Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

This looks like regression in dsolve.

In Maple 2024.2, dsolve solves this with no problem and very quickly. 

In Maple 2025 it just hangs.

Any one could find why this is the case? infolevel does not show why. Below is Maple 2024.2 worksheet and Maple 2025 worksheet.  This is Maple 2024.2 NO HANG

interface(version);

`Standard Worksheet Interface, Maple 2024.2, Windows 10, October 29 2024 Build ID 1872373`

ode:=diff(y(x),x)+((y(x)+1)*(y(x)-1)*(y(x)-2))/(x+1)=0;
IC:=y(1)=0;

diff(y(x), x)+(y(x)+1)*(y(x)-1)*(y(x)-2)/(x+1) = 0

y(1) = 0

DEtools:-odeadvisor(ode);

[_separable]

infolevel[dsolve]:=5;
dsolve([ode,IC])

5

 -> Computing symmetries using: way = 3

Methods for first order ODEs:

--- Trying classification methods ---

trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful

y(x) = RootOf(-2048+(x^6+6*x^5+15*x^4+20*x^3+15*x^2+6*x+257)*_Z^18+(-6*x^6-36*x^5-90*x^4-120*x^3-90*x^2-36*x-1542)*_Z^12+(9*x^6+54*x^5+135*x^4+180*x^3+135*x^2+54*x+3081)*_Z^6)^6-1

 

 

Download dsolve_2024_no_hang_april_20_2025.mw

This is Maple 2025. HANGed. Had to terminate it after 15 minutes. It seems to hang on resolving initial conditions. 

interface(version);

`Standard Worksheet Interface, Maple 2025.0, Linux, March 24 2025 Build ID 1909157`

ode:=diff(y(x),x)+((y(x)+1)*(y(x)-1)*(y(x)-2))/(x+1)=0;
IC:=y(1)=0;

diff(y(x), x)+(y(x)+1)*(y(x)-1)*(y(x)-2)/(x+1) = 0

y(1) = 0

DEtools:-odeadvisor(ode);

[_separable]

infolevel[dsolve]:=5;
dsolve([ode,IC])

5

 -> Computing symmetries using: way = 3

Methods for first order ODEs:

--- Trying classification methods ---

trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful

 

 

Download dsolve_2025_on_linux_hangs_april_20_2025.mw

Given a graph G and a vertex u of G, the problem of determining whether there exists a cycle of length k starting at u is a common one in graph theory.

Mathematica provides a function Findcycle for this task, though I am not sure which algorithm it employs—perhaps depth-first search (DFS)? Maple, on the other hand, does not appear to have a corresponding built-in function.

Hi, why does Maple always automatically distribute coefficients in expressions? For example, if I enter 2*(a + b + c), the result is always 2*a + 2*b + 2*c. Is there a way to keep it as 2*(a + b + c) instead?

Hello everyone,

How I get a plot for this function ? What means numeric values ? 

Thanks !

 

restart

T[S] := 290

eta := 17; lambda := 24

h := .2; `&ohm;` := 2*Pi*10; R := 2

T(x[2]) := eta*`&ohm;`^2*R^2*[x[2]/h-(1/2)*(x[2]/h)^2]/lambda+T[S]

eta*`&ohm;`^2*R^2*[x[2]/h-(1/2)*(x[2]/h)^2]/lambda+T[S]

(1)

plot(T(x[2]), x[2] = .1 .. .2)

Warning, unable to evaluate the function to numeric values in the region; see the plotting command's help page to ensure the calling sequence is correct

 

 


Download TSL_bung_9.mwTSL_bung_9.mw

I am just wondering why something that has been bothering me since Maple V up to including Maple 2024 has never been resolved properly.

Why is it so difficult for maple to solve a dead obvious and simple expression e.g.

sqrt(cos(gamma)^(5/3)/sin(2*gamma)^(5/3));

You can use algsubs to tell maple to use an elementary identity to substitute the double angle away, but even then it refuses to simplify the remaining fraction which is elementary at most.

So, when will e.g. this simple multiple generational issue be addressed  so maple can do the obvious simplifications.

There are much more severe examples concerning trigonometric functions under square roots, which was left out in this case to show just one issue.

How i can get this special parameter i try to do substitution in another mw file but stilli can't reach this parameter and without this parameter my PDE is not give me zero so i have to find this r[i] parameter, some letter of my mw file are not similar to paper but r[i]=l[i] as mention is paper al clear and i found all structure just this remain, i am looking for equation (14), thanks for any help 

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

_local(gamma)

Warning, A new binding for the name `gamma` has been created. The global instance of this name is still accessible using the :- prefix, :-`gamma`.  See ?protect for details.

 

NULL

declare(u(x, y, z, t))

u(x, y, z, t)*`will now be displayed as`*u

(1)

declare(f(x, y, z, t))

f(x, y, z, t)*`will now be displayed as`*f

(2)

pde1 := a*(diff(u(x, y, z, t), x, t))-((a^4-6*a^2*b^2+b^4)*(1/16))*(diff(u(x, y, z, t), `$`(x, 4)))-(1/4)*(3*(-a^2+b^2))*(diff(u(x, y, z, t)^2, `$`(x, 2)))+alpha*(diff(u(x, y, z, t), `$`(x, 2)))+beta*(diff(u(x, y, z, t), x, y))+delta*(diff(u(x, y, z, t), x, z))+lambda*(diff(u(x, y, z, t), `$`(z, 2)))+mu*(diff(u(x, y, z, t), y, z))+mu^2*(diff(u(x, y, z, t), `$`(y, 2)))/(4*lambda)

a*(diff(diff(u(x, y, z, t), t), x))-(1/16)*(a^4-6*a^2*b^2+b^4)*(diff(diff(diff(diff(u(x, y, z, t), x), x), x), x))-(3/4)*(-a^2+b^2)*(2*(diff(u(x, y, z, t), x))^2+2*u(x, y, z, t)*(diff(diff(u(x, y, z, t), x), x)))+alpha*(diff(diff(u(x, y, z, t), x), x))+beta*(diff(diff(u(x, y, z, t), x), y))+delta*(diff(diff(u(x, y, z, t), x), z))+lambda*(diff(diff(u(x, y, z, t), z), z))+mu*(diff(diff(u(x, y, z, t), y), z))+(1/4)*mu^2*(diff(diff(u(x, y, z, t), y), y))/lambda

(3)

Tr := {beta = alpha, delta = alpha, mu = 2*lambda}

{beta = alpha, delta = alpha, mu = 2*lambda}

(4)

pde := subs(Tr, pde1)

a*(diff(diff(u(x, y, z, t), t), x))-(1/16)*(a^4-6*a^2*b^2+b^4)*(diff(diff(diff(diff(u(x, y, z, t), x), x), x), x))-(3/4)*(-a^2+b^2)*(2*(diff(u(x, y, z, t), x))^2+2*u(x, y, z, t)*(diff(diff(u(x, y, z, t), x), x)))+alpha*(diff(diff(u(x, y, z, t), x), x))+alpha*(diff(diff(u(x, y, z, t), x), y))+alpha*(diff(diff(u(x, y, z, t), x), z))+lambda*(diff(diff(u(x, y, z, t), z), z))+2*lambda*(diff(diff(u(x, y, z, t), y), z))+lambda*(diff(diff(u(x, y, z, t), y), y))

(5)

pde_linear, pde_nonlinear := selectremove(proc (term) options operator, arrow; not has((eval(term, u(x, y, z, t) = T*u(x, y, z, t)))/T, T) end proc, expand(pde))

a*(diff(diff(u(x, y, z, t), t), x))-(1/16)*(diff(diff(diff(diff(u(x, y, z, t), x), x), x), x))*a^4+(3/8)*(diff(diff(diff(diff(u(x, y, z, t), x), x), x), x))*a^2*b^2-(1/16)*(diff(diff(diff(diff(u(x, y, z, t), x), x), x), x))*b^4+alpha*(diff(diff(u(x, y, z, t), x), x))+alpha*(diff(diff(u(x, y, z, t), x), y))+alpha*(diff(diff(u(x, y, z, t), x), z))+lambda*(diff(diff(u(x, y, z, t), z), z))+2*lambda*(diff(diff(u(x, y, z, t), y), z))+lambda*(diff(diff(u(x, y, z, t), y), y)), (3/2)*(diff(u(x, y, z, t), x))^2*a^2-(3/2)*(diff(u(x, y, z, t), x))^2*b^2+(3/2)*u(x, y, z, t)*(diff(diff(u(x, y, z, t), x), x))*a^2-(3/2)*u(x, y, z, t)*(diff(diff(u(x, y, z, t), x), x))*b^2

(6)

NULL

eq17 := u(x, y, z, t) = (-a^4+6*a^2*b^2-b^4)*((diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)-(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^2)/(2*a^2-2*b^2)

``NULL

betai := k[i]*(t*w[i]+y*l[i]+z*r[i]+x)+eta[i]

k[i]*(t*w[i]+y*l[i]+z*r[i]+x)+eta[i]

(7)

W := w[i] = ((a^4-6*a^2*b^2+b^4)*k[i]^2-16*lambda*l[i]^2+(-32*lambda*r[i]-16*alpha)*l[i]-16*lambda*r[i]^2-16*alpha*r[i]-16*alpha)/(16*a)

AA := A[12] = (16*(l[1]-l[2]+r[1]-r[2])^2*lambda+3*(k[1]-k[2])^2*(a^2+2*a*b-b^2)*(a^2-2*a*b-b^2))/(16*(l[1]-l[2]+r[1]-r[2])^2*lambda+3*(k[1]+k[2])^2*(a^2+2*a*b-b^2)*(a^2-2*a*b-b^2))

F2 := 1+exp(beta[1])+A[1, 2]*exp(beta[1]+beta[2])+exp(beta[2])

1+exp(beta[1])+A[1, 2]*exp(beta[1]+beta[2])+exp(beta[2])

(8)

NULL

F22 := f(x, y, z, t) = 1+exp((a^4*t*k[1]^3-6*a^2*b^2*t*k[1]^3+b^4*t*k[1]^3-16*lambda*t*k[1]*l[1]^2-32*lambda*t*k[1]*l[1]*r[1]-16*lambda*t*k[1]*r[1]^2+16*a*y*k[1]*l[1]+16*a*z*k[1]*r[1]-16*alpha*t*k[1]*l[1]-16*alpha*t*k[1]*r[1]+16*a*x*k[1]-16*alpha*t*k[1]+16*a*eta[1])/(16*a))+exp((a^4*t*k[2]^3-6*a^2*b^2*t*k[2]^3+b^4*t*k[2]^3-16*lambda*t*k[2]*l[2]^2-32*lambda*t*k[2]*l[2]*r[2]-16*lambda*t*k[2]*r[2]^2+16*a*y*k[2]*l[2]+16*a*z*k[2]*r[2]-16*alpha*t*k[2]*l[2]-16*alpha*t*k[2]*r[2]+16*a*x*k[2]-16*alpha*t*k[2]+16*a*eta[2])/(16*a))

eq := eval(eq17, F22)

u(x, y, z, t) = (-a^4+6*a^2*b^2-b^4)*((k[1]^2*exp((1/16)*(a^4*t*k[1]^3-6*a^2*b^2*t*k[1]^3+b^4*t*k[1]^3-16*lambda*t*k[1]*l[1]^2-32*lambda*t*k[1]*l[1]*r[1]-16*lambda*t*k[1]*r[1]^2+16*a*y*k[1]*l[1]+16*a*z*k[1]*r[1]-16*alpha*t*k[1]*l[1]-16*alpha*t*k[1]*r[1]+16*a*x*k[1]-16*alpha*t*k[1]+16*a*eta[1])/a)+k[2]^2*exp((1/16)*(a^4*t*k[2]^3-6*a^2*b^2*t*k[2]^3+b^4*t*k[2]^3-16*lambda*t*k[2]*l[2]^2-32*lambda*t*k[2]*l[2]*r[2]-16*lambda*t*k[2]*r[2]^2+16*a*y*k[2]*l[2]+16*a*z*k[2]*r[2]-16*alpha*t*k[2]*l[2]-16*alpha*t*k[2]*r[2]+16*a*x*k[2]-16*alpha*t*k[2]+16*a*eta[2])/a))/(1+exp((1/16)*(a^4*t*k[1]^3-6*a^2*b^2*t*k[1]^3+b^4*t*k[1]^3-16*lambda*t*k[1]*l[1]^2-32*lambda*t*k[1]*l[1]*r[1]-16*lambda*t*k[1]*r[1]^2+16*a*y*k[1]*l[1]+16*a*z*k[1]*r[1]-16*alpha*t*k[1]*l[1]-16*alpha*t*k[1]*r[1]+16*a*x*k[1]-16*alpha*t*k[1]+16*a*eta[1])/a)+exp((1/16)*(a^4*t*k[2]^3-6*a^2*b^2*t*k[2]^3+b^4*t*k[2]^3-16*lambda*t*k[2]*l[2]^2-32*lambda*t*k[2]*l[2]*r[2]-16*lambda*t*k[2]*r[2]^2+16*a*y*k[2]*l[2]+16*a*z*k[2]*r[2]-16*alpha*t*k[2]*l[2]-16*alpha*t*k[2]*r[2]+16*a*x*k[2]-16*alpha*t*k[2]+16*a*eta[2])/a))-(k[1]*exp((1/16)*(a^4*t*k[1]^3-6*a^2*b^2*t*k[1]^3+b^4*t*k[1]^3-16*lambda*t*k[1]*l[1]^2-32*lambda*t*k[1]*l[1]*r[1]-16*lambda*t*k[1]*r[1]^2+16*a*y*k[1]*l[1]+16*a*z*k[1]*r[1]-16*alpha*t*k[1]*l[1]-16*alpha*t*k[1]*r[1]+16*a*x*k[1]-16*alpha*t*k[1]+16*a*eta[1])/a)+k[2]*exp((1/16)*(a^4*t*k[2]^3-6*a^2*b^2*t*k[2]^3+b^4*t*k[2]^3-16*lambda*t*k[2]*l[2]^2-32*lambda*t*k[2]*l[2]*r[2]-16*lambda*t*k[2]*r[2]^2+16*a*y*k[2]*l[2]+16*a*z*k[2]*r[2]-16*alpha*t*k[2]*l[2]-16*alpha*t*k[2]*r[2]+16*a*x*k[2]-16*alpha*t*k[2]+16*a*eta[2])/a))^2/(1+exp((1/16)*(a^4*t*k[1]^3-6*a^2*b^2*t*k[1]^3+b^4*t*k[1]^3-16*lambda*t*k[1]*l[1]^2-32*lambda*t*k[1]*l[1]*r[1]-16*lambda*t*k[1]*r[1]^2+16*a*y*k[1]*l[1]+16*a*z*k[1]*r[1]-16*alpha*t*k[1]*l[1]-16*alpha*t*k[1]*r[1]+16*a*x*k[1]-16*alpha*t*k[1]+16*a*eta[1])/a)+exp((1/16)*(a^4*t*k[2]^3-6*a^2*b^2*t*k[2]^3+b^4*t*k[2]^3-16*lambda*t*k[2]*l[2]^2-32*lambda*t*k[2]*l[2]*r[2]-16*lambda*t*k[2]*r[2]^2+16*a*y*k[2]*l[2]+16*a*z*k[2]*r[2]-16*alpha*t*k[2]*l[2]-16*alpha*t*k[2]*r[2]+16*a*x*k[2]-16*alpha*t*k[2]+16*a*eta[2])/a))^2)/(2*a^2-2*b^2)

(9)

pdetest(eq, pde)

Download fusion-undon.mw

In the below I would like to format the odes as they appear in the second and third ode (in green brackets).

I.e. making the first operand with the minus sign inside the parentheses the second one. I was hoping for simplify,size but that does not do the trick.

How to do this?

Format_odes.mw

Dear Maple Support Team and Community,

    I would like to report what seems to be a bug in Maple's MatrixExponential function in the LinearAlgebra package.

    Consider the following 8×8 skew-Hermitian matrix B:
 

B := Matrix(8, 8, [[0, I, 0, -I, 0, I, 0, -I], 
                   [-I, 0, I, 0, -I, 0, I, 0], 
                   [0, -I, 0, I, 0, -I, 0, I], 
                   [I, 0, -I, 0, I, 0, -I, 0], 
                   [0, I, 0, -I, 0, I, 0, -I], 
                   [-I, 0, I, 0, -I, 0, I, 0], 
                   [0, -I, 0, I, 0, -I, 0, I], 
                   [I, 0, -I, 0, I, 0, -I, 0]]);

    Now compute the matrix exponential exp(I*t*B) using MatrixExponential

H := LinearAlgebra:-MatrixExponential(I * t * B);

However, this result is inconsistent with the matrix exponential computed using MATLAB and SageMath, both of which give the same result, different from Maple's.

I would appreciate it if someone from the development team could look into this.

For the attached file I ask for help with the plot of sol_1 for x>0.1 .

chini dgl.mw

i want to find critical point but becuase the equation is ong the result not shown up i try to put variable and then result show up but the number are to ugly and so long i want make them be 1 number without any decimal can we do that?

short-Dc.mw

Encountered this error using patmatch with condition. I have changed my code since then  to avoid such cases.

But do you think this is valid error? It only happens when adding conditional. 

interface(version);

restart;

RHS:=1/2/lambda(y)*f(RootOf(f(_Z)*a*b-f(_Z)*a*y-f(_Z)*b*y+f(_Z)*y^2+lambda(y)^2))*a+1/2/lambda(y)*f(RootOf(f(_Z)*a*b-f(_Z)*a*y-f(_Z)*b*y+f(_Z)*y^2+lambda(y)^2))*b-1/lambda(y)*f(RootOf(f(_Z)*a*b-f(_Z)*a*y-f(_Z)*b*y+f(_Z)*y^2+lambda(y)^2))*y-1/2/lambda(y)^2*D(f)(RootOf(f(_Z)*a*b-f(_Z)*a*y-f(_Z)*b*y+f(_Z)*y^2+lambda(y)^2))*a*b+1/2/lambda(y)^2*D(f)(RootOf(f(_Z)*a*b-f(_Z)*a*y-f(_Z)*b*y+f(_Z)*y^2+lambda(y)^2))*a*y+1/2/lambda(y)^2*D(f)(RootOf(f(_Z)*a*b-f(_Z)*a*y-f(_Z)*b*y+f(_Z)*y^2+lambda(y)^2))*b*y-1/2/lambda(y)^2*D(f)(RootOf(f(_Z)*a*b-f(_Z)*a*y-f(_Z)*b*y+f(_Z)*y^2+lambda(y)^2))*y^2;

(1/2)*f(RootOf(f(_Z)*a*b-f(_Z)*a*y-f(_Z)*b*y+f(_Z)*y^2+lambda(y)^2))*a/lambda(y)+(1/2)*f(RootOf(f(_Z)*a*b-f(_Z)*a*y-f(_Z)*b*y+f(_Z)*y^2+lambda(y)^2))*b/lambda(y)-f(RootOf(f(_Z)*a*b-f(_Z)*a*y-f(_Z)*b*y+f(_Z)*y^2+lambda(y)^2))*y/lambda(y)-(1/2)*(D(f))(RootOf(f(_Z)*a*b-f(_Z)*a*y-f(_Z)*b*y+f(_Z)*y^2+lambda(y)^2))*a*b/lambda(y)^2+(1/2)*(D(f))(RootOf(f(_Z)*a*b-f(_Z)*a*y-f(_Z)*b*y+f(_Z)*y^2+lambda(y)^2))*a*y/lambda(y)^2+(1/2)*(D(f))(RootOf(f(_Z)*a*b-f(_Z)*a*y-f(_Z)*b*y+f(_Z)*y^2+lambda(y)^2))*b*y/lambda(y)^2-(1/2)*(D(f))(RootOf(f(_Z)*a*b-f(_Z)*a*y-f(_Z)*b*y+f(_Z)*y^2+lambda(y)^2))*y^2/lambda(y)^2

patmatch(RHS,F::anything*lambda(y)^(n::anything)+H::anything,'la')

true

patmatch(RHS,conditional(F::anything*lambda(y)^(n::anything)+H::anything, not (_has(H,lambda(y)) or _has(n,y))),'la')

Error, (in PatternMatching:-AlgStruct:-Match) string or symbol expected for substring

 

 

Download error_patmatch_april_18_2025.mw

I encountered this issue while writing some code. Here is my code:

numArray := [17, 18, 19];
symArray := [x, y, z];
kronArray := map(i -> local j; symArray[i] = symArray[1]^mul(numArray[j], j = 1 .. i - 1), [$ (1 .. 3)]);

When I run it, I get the following warning:

Warning, (in anonymous procedure created in Typesetting:-FI) `j` is implicitly declared local;

After clicking the LINK  to Maple's help, I saw a similar issue in Example 3. However, Example 3 didn't resolve the problem. How can I declare a variable as local within an anonymous function?

I have a problem calculating integral analytically.

Can anyone help me in this regard?

Thanks

problem_2_integral_&_moshtagh.mw

I wonder what is the general view on this.

Maple tries hard to find analytical solutions by trying different algorithms. Which is very good. But the question is, should it also hang doing this? Should not there be a circuit breaker to prevent the hang?

I mean there must be a limited number of algorithms it tries. So at one point one would expect it will finish and return either no solution or the solution it found.

For this Abel ode   y'=x+y^3, which is known not to be solvable, Maple hangs on 

           > Step 2: calculating resultants to eliminate F and get candidates for 

I waited for almost one hour. Clearly this indicates a problem internally. Right?

There should be some internal checks to prevent this hang I would think.  I do not know where it actually hangs, since trace only shows the last step above.

It will good to find out the cause of the hang and add code to prevent this in a future version of Maple dsolve to make it more robust.

btw, using that another software, it returns instantly on this ode with no solution. May be the other software did not try as hard, but at least it did not hang :)

restart;

interface(version);

`Standard Worksheet Interface, Maple 2025.0, Linux, March 24 2025 Build ID 1909157`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1861 and is the same as the version installed in this computer, created 2025, April 10, 15:58 hours Pacific Time.`

restart;

infolevel[dsolve]:=5;
ode:=diff(y(x),x)=x+y(x)^3;
sol:=dsolve(ode,y(x))

5

diff(y(x), x) = x+y(x)^3

Methods for first order ODEs:

--- Trying classification methods ---

trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying Chini

Chini's absolute invariant is: (1/27)/x^5

differential order: 1; looking for linear symmetries

trying exact

trying Abel

The relative invariant s3 is: x

The first absolute invariant s5^3/s3^5 is: 1/x^5

The second absolute invariant s3*s7/s5^2 is: 0

...checking Abel class AIL (45)

...checking Abel class AIL (310)

...checking Abel class AIR (36)

...checking Abel class AIL (301)

...checking Abel class AIL (1000)

...checking Abel class AIL (42)

...checking Abel class AIL (185)

...checking Abel class AIA (by Halphen)

...checking Abel class AIL (205)

...checking Abel class AIA (147)

...checking Abel class AIL (581)

...checking Abel class AIL (200)

...checking Abel class AIL (257)

...checking Abel class AIL (400)

...checking Abel class AIA (515)

...checking Abel class AIR (1001)

...checking Abel class AIA (201)

...checking Abel class AIA (815)

Looking for potential symmetries

... changing x -> 1/x, trying again

Looking for potential symmetries

The third absolute invariant s5*s7/s3^4 is: 0

 ->         ======================================

 ->             ...checking Abel class D (by Appell)

 -> Step 1: checking for a disqualifying factor on F after evaluating x at a number

Trying x = 1

*** No disqualifying factor on F was found ***

 -> Step 2: calculating resultants to eliminate F and get candidates for C

 

 

Download why_hangs_dsolve_april_18_2025.mw

Occasionally I want to convert 2D-Math input to 1D-Math input. This is either not fully working with comments or changes the format. Example:

Try converting the input below to Maple 1D-Math (select -> right click -> 2D-Math -> convert to -> 1D-Math)

statement

statement

(1)

The*comment*dissapears:

statement;

 

statement

(2)

The Maple Input at the top can be converted by selecting the style C Maple Input from the edit tab but the font changes not to the default font for 1D Math-Input;

statement

statement

(3)

The above is in italic and not in bold. However the default for 1D-Math Input is the following

statement

statement

(4)

 

NULL

Also pasting code with comments in MaplePrimes (function insert code snippet) removes comments.

Any other ways? Ideally, I would also like to convert a whole document in one go, That is probably asked too much.

Download convert_comment_to_1D.mw

First 6 7 8 9 10 11 12 Last Page 8 of 2205