Maple 2021 Questions and Posts

These are Posts and Questions associated with the product, Maple 2021

Ma maplet permet de savoir le nombre de fois d'avoir chaque face pour n lancés pour un dé à m faces.

                              de décomposer un entier n en somme de m entiers

                              de partager un ensemble non vide en u parties non vides 2 à 2 distinctes.

  

Dear Maple experts, I want to write text in a specific location within a Maple plot like p<c. To do that, I use 'plots:-textplot' as follows:

plots:-textplot([[0.1, 0.80, p < c, color = black]], font = [times, 11], rotation = 'horizontal');

The issue is that in my code, 'p' and 'c' are parameters with specific values. Therefore,  in my plot, their values appear instead of p<c. Even if I use 'p<c' or "p<c" it does not work.

Would you please guide me on how to solve the issue?

I have tried to translate the Mathematica-Code of OEIS (A219954):

with MmaTranslator. In the translator occurs an error message with the IF-Statement ...

I will be happy to have this in Maple. I am interested in the digitCount in the above Code.

Sequence is:

 

Thanks for help :)

Hello Everyone;

I need help to solve the following system using rk-4 method

restart;
NULL;
NULL;
C := 1.0;
gK := 36.0;
gNa := 120.0;
gL := 0.3;
VK := -77.0;
VNa := 50.0;
VL := -54.0;
III := 20;
alpha_n := 0.01*(v(t) + 55.0)/(1 - exp(-1.0/10.0*v(t) - 11.0/2.0));
beta_n := 0.125*exp((-v(t))/80.0 + (-1)*13.0/16.0);
alpha_m := 0.1*(v(t) + 40.0)/(1 - exp(-1.0/10.0*v(t) - 4.0));
beta_m := 4.0*exp(-1.0/18.0*v(t) - 65.0/18.0);
alpha_h := 0.07*exp((-1)*(v(t) + 65.0)/20.0);
beta_h := 1/(1.0 + exp((-v(t) + 35.0)/10.0));

dsys1 := {diff(h(t), t) = alpha_h*(1 - h(t)) - beta_h*h(t), diff(m(t), t) = alpha_m*(1 - m(t)) - beta_m*m(t), diff(n(t), t) = alpha_n*(1 - n(t)) - beta_n(t), diff(v(t), t) = III - gK*n(t)^4*(v(t) - VK) - gNa*m(t)^3*h(t)*(v(t) - VNa) - gL*(v(t) - VL), h(0) = 0.9996937394, m(0) = 0.02890553447, n(0) = 0.2445865495, v(0) = -70};

Dear Maple experts,

I have a system of several nonlinear equaitons. My code can solve it for a given parameter. But when I want to plot it, it takes too much time with no results. So, I decided to plot it for several given points. I get the answer for the points individually, but I don't know how to apply this to 'plot' command. Would you please help?

restartNULL

with(plots); with(RealDomain)

NULL

c := 1; cr := 0.3e-1*c; u := 5; sExp := 0.6e-1*c; s := .65*c; v := 3*c

NULL

NULL

FirmModelPartial1 := proc (alpha, beta, delta) local L1s, qs, ps, prs, hs, `&kappa;s`, `&lambda;__1s`, `&lambda;__2s`, `&lambda;__3s`, q, p, pr, h, kappa, `&lambda;__1`, `&lambda;__2`, `&lambda;__3`, FirmpfSiS, RecpfSiS, UnsoldSiS, EnvironSiS, p0, OldSoldPrim, xi, prof1, prof2, L1, L2, E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12; prof1 := (ps-c)*qs+((1/2)*beta^2*`&kappa;s`^2/(u*(1-alpha))-(1/2)*(qs+beta*`&kappa;s`)^2/u)*(ps-s)+hs*prs*(beta*`&kappa;s`-(1/2)*beta^2*`&kappa;s`^2/(u*(1-alpha))); L1s := prof1+`&lambda;__1s`*(1-sExp/prs-hs)+`&lambda;__2s`*(qs-`&kappa;s`)+`&lambda;__3s`*(qs-alpha*beta*`&kappa;s`/(1-alpha)); E1 := qs*(diff(L1s, qs)) = 0; E2 := hs*(diff(L1s, hs)) = 0; E3 := `&lambda;__1s`*(1-sExp/prs-hs) = 0; E4 := `&lambda;__2s`*(qs-`&kappa;s`) = 0; E5 := `&lambda;__3s`*(qs-alpha*beta*`&kappa;s`/(1-alpha)) = 0; E6 := qs = alpha*u*(v-ps)/(v-s); E7 := prs = ps-delta*v; E8 := `&kappa;s` = (beta*prs*(1-hs)+sExp*(1-beta))/(beta^2*(prs*(1-hs)-sExp)/(u*(1-alpha))+2*cr); p, q, pr, h, kappa, `&lambda;__1`, `&lambda;__2`, `&lambda;__3` := (eval([ps, qs, prs, hs, `&kappa;s`, `&lambda;__1s`, `&lambda;__2s`, `&lambda;__3s`], solve({0 <= qs-alpha*beta*`&kappa;s`/(1-alpha), 0 <= qs-`&kappa;s`, 0 <= 1-sExp/prs-hs, 0 <= `&lambda;__1s`, 0 <= `&lambda;__2s`, 0 <= `&lambda;__3s`, diff(L1s, qs) <= 0, diff(L1s, hs) <= 0, c < ps, (1/2)*beta*`&kappa;s`/(u*(1-alpha)) < 1, sExp+delta*v < ps, E1, E2, E3, E4, E5, E6, E7, E8}, [ps, qs, prs, hs, `&kappa;s`, `&lambda;__1s`, `&lambda;__2s`, `&lambda;__3s`])[1]))[]; xi := kappa/q; FirmpfSiS := max(0, eval(prof1, [ps = p, qs = q, prs = p-delta*v, hs = h, `&kappa;s` = kappa])); RecpfSiS := ((1-h)*pr-sExp)*(beta*kappa-(1/2)*beta^2*kappa^2/(u*(1-alpha)))+(sExp-cr)*kappa; UnsoldSiS := (1/2)*(q+beta*kappa)^2/u-(1/2)*beta^2*kappa^2/(u*(1-alpha)); EnvironSiS := q+UnsoldSiS; return p, q, FirmpfSiS, RecpfSiS, EnvironSiS, h, UnsoldSiS, h, xi end proc

NULL

NULL

FirmModelPartial1(.1, .2, .1)[3]

Error, (in FirmModelPartial1) invalid subscript selector

 

NULL

FirmModelPartial1(.2, .2, .1)[3]

Error, (in FirmModelPartial1) invalid subscript selector

 

FirmModelPartial1(.3, .2, .1)[3]

.2200894743

(1)

NULL

FirmModelPartial1(.4, .2, .1)[3]

.2892440018

(2)

FirmModelPartial1(.5, .2, .1)[3]

.3801240291

(3)

FirmModelPartial1(.6, .2, .1)[3]

.4921660779

(4)

FirmModelPartial1(.7, .2, .1)[3]

.6227094789

(5)

FirmModelPartial1(.8, .2, .1)[3]

.7668402612

(6)

FirmModelPartial1(.9, .2, .1)[3]

.9161921261

(7)
 

plot('FirmModelPartial1(alpha, .2, .2)[3]', alpha = .1 .. .90, adaptive = false, sample = [.1, .2, .3, .4, .5, .6, .7, .8, .9])

 

Download Reza_Tchno_(v3).mw

Besdies, it seems for some points there is no feasible solution. So, there is no need to have plot for them.

I attach the code. Thank you so much!

Hello Everyone;

Can anybody help me to solve the analytical solution of the following ODE?
AAS := C*diff(y(t), t) + (-B0*y(t)^3 - B1*y(t)^2 - B2*y(t) - B3);y[0] := 1

C,B0,B1,B2 are constants.

Dear Maple experts,

I am running a Maple code with several lines/ curves in a plot.

For two of the curves, I use style=pointline. But in the legend the symbols on the lines are not shown. Can you advise how we can make them appear?

I have attached the file. Thank you so much! 

Download LegendPlot.mw

Hello Everyone;

I need to solve the following nonlinear ODE

C*diff(y(x), x) + (-B0*y(x)^3 - B1*y(x)^2 - B2*y(x) - B3) = 0, y(0)=B4

where B0,B1,B2,B3 and B4 are constants. I am trying in Maple 2021, but receiving solution in the form of integral. Is that any other ways that I will be able exact solution. Maple sheet is atatched. I am waiting for your kind respose.

Thanks

Question1.mw

restart

 

infolevel[dsolve] := 4

4

(1)

ode22 := C*(diff(y(x), x))-B0*y(x)^3-B1*y(x)^2-B2*y(x)-B3 = 0

C*(diff(y(x), x))-B0*y(x)^3-B1*y(x)^2-B2*y(x)-B3 = 0

(2)

solll := dsolve(ode22, implicit, useInt)

Methods for first order ODEs:

 

--- Trying classification methods ---

 

trying a quadrature

 

trying 1st order linear

 

trying Bernoulli

 

trying separable

 

<- separable successful

 

x-Intat(C/(B0*_a^3+B1*_a^2+B2*_a+B3), _a = y(x))+_C1 = 0

(3)

ode[257] := C*(diff(y(x), x))-B0*y(x)^3-B1*y(x)^2-B2*y(x)-B3 = 0

C*(diff(y(x), x))-B0*y(x)^3-B1*y(x)^2-B2*y(x)-B3 = 0

(4)

dsolve(ode[257], implicit)

Methods for first order ODEs:

 

--- Trying classification methods ---

 

trying a quadrature

 

trying 1st order linear

 

trying Bernoulli

 

trying separable

 

<- separable successful

 

x-Intat(C/(B0*_a^3+B1*_a^2+B2*_a+B3), _a = y(x))+_C1 = 0

(5)

NULL

Download Question1.mw

restart``

with(plots); with(RealDomain)

``

c := 1; cr := 0.3e-1*c; u := 1; sExp := 0.6e-1*c; s := .65*c

v := 3*c

``

NULL``

FirmModelHmax := proc (alpha, beta, delta) local q, p, pr, FirmpfSiS, F1, G1, G2, G3, RecpfSiS, sol, UnsoldSiS, EnvironSiS, p0, OldSoldPrim, xi, h, ps, qs, prs, prof1, prof2; xi := 1; prs := ps-delta*v; prof1 := qs*(ps-c)+(1/2)*(beta^2*xi^2*qs^2/(1-alpha)-(1+beta*xi)^2*qs^2)(ps-s)/u+(prs-sExp)(beta*xi*qs-(1/2)*beta^2*xi^2*qs^2/(u*(1-alpha))); prof2 := qs*(ps-c)-(1/2)*(ps-s)*qs^2*(prs-sExp)(beta*xi*qs-(1/2)*beta^2*xi^2*qs^2/(u*(1-alpha)))/(alpha*u); if alpha <= 1/(1+beta*xi) then [p, q] := solve({diff(prof1, qs) = 0, qs = alpha*u*(v-ps)/(v-s), 0 < ps}, [ps, qs]); G2 := (1/2)*beta^2*xi^2*q^2/(u*(1-alpha)^2); G3 := (1/2)*q^2*(1+beta*xi)^2/u; h := (p-delta*v-sExp)/(p-delta*v); FirmpfSiS := eval(prof1, [ps = p, qs = q, prs = p-delta*v]); RecpfSiS := ((1-h)*(p-delta*v)-sExp)*(beta*xi*q-G2)+sExp*xi*q-cr*xi*q; UnsoldSiS := G3-(1-alpha)*G2; EnvironSiS := q+UnsoldSiS; OldSoldPrim := beta*xi*q-(1-alpha)*G2 else [p, q] := solve({diff(prof2, qs) = 0, qs = alpha*u*(v-ps)/(v-s), 0 < ps}, [ps, qs]); q := alpha*u*(v-p)/(v-s); F1 := beta*xi*q/(u*(1-alpha)); G1 := (1/2)*q^2/(u*alpha^2); G2 := (1/2)*beta^2*xi^2*q^2/(u*(1-alpha)^2); G3 := (1/2)*q^2*(1+beta*xi)^2/u; h := (p-delta*v-sExp)/(p-delta*v); FirmpfSiS := eval(prof2, [ps = p, qs = q, prs = p-delta*v]); RecpfSiS := ((1-h)*(p-delta*v)-sExp)*(beta*xi*q-G2)+sExp*xi*q-cr*xi*q; UnsoldSiS := alpha*G1; EnvironSiS := q+UnsoldSiS; OldSoldPrim := beta*xi*q-(1-alpha)*G2 end if; return p, q, FirmpfSiS, RecpfSiS, EnvironSiS, h, UnsoldSiS, OldSoldPrim, xi end proc

``

NULL

``

WhyNot3 := proc (alpha, delta) if not [alpha, delta]::(list(numeric)) then return ('procname')(args) end if; FirmModelHmax(alpha, .2, delta)[3] end proc:

pltHmax1 := plot(
  [seq(WhyNot3(alpha, delta),delta=0.1..0.5,0.2)]  
  , alpha=0..2/(2 + 0.2*(1 - sqrt((c - s)/(v - s))))     
  , linestyle=[dot,dashdot,dash]    
  , legend=[seq('delta'=delta,delta=0.1..0.5,0.2)]    
  , legendstyle=[location=left]    
  , labels=["alpha","Firm profit"]    
  , labeldirections =["horizontal", "vertical"]  
  , legendstyle=[location=bottom]
):

display(pltHmax1)

Warning, unable to evaluate the functions to numeric values in the region; see the plotting command's help page to ensure the calling sequence is correct

 

 

 

NULL

Download HmaxProc.mw

I am currently unable to type in maple 2021, there is no cursor, nothing shows up when I type etc. I am also unable to save files. I went into document mode, nothing. Some of the dialogs don't show up. Where does maple save documents and how do I change that setting? That might be my problem. Furthermore, there are no tabs visable, like I can't access any documents I open.

aRandStep2D := proc(X0, Y0, dx, dy)
  local X, Y, P, R;
  P := Array(1 .. 2);
  R := rand(1 .. 8)();
  if R = 1 then X := X0 - dx; Y := Y0 + dy; end if;
  if R = 2 then X := X0; Y := Y0 + dy; end if;
  if R = 3 then X := X0 + dx; Y := Y0 + dy; end if;
  if R = 4 then X := X0 - dx; Y := Y0; end if;
  if R = 5 then X := X0 + dx; Y := Y0; end if;
  if R = 6 then X := X0 - dx; Y := Y0 - dy; end if;
  if R = 7 then X := X0; Y := Y0 - dy; end if;
  if R = 8 then X := X0 + dx; Y := Y0 - dy; end if;
  P[1] := X; P[2] := Y;
  return P;
end proc 

SetStart := proc(b)
  local alpha, R, P;
  P := Array(1 .. 2);
  alpha := rand(1 .. b)();
  P[1] := alpha*b;
  P[2] := alpha*b;
  return P;
end proc 

RandomFactTpq := proc(N, pb, dx, dy)
  local alpha, X, Y, f, P, counter, B, n, T;
  P := Array(1 .. 2);
  counter := 0; f := 1;
  B := floor(evalf(sqrt(N))); #Set maximal searching steps
  T := floor(evalf(sqrt(N))); #For SetStart's use
  P := SetStart(T);
  X := P[1]; Y := P[2];
  while f = 1 and counter < B do  #loop
    n := pb - X - Y;
    f := gcd(N, n);
    if f > 1then break; end if;
    P := aRandStep2D(X, Y, dx, dy); #A random move
    X := P[1]; Y := P[2];
    if X < 1 or Y < 1 or N - pb - 1 < X or X <= Y then
      P := SetStart(T);       # Restart when out of borders
      X := P[1]; Y := P[2];
    end if;
    counter := counter + 1;    #Counting the searched steps
  end do;
  if  f>1  then print(Find at point (X, Y), found divisor = f, searching steps = counter);
  else print(This*time*finds*no*result, test*again!); end if;
end proc


wxbRandWalkTpqNew4.pdf

How can I produce a graph with various values for parameters? I also attached a sample of my Maple code.

restart

with(plots);
with(plottools);
with(DEtools);

eqn1 := diff(V(t), t) = pi*p - (alpha + mu)*V(t), V(0) = ic1

eqn2 := diff(S(t), t) = alpha*V(t) + (1 - p)*pi - beta*S(t)*In(t)/N - mu*S(t), S(0) = ic2

eqn3 := diff(In(t), t) = beta*S(t)*In(t)/N - (mu + delta + gamma)*In(t), In(0) = ic3

eqn4 := diff(R(t), t) = gamma*In(t) - mu*R(t), R(0) = ic4

pi := 487845;
p := 0.948;
alpha := 0.054;
beta := 0.955;
mu := 0.005;
delta := 0.03;
localgamma := 0.935;
ic1 := 484465;
ic2 := 31999760;
ic3 := 26305;
ics4 := 12470;
dsol := dsolve([eqn1, eqn2, eqn3, eqn4], numeric);

odeplot(dsol, [[t, V(t), color = plum], [t, S(t), color = blue], [t, In(t), color = cyan], [t, R(t), color = green]], t = 0 .. 1000, view = [0 .. 1000, 0 .. 300000000], thickness = 3)
 

Let's say I want to produce a graph for eqn1 with various values of parameter p: p = 0.2, p = 0.5, p = 0.7, p = 0.8. How should I produce it?

I have created a several matrices for my analysis. I want to plot the determinant value of matrix vs the omega. The matrix that should be plotted is named as FINAL. I am not able to do that due to large value of matrix determinant. How to simplify the matrix and get  plot.

restart

with(LinearAlgebra)

k1 := 4172976683.88513

k2 := 3322653306.61138``

nu := 62.83

l[9] := .676

l[8] := .676

l[7] := .218

l[6] := .255+.4*0

l[5] := .435+.4*0

l[4] := .435

l[3] := .456

l[2] := .577*.5

l[11] := .577*.5

l[12] := .577*.5

l[1] := .577*.5

i[9] := (1/64)*Pi*.355^4

i[8] := (1/64)*Pi*.355^4

i[7] := (1/64)*Pi*.419^4

i[6] := (1/64)*Pi*.543^4

i[5] := (1/64)*Pi*.698^4

i[4] := (1/64)*Pi*.698^4

i[3] := (1/64)*Pi*.67^4

i[2] := (1/64)*Pi*.45^4

i[11] := (1/64)*Pi*.45^4

i[12] := (1/64)*Pi*.45^4

i[1] := (1/64)*Pi*.45^4

m[0] := 2800

m[1] := 7850*(.25*Pi*.45^2*1.154)*(1/3)

NULLm[3] := 7850*(.25*Pi*.67^2*.456)

m[4] := 7850*(.25*Pi*.698^2*.870)

m[5] := 7850*(.25*Pi*.590^2*.8)+30715

m[6] := 7850*(.25*Pi*.543^2*.255)

m[7] := 7850*(.25*Pi*.419^2*.218)

m[8] := 7850*(.25*Pi*.355^2*1.132)NULL

E := 210*10^9

Id[0] := .5*825

Id[5] := (1/2)*(18.4*1000)+(30715/12)*.8^2*0+7850*(.25*Pi*.590^2*.8)*(.5*.590)^2*(1/4)+(.8*((1/12)*Pi*.590^2*.25)*7850)*.8^2*0

NULL

NULL

F9 := Matrix([[1, l[9], l[9]^2/(2*E*i[9]), l[9]^3/(6*E*i[9]), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, l[9]/(E*i[9]), l[9]^2/(2*E*i[9]), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, l[9], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, l[9], l[9]^2/(2*E*i[9]), l[9]^3/(6*E*i[9]), 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, l[9]/(E*i[9]), l[9]^2/(2*E*i[9]), 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, l[9], 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, l[9], l[9]^2/(2*E*i[9]), l[9]^3/(6*E*i[9]), 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[9]/(E*i[9]), l[9]^2/(2*E*i[9]), 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[9], 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[9], l[9]^2/(2*E*i[9]), l[9]^3/(6*E*i[9]), 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[9]/(E*i[9]), l[9]^2/(2*E*i[9]), 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[9], 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]])
``

NULL
F8 := Matrix([[1, l[8], l[8]^2/(2*E*i[8]), l[8]^3/(6*E*i[8]), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, l[8]/(E*i[8]), l[8]^2/(2*E*i[8]), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, l[8], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, l[8], l[8]^2/(2*E*i[8]), l[8]^3/(6*E*i[8]), 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, l[8]/(E*i[8]), l[8]^2/(2*E*i[8]), 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, l[8], 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, l[8], l[8]^2/(2*E*i[8]), l[8]^3/(6*E*i[8]), 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[8]/(E*i[8]), l[8]^2/(2*E*i[8]), 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[8], 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[8], l[8]^2/(2*E*i[8]), l[8]^3/(6*E*i[8]), 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[8]/(E*i[8]), l[8]^2/(2*E*i[8]), 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[8], 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]])

NULL

F7 := Matrix([[1, l[7], l[7]^2/(2*E*i[7]), l[7]^3/(6*E*i[7]), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, l[7]/(E*i[7]), l[7]^2/(2*E*i[7]), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, l[7], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, l[7], l[7]^2/(2*E*i[7]), l[7]^3/(6*E*i[7]), 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, l[7]/(E*i[7]), l[7]^2/(2*E*i[7]), 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, l[7], 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, l[7], l[7]^2/(2*E*i[7]), l[7]^3/(6*E*i[7]), 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[7]/(E*i[7]), l[7]^2/(2*E*i[7]), 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[7], 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[7], l[7]^2/(2*E*i[7]), l[7]^3/(6*E*i[7]), 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[7]/(E*i[7]), l[7]^2/(2*E*i[7]), 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[7], 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]])

NULL

F6 := Matrix([[1, l[6], l[6]^2/(2*E*i[6]), l[6]^3/(6*E*i[6]), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, l[6]/(E*i[6]), l[6]^2/(2*E*i[6]), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, l[6], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, l[6], l[6]^2/(2*E*i[6]), l[6]^3/(6*E*i[6]), 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, l[6]/(E*i[6]), l[6]^2/(2*E*i[6]), 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, l[6], 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, l[6], l[6]^2/(2*E*i[6]), l[6]^3/(6*E*i[6]), 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[6]/(E*i[6]), l[6]^2/(2*E*i[6]), 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[6], 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[6], l[6]^2/(2*E*i[6]), l[6]^3/(6*E*i[6]), 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[6]/(E*i[6]), l[6]^2/(2*E*i[6]), 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[6], 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]])

````

F5 := Matrix([[1, l[5], l[5]^2/(2*E*i[5]), l[5]^3/(6*E*i[5]), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, l[5]/(E*i[5]), l[5]^2/(2*E*i[5]), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, l[5], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, l[5], l[5]^2/(2*E*i[5]), l[5]^3/(6*E*i[5]), 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, l[5]/(E*i[5]), l[5]^2/(2*E*i[5]), 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, l[5], 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, l[5], l[5]^2/(2*E*i[5]), l[5]^3/(6*E*i[5]), 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[5]/(E*i[5]), l[5]^2/(2*E*i[5]), 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[5], 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[5], l[5]^2/(2*E*i[5]), l[5]^3/(6*E*i[5]), 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[5]/(E*i[5]), l[5]^2/(2*E*i[5]), 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[5], 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]])

F4 := Matrix([[1, l[4], l[4]^2/(2*E*i[4]), l[4]^3/(6*E*i[4]), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, l[4]/(E*i[4]), l[4]^2/(2*E*i[4]), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, l[4], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, l[4], l[4]^2/(2*E*i[4]), l[4]^3/(6*E*i[4]), 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, l[4]/(E*i[4]), l[4]^2/(2*E*i[4]), 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, l[4], 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, l[4], l[4]^2/(2*E*i[4]), l[4]^3/(6*E*i[4]), 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[4]/(E*i[4]), l[4]^2/(2*E*i[4]), 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[4], 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[4], l[4]^2/(2*E*i[4]), l[4]^3/(6*E*i[4]), 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[4]/(E*i[4]), l[4]^2/(2*E*i[4]), 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[4], 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]])

F3 := Matrix([[1, l[3], l[3]^2/(2*E*i[3]), l[3]^3/(6*E*i[3]), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, l[3]/(E*i[3]), l[3]^2/(2*E*i[3]), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, l[3], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, l[3], l[3]^2/(2*E*i[3]), l[3]^3/(6*E*i[3]), 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, l[3]/(E*i[3]), l[3]^2/(2*E*i[3]), 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, l[3], 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, l[3], l[3]^2/(2*E*i[3]), l[3]^3/(6*E*i[3]), 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[3]/(E*i[3]), l[3]^2/(2*E*i[3]), 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[3], 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[3], l[3]^2/(2*E*i[3]), l[3]^3/(6*E*i[3]), 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[3]/(E*i[3]), l[3]^2/(2*E*i[3]), 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[3], 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]])

F2 := Matrix([[1, l[2], l[2]^2/(2*E*i[2]), l[2]^3/(6*E*i[2]), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, l[2]/(E*i[2]), l[2]^2/(2*E*i[2]), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, l[2], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, l[2], l[2]^2/(2*E*i[2]), l[2]^3/(6*E*i[2]), 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, l[2]/(E*i[2]), l[2]^2/(2*E*i[2]), 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, l[2], 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, l[2], l[2]^2/(2*E*i[2]), l[2]^3/(6*E*i[2]), 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[2]/(E*i[2]), l[2]^2/(2*E*i[2]), 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[2], 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[2], l[2]^2/(2*E*i[2]), l[2]^3/(6*E*i[2]), 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[2]/(E*i[2]), l[2]^2/(2*E*i[2]), 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[2], 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]])

F1 := Matrix([[1, l[1], l[1]^2/(2*E*i[1]), l[1]^3/(6*E*i[1]), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, l[1]/(E*i[1]), l[1]^2/(2*E*i[1]), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, l[1], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, l[1], l[1]^2/(2*E*i[1]), l[1]^3/(6*E*i[1]), 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, l[1]/(E*i[1]), l[1]^2/(2*E*i[1]), 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, l[1], 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, l[1], l[1]^2/(2*E*i[1]), l[1]^3/(6*E*i[1]), 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[1]/(E*i[1]), l[1]^2/(2*E*i[1]), 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[1], 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[1], l[1]^2/(2*E*i[1]), l[1]^3/(6*E*i[1]), 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[1]/(E*i[1]), l[1]^2/(2*E*i[1]), 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[1], 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]])

NULL

F11 := Matrix([[1, l[11], l[11]^2/(2*E*i[11]), l[11]^3/(6*E*i[11]), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, l[11]/(E*i[11]), l[11]^2/(2*E*i[11]), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, l[11], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, l[11], l[11]^2/(2*E*i[11]), l[11]^3/(6*E*i[11]), 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, l[11]/(E*i[11]), l[11]^2/(2*E*i[11]), 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, l[11], 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, l[11], l[11]^2/(2*E*i[11]), l[11]^3/(6*E*i[11]), 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[11]/(E*i[11]), l[11]^2/(2*E*i[11]), 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[11], 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[11], l[11]^2/(2*E*i[11]), l[11]^3/(6*E*i[11]), 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[11]/(E*i[11]), l[11]^2/(2*E*i[11]), 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[11], 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]])

NULL

F12 := Matrix([[1, l[12], l[12]^2/(2*E*i[12]), l[12]^3/(6*E*i[12]), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, l[12]/(E*i[12]), l[12]^2/(2*E*i[12]), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, l[12], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, l[12], l[12]^2/(2*E*i[12]), l[12]^3/(6*E*i[12]), 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, l[12]/(E*i[12]), l[12]^2/(2*E*i[12]), 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, l[12], 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, l[12], l[12]^2/(2*E*i[12]), l[12]^3/(6*E*i[12]), 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[12]/(E*i[12]), l[12]^2/(2*E*i[12]), 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[12], 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[12], l[12]^2/(2*E*i[12]), l[12]^3/(6*E*i[12]), 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[12]/(E*i[12]), l[12]^2/(2*E*i[12]), 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[12], 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]])
``

P0 := Matrix([[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, -omega^2*Id[0], 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2*Id[0]*nu*omega, 0, 0, 0], [m[0]*omega^2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -omega^2*Id[0], 1, 0, 0, -2*Id[0]*nu*omega, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, m[0]*omega^2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2*Id[0]*nu*omega, 0, 0, 0, -omega^2*Id[0], 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, m[0]*omega^2, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, -2*Id[0]*nu*omega, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -omega^2*Id[0], 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, m[0]*omega^2, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]])

NULL
P1 := Matrix([[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [m[1]*omega^2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, m[1]*omega^2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, m[1]*omega^2, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, m[1]*omega^2, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]])

NULL
P11 := Matrix([[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [m[1]*omega^2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, m[1]*omega^2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, m[1]*omega^2, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, m[1]*omega^2, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]])

NULL
P12 := Matrix([[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [m[1]*omega^2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, m[1]*omega^2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, m[1]*omega^2, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, m[1]*omega^2, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]])
NULL

NULL
P3 := Matrix([[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [m[3]*omega^2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, m[3]*omega^2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, m[3]*omega^2, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, m[3]*omega^2, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]])
``

NULL
P4 := Matrix([[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [m[4]*omega^2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, m[4]*omega^2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, m[4]*omega^2, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, m[4]*omega^2, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]])
``NULL

P5 := Matrix([[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, -omega^2*Id[5], 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2*Id[5]*nu*omega, 0, 0, 0], [m[5]*omega^2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -omega^2*Id[5], 1, 0, 0, -2*Id[5]*nu*omega, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, m[5]*omega^2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2*Id[5]*nu*omega, 0, 0, 0, -omega^2*Id[5], 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, m[5]*omega^2, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, -2*Id[5]*nu*omega, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -omega^2*Id[5], 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, m[5]*omega^2, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]])

NULL
P6 := Matrix([[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [m[6]*omega^2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, m[6]*omega^2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, m[6]*omega^2, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, m[6]*omega^2, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]])

NULLNULL
P7 := Matrix([[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [m[7]*omega^2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, m[7]*omega^2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, m[7]*omega^2, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, m[7]*omega^2, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]])

NULLNULL
P8 := Matrix([[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [m[8]*omega^2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, m[8]*omega^2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, m[8]*omega^2, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, m[8]*omega^2, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]])

NULL
UA := Matrix([[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [-k1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, -k1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, -k1, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -k1, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]])
``

NULL
UB := Matrix([[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [-k2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, -k2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, -k2, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -k2, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]])
NULL``

NULL

NULL

NULL

NULL

NULL

NULL

NULL

N0 := Multiply(UB, F9)

N1 := Multiply(N0, P8)

N2 := Multiply(N1, F8)

N3 := Multiply(N2, P7)

N4 := Multiply(N3, F7)

N5 := Multiply(N4, P6)

N6 := Multiply(N5, F6)

N7 := Multiply(N6, P5)

N8 := Multiply(N7, F5)

N9 := Multiply(N8, P4)

N10 := Multiply(N9, F4)

N11 := Multiply(N10, P3)

N12 := Multiply(N11, F3)

N13 := Multiply(N12, UA)

N14 := Multiply(N13, F2)

N15 := Multiply(N14, P12)

N16 := Multiply(N15, F12)

N17 := Multiply(N16, P11)

N18 := Multiply(N17, F11)

N19 := Multiply(N18, P1)

N20 := Multiply(N19, F1)

N21 := Multiply(N20, P0)NULL

NULL

NULL

NULL

NULL

NULL``

NULL

Z31 := N21[3, 1]``

Z32 := N21[3, 2]NULL

Z35 := N21[3, 5]

Z36 := N21[3, 6]NULL

Z39 := N21[3, 9]NULL

Z310 := N21[3, 10]``

Z313 := N21[3, 13]

Z314 := N21[3, 14]

NULL

Z41 := N21[4, 1]NULL

Z42 := N21[4, 2]``

Z45 := N21[4, 5]

Z46 := N21[4, 6]NULL

Z49 := N21[4, 9]``

Z410 := N21[4, 10]NULL

Z413 := N21[4, 13]

Z414 := N21[4, 14]

NULL

NULL

Z71 := N21[7, 1]``

Z72 := N21[7, 2]NULL

Z75 := N21[7, 5]

Z76 := N21[7, 6]NULL

Z79 := N21[7, 9]NULL

Z710 := N21[7, 10]``

Z713 := N21[7, 13]

Z714 := N21[7, 14]

NULLNULL

Z81 := N21[8, 1]NULL

Z82 := N21[8, 2]``

Z85 := N21[8, 5]

Z86 := N21[8, 6]NULL

Z89 := N21[8, 9]``

Z810 := N21[8, 10]NULL

Z813 := N21[8, 13]

Z814 := N21[8, 14]

NULL

NULLZ111 := N21[11, 1]``

Z112 := N21[11, 2]NULL

Z115 := N21[11, 5]

Z116 := N21[11, 6]NULL

Z119 := N21[11, 9]NULL

Z1110 := N21[11, 10]``

Z1113 := N21[11, 13]

Z1114 := N21[11, 14]

NULL

NULL

Z121 := N21[12, 1]NULL

Z122 := N21[12, 2]``

Z125 := N21[12, 5]

Z126 := N21[12, 6]NULL

Z129 := N21[12, 9]``

Z1210 := N21[12, 10]NULL

Z1213 := N21[12, 13]

Z1214 := N21[12, 14]

NULL

NULLZ151 := N21[15, 1]``

Z152 := N21[15, 2]NULL

Z155 := N21[15, 5]

Z156 := N21[15, 6]NULL

Z159 := N21[15, 9]NULL

Z1510 := N21[15, 10]``

Z1513 := N21[15, 13]

Z1514 := N21[15, 14]

NULL

Z161 := N21[16, 1]NULL

Z162 := N21[16, 2]``

Z165 := N21[16, 5]

Z166 := N21[16, 6]NULL

Z169 := N21[16, 9]``

Z1610 := N21[16, 10]NULL

Z1613 := N21[16, 13]

Z1614 := N21[16, 14]

NULL

FINAL := Matrix([[Z31, Z32, Z35, Z36, Z39, Z310, Z313, Z314], [Z41, Z42, Z45, Z46, Z49, Z410, Z413, Z414], [Z71, Z72, Z75, Z76, Z79, Z710, Z713, Z714], [Z81, Z82, Z85, Z86, Z89, Z810, Z813, Z814], [Z111, Z112, Z115, Z116, Z119, Z1110, Z1113, Z1114], [Z121, Z122, Z125, Z126, Z129, Z1210, Z1213, Z1214], [Z151, Z152, Z155, Z156, Z159, Z1510, Z1513, Z1514], [Z161, Z162, Z165, Z166, Z169, Z1610, Z1613, Z1614]])

NULLF := Determinant(FINAL)/10^77

HFloat(173.47261448575398)

(1)

NULL

Error, (in plot) unexpected option: 160 = 120 .. 130

 

NULL

Download Plot_determinant_value_vs_omega.mw

Can someone kind help me? I encountered two issues when using the pdsolve function in Maple to obtain numerical solutions for partial differential equations. The first issue pertains to setting up the initial/boundary conditions correctly, and the second issue relates to configuring the plotting options. I'm wondering how to modify them in order to run the code correctly and generate the desired plots.

question.mw

1 2 3 4 5 6 7 Last Page 1 of 34
´╗┐