i; try _src := `dsolve/numeric/SC/IVPrun`(_dat, _xout) catch: userinfo(2, `dsolve/debug`, print(`Exception in solnproc:`, [lastexception][2 .. -1])); error  end try; if _src = 0 and 10 < _dat[4][9] then _val := _dat[3][1][_nv+1, 8] else _val := _dat[11][_dat[4][20], 0] end if; if _src <> 0 or _dat[4][9] <= 0 then _dtbl[1][5][1] := _xout else _dtbl[1][5][1] := _val end if; if _i = 3 and _val < _xout then Rounding := -infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further right of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further right of %1, maxfun limit exceeded (see <a href='http://www.maplesoft.com/support/help/search.aspx?term=dsolve,maxfun' target='_new'>?dsolve,maxfun</a> for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further right of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further right of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif 10 < _dat[4][9] then if _dat[4][9]-10 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further right of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-10, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further right of %1", evalf[8](_val) end if elif _i = 2 and _xout < _val then Rounding := infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further left of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further left of %1, maxfun limit exceeded (see <a href='http://www.maplesoft.com/support/help/search.aspx?term=dsolve,maxfun' target='_new'>?dsolve,maxfun</a> for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further left of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further left of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif 10 < _dat[4][9] then if _dat[4][9]-10 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further left of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-10, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further left of %1", evalf[8](_val) end if end if; if _EnvInFsolve = true then _dig := _dat[4][26]; _dat[4][26] := _EnvDSNumericSaveDigits; _Env_dsolve_SC_native := true; if _dat[4][25] = 1 then _i := 1; _dat[4][25] := 2 else _i := _dat[4][25] end if; _val := `dsolve/numeric/SC/IVPval`(_dat, _xout, _src); _dat[4][25] := _i; _dat[4][26] := _dig; [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] else Digits := _dat[4][26]; _val := `dsolve/numeric/SC/IVPval`(eval(_dat, 2), _xout, _src); [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] end if end proc, (2) = Array(1..4, {(1) = 18446744074566161350, (2) = 18446744074566161614, (3) = 18446744074566161790, (4) = 18446744074566161966}), (3) = [t, S(t), X(t), Y(t)], (4) = []}); _solnproc := _dat[1]; _pars := map(rhs, _dat[4]); if not type(_xout, 'numeric') then if member(t, ["start", 'start', "method", 'method', "left", 'left', "right", 'right', "leftdata", "rightdata", "enginedata", "eventstop", 'eventstop', "eventclear", 'eventclear', "eventstatus", 'eventstatus', "eventcount", 'eventcount', "laxtol", 'laxtol', "numfun", 'numfun', NULL]) then _res := _solnproc(convert(t, 'string')); if 1 < nops([_res]) then return _res elif type(_res, 'array') then return eval(_res, 1) elif _res <> "procname" then return _res end if elif member(t, ["last", 'last', "initial", 'initial', NULL]) then _res := _solnproc(convert(t, 'string')); if type(_res, 'list') then return _res[2] else return NULL end if elif member(t, ["parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(t, 'string'); _res := _solnproc(_xout); if _xout = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [_res[2], seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(lhs(t), 'string') = rhs(t); if lhs(_xout) = "initial" then if type(rhs(_xout), 'list') then _res := _solnproc(_xout) else _res := _solnproc("initial" = ["single", 2, rhs(_xout)]) end if elif not type(rhs(_xout), 'list') then error "initial and/or parameter values must be specified in a list" elif lhs(_xout) = "initial_and_parameters" and nops(rhs(_xout)) = nops(_pars)+1 then _res := _solnproc(lhs(_xout) = ["single", 2, op(rhs(_xout))]) else _res := _solnproc(_xout) end if; if lhs(_xout) = "initial" then return _res[2] elif lhs(_xout) = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [_res[2], seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["eventdisable", 'eventdisable', "eventenable", 'eventenable', "eventfired", 'eventfired', "direction", 'direction', NULL]) then return _solnproc(convert(lhs(t), 'string') = rhs(t)) elif _xout = "solnprocedure" then return eval(_solnproc) elif _xout = "sysvars" then return _dat[3] end if; if procname <> unknown then return ('procname')(t) else _ndsol := `tools/gensym`("S(t)"); eval(FromInert(_Inert_FUNCTION(_Inert_NAME("assign"), _Inert_EXPSEQ(ToInert(_ndsol), _Inert_VERBATIM(pointto(_dat[2][2])))))); return FromInert(_Inert_FUNCTION(ToInert(_ndsol), _Inert_EXPSEQ(ToInert(t)))) end if end if; try _res := _solnproc(_xout); _res[2] catch: error  end try end proc

(1)

``

NULL

with(plots):

animate(plot, [[XX(t), YY(t), t = 0 .. (1/10)*a]], a = 1 .. 260);

 

plot([XX(t), YY(t), t = 0 .. 22.7])

with(DEtools)

solve([XX(t) = xf, t > 22, t < 23], [t], allsolutions = true)

[]

(2)

min(allvalues(abs(RootOf(50000000*X(_Z)-4908821481))))

min(abs(RootOf(50000000*X(_Z)-4908821481)))

(3)

remove_RootOf(t = RootOf(50000000*X(_Z)-4908821481))

50000000*X(t)-4908821481 = 0

(4)

allvalues(RootOf(50000000*X(_Z)-4908821481))

RootOf(50000000*X(_Z)-4908821481)

(5)

solve(50000000*X(t)-4908821481 = 0)

RootOf(50000000*X(_Z)-4908821481)

(6)

tyu := RootOf(50000000*XX(t)-4908821481, t)

allvalues(tyu)

NULL


Download for_clever_guys.mw


i m calculating space of this elipse,i need to find point t1 wherein [XX(t1), YY(t1)] creates full circle and get S(t1). here its between 22.6-22.7. but i need to find it with ~0.1^3  accuracy.

for_clever_guys.mw

In the old version of Maple, the accurate value of Sin()and Cos() at some particular points, such as Pi/10, can be returned as below:

 

But in Maple 18, it just returns the same as the input.

How to make Maple18 return the accurate value as before?

Here is the ODE:

 

dsolve((y(x)^2-x)*(D(y))(x)+x^2-y(x) = 0, {y(x)})

 

And the Maple 18 returns a very complex result.

But as we know,the more elegant result should be this:

 

How can I get this simple result with Maple?

with pointplot3d and 14,000 points when I enter symbol=point I get an empty plot.

Only when I set symbolsize=1 (a point) do I get points appearing in the graph.  Bug?

restart;
Eq1 := diff(T1(t), t) = (W*Cp*(To-T1(t))+UA*(Ts-T1(t)))/(M*Cp);
Eq2 := diff(T2(t), t) = (W*Cp*(T1(t)-T2(t))+UA*(Ts-T2(t)))/(M*Cp);
Eq3 := diff(T3(t), t) = (W*Cp*(T2(t)-T3(t))+UA*(Ts-T3(t)))/(M*Cp);
sys := Eq1, Eq2, Eq3;

Operational Veriables

W := 100;
UA := 10;
Cp := 2;
M := 1000;
To := 20;
Ts := 250;

Initial Conditions

sys1 := {Eq1, Eq2, Eq3};

nsys := nops(sys1);

ics := {T1(0) = 20, T2(0) = 20, T3(0) = 20};
{T1(0) = 20, T2(0) = 20, T3(0) = 20}
nics := nops(ics);
for i from 1 to nics do Sol ||i:=dsolve({sys1, ics[i]},{T1(t),T2(t),T3(t)},numeric)od;
Error, unable to match delimiters
Typesetting:-mambiguous(Typesetting:-mambiguous( for i from 1 to

nics do Sol verbarverbariAssigndsolvelpar(sys1comma ics(i))

commalcubT1(t)commaT2(t)commaT3(t)rcubcommanumericrparod,

Typesetting:-merror("unable to match delimiters")))

 

I was running some wav files through the spectrogram increasing the fft window size.  Generally just playing around.

I have run into an issue.  After running a few times the mem usage for maple.exe starts to run high.  I get it up to 600,000 K and still seems to run okay - ie able to produce a spectrogram.  However running it again at a higher window size of course eats up more memory and right around 1,000,000 K mem usage everything slows down and it appears to freeze.  The spectrogram is not displayed, after a short while CPU usage drops to zero the heartbeat circle (evaluating symbol - bottom left corner) stays solid and everything appears to stop. 

It is possible to close the worksheet in the same maple session after some time and open a new one.

Another note.  After one worksheet has ramped up the mem usage to a large value say 800,000 K (it doesn't really matter) .. when I close the worksheet (in the same maple session) the mem usage remains high even after a restart;gc():   I not sure if this has been normal throughout the ages, but I thought after closing a high mem usage worksheet in the same maple session the mem usage in the windows task manager would have updated back down under 100,000 K at least. 

The system Maple is running on right now is a P4 3Ghz Windows XP at 2.50 GB RAM Maple 18.00 stnd GUI 32 bit.  Using the spectrograms example in the application center for start.

Any insight as to why the computer starts to freeze up around 1,000,000 K mem usage would be helpful.  Also why closing a worksheet had no effect on the mem usage.  Would be interesting to know if this occurs on other machines as well.

As I stated in an earlier post, I'm new at this.

I'm trying to write a procedure to calculate what is called a "crescent latitude". The full formula can be seen here: https://db.tt/QAUzH5i0.

b is equal to 0.081819221; it takes a single parameter φ (latitude of a location in degrees)

 

I normally get errors like unable to parse, unable to match delimters, etc. and the result is the name of the procedure and whatevere value of the parameter I put in parenthesis, not the calculated value.

Anybody can help?

 

Thanlk you

Martina

Please see the link below of the screen shot from Maple

https://www.dropbox.com/s/r7xn2uqnn4qfbp7/Screenshot%202014-05-12%2015.21.07.png

This is an addition to the following post:

http://www.mapleprimes.com/questions/141795-Unit-Conversion-Problem

 

But I use the clickable facilities of Maple.  Here is the problem:

>32[[degC]];

                         32[[degC]]
right-click -> Units -> Replace units -> degF

                         288           
                         --- [[degF]]
                          5            

>evalf[5]( (2) );
                       57.600[[degF]]

but if I do that:


>convert(32, 'temperature', 'degC', 'degF');

                              448
                              ---
                               5
                           
>evalf[5]( (4) );
                             89.600

Why the conversion is bad when you try to do it by the clickable way????????????

 

--------------------------------------
Mario Lemelin
Maple 18 Ubuntu 13.10 - 64 bits
Maple 18 Win 7 - 64 bits messagerie : mario.lemelin@cgocable.ca téléphone :  (819) 376-0987

ode := diff(sqrt(U(t)), t) = sqrt(U__0)-sqrt(U(t))

ics := U(0) = 0

dsolve({ics, ode})

 

And the result maple returns is U(t)=0 !

 

 

Diff_EQ_sample_questions.pdf

 

This is a link to two sample questions I am trying to learn how to solve using maple. I am using maple student edition of maple. Any help would be great. Thank you.

 

 

im solving 6 ODE which is the equations are unsteady with boundary conditions.. the program can be run when A=0 but when A=0.2 or others value .. its cannot be run... A means for unsteadiness... before this i solve for steady equations.. this is first time i solve for unsteady using maple.. anyone know where i am wrong??? thanks for helping :)

 

restart; with(plots); n := 2; Ec := 2.0; Pr := .72; N := .2; M := .1; l := 1; Nr := 1; y := 1; blt := 2.5; B := .1; a1 := 1; rho := .5

Eq1 := diff(f(eta), eta, eta, eta)+f(eta)*(diff(f(eta), eta, eta))-(diff(f(eta), eta))^2+l*B*H(eta)*(F(eta)-(diff(f(eta), eta)))-M*(diff(f(eta), eta))-A*(diff(f(eta), eta)+.5*eta*(diff(f(eta), eta, eta))) = 0;

diff(diff(diff(f(eta), eta), eta), eta)+f(eta)*(diff(diff(f(eta), eta), eta))-(diff(f(eta), eta))^2+.1*H(eta)*(F(eta)-(diff(f(eta), eta)))-.1*(diff(f(eta), eta))-A*(diff(f(eta), eta)+.5*eta*(diff(diff(f(eta), eta), eta))) = 0

(1)

Eq2 := A*(F(eta)+.5*eta*(diff(F(eta), eta)))+G(eta)*(diff(F(eta), eta))+F(eta)^2+B*(F(eta)-(diff(f(eta), eta))) = 0;

A*(F(eta)+.5*eta*(diff(F(eta), eta)))+G(eta)*(diff(F(eta), eta))+F(eta)^2+.1*F(eta)-.1*(diff(f(eta), eta)) = 0

(2)

Eq3 := .5*A*(G(eta)+.5*eta*(diff(G(eta), eta)))+G(eta)*(diff(G(eta), eta))+B*(f(eta)+G(eta)) = 0;

.5*A*(G(eta)+.5*eta*(diff(G(eta), eta)))+G(eta)*(diff(G(eta), eta))+.1*f(eta)+.1*G(eta) = 0

(3)

Eq4 := G(eta)*(diff(H(eta), eta))+H(eta)*(diff(G(eta), eta))+F(eta)*H(eta) = 0;

G(eta)*(diff(H(eta), eta))+H(eta)*(diff(G(eta), eta))+F(eta)*H(eta) = 0

(4)

Eq5 := (1+Nr)*(diff(theta(eta), eta, eta))+Pr*((diff(theta(eta), eta))*f(eta)-2*(diff(f(eta), eta))*theta(eta))+N*Pr*a1*(theta1(eta)-theta(eta))/rho+N*Pr*Ec*B*(F(eta)-(diff(f(eta), eta)))^2/rho+Pr*Ec*(diff(f(eta), eta))^2-.5*A*Pr*(4*theta(eta)+eta*(diff(theta(eta), eta))) = 0;

2*(diff(diff(theta(eta), eta), eta))+.72*(diff(theta(eta), eta))*f(eta)-1.44*(diff(f(eta), eta))*theta(eta)+.2880000000*theta1(eta)-.2880000000*theta(eta)+0.5760000000e-1*(F(eta)-(diff(f(eta), eta)))^2+1.440*(diff(f(eta), eta))^2-.360*A*(4*theta(eta)+eta*(diff(theta(eta), eta))) = 0

(5)

Eq6 := 2*F(eta)*theta1(eta)+G(eta)*(diff(theta1(eta), eta))+a1*y*(theta1(eta)-theta(eta))+.5*A*(4*theta1(eta)+eta*(diff(theta1(eta), eta))) = 0;

2*F(eta)*theta1(eta)+G(eta)*(diff(theta1(eta), eta))+theta1(eta)-theta(eta)+.5*A*(4*theta1(eta)+eta*(diff(theta1(eta), eta))) = 0

(6)

bcs1 := f(0) = 0, (D(f))(0) = 1, (D(f))(blt) = 0, F(blt) = 0, G(blt) = -f(blt), H(blt) = n, theta(0) = 1, theta(blt) = 0, theta1(blt) = 0;

f(0) = 0, (D(f))(0) = 1, (D(f))(2.5) = 0, F(2.5) = 0, G(2.5) = -f(2.5), H(2.5) = 2, theta(0) = 1, theta(2.5) = 0, theta1(2.5) = 0

(7)

L := [0., .2, .5];

[0., .2, .5]

(8)

for k to 3 do R := dsolve(eval({Eq1, Eq2, Eq3, Eq4, Eq5, Eq6, bcs1}, A = L[k]), [f(eta), F(eta), G(eta), H(eta), theta(eta), theta1(eta)], numeric, output = listprocedure); Y || k := rhs(R[3]); YP || k := rhs(R[5]); YR || k := rhs(R[6]); YQ || k := rhs(R[7]); YA || k := rhs(R[9]); YB || k := rhs(R[8]) end do

Error, (in dsolve/numeric/bvp) initial Newton iteration is not converging

 

P1 := plot([Y || (1 .. 3)], 0 .. 10, labels = [eta, (D(f))(eta)])

P2 := plot([YP || (1 .. 3)], 0 .. 10, labels = [eta, F(eta)])

plots:-display([P1, P2])

Error, (in plots:-display) expecting plot structures but received: [P1, P2]

 

``

 

Download unsteadyManjunatha.mw

Several years ago, I used to plot, in Maple 7 I think, 3D scalar functions by using procedures to create a 3D mesh and populate the data points before I could use plot3d.

I wonder if there is a more convenient (least coding) way to do it today? Consider for example f(x,y,z) = x^2 + y^2+z^2

A way to visualize a number of concentric isosurfaces of f is to loop with (is there a tag to write this in code block?): 

 

for i to 10 do iso[i] := implicitplot3d( f = i, x = -10 .. 10, y = -10 .. 10, z = -10 .. 10) end do

display(seq(iso[j], j = 1 .. 10))

 

Of course, visualizing the output is another issue.  I wish for an app to explore 3D data like Paraview. It does not have to be as sophisticated, but to display standard elements like isosurfaces and arbitrary cutting plane views would suffice.

If you know a package/app/procedure in Maple of this nature, please share it here. Thank you

 

Sorry if this has been already posted.

 

When print() is invoked from a proc into a module, non-English characters are not properly displayed with Maple 18.

It works ok if it is invoked from within the workbook.

 

Example:
print("Están en perspectiva")

Put this sentence in a proc into a module and the character "á" wont be displayed

Output: "Est�n en perspectiva"

Any hint about how to treat this issue?

Thank you very much.

César Lozada 

 

 

Some years ago member William Fish started a long discussion in part about a numeric integral involving high parameter (high oscillation) Bessel J0. That numeric integration task appeared in a Bitwise Magazine article.

At that time even obtaining numeric results involved extra effort such as handling real and imaginary components of the integrand separately, and requesting particular methods (sometimes hacked, to bump up the subinterval limit, for very high parameter values).

That led to a post where I showed that the result could be obtained quickly by using a fast compiled BesselJ (J0) from an external library along with a modified low-level call to a particular evalf/Int solver.

And sometime after that a numeric result for the real & imaginary split integrand became much more readily (if not quickly) available by using a new `maxintervals` option of evalf/Int to specify the maximal number of subintervals for the particular solver.

Maple 18 has its own compiled implementations of the Bessel functions for "hardware" (double) precision arguments. So now the numeric evaluations of the integrand are computed much faster.

Using Maple 18.00 on 64bit Windows 7 the same numeric results obtain in under a second, in a simple, single call to evalf,Int.

restart:

CodeTools:-Usage(
  evalf(Int(BesselJ(0, 50001*x)*x*exp(I*(355*x^2*1/2)), x = .35 .. 1))
                 );
memory used=9.28MiB, alloc change=32.00MiB, cpu time=437.00ms, real time=441.00ms, gc time=0ns

                           -8                 -8  
             3.181753502 10   - 7.798301124 10   I

restart:

CodeTools:-Usage(
  evalf(Int(BesselJ(0, 10000*x)*x*exp(I*(355*x^2*1/2)), x = .35 .. 1))
                 );
memory used=6.83MiB, alloc change=32.00MiB, cpu time=218.00ms, real time=211.00ms, gc time=15.60ms

                            -7                 -7  
             -2.007752340 10   + 4.275388462 10   I

 

Of course the ramifications of fast, compiled Bessel functions at double precision extend much farther than just this one example. But I like seeing the speed improvement in terms of a concrete example.

acer

First 76 77 78 79 80 Page 78 of 80