MaplePrimes Questions

Search Questions:

I used text math input, finding parenthesis is very difficult sometimes.

 

It would be very nice if parenthesis were color coded OR coloring of the texted was based on parenthetical depth.

E.g.,

display(plot(something(or another)))

 

 

How to make an animation that secant lines of f(x) = sin(x) through x = 1 approach the
tangent line 

 

Hello,

I obtained a mode shape from a vibration problem.

I want to normalized mode shape for the comparison of responses corresponding to different modes.

How I can normalize the mode shape that provided in the maple file?

The figure corresponds to this mode shape is plotted that is attached.

Thanks

mode_shapes.mw


 

a := Vector(325, {(1) = 0, (2) = 0., (3) = 0., (4) = 0.1e-3, (5) = 0.1e-3, (6) = 0.2e-3, (7) = 0.4e-3, (8) = 0.7e-3, (9) = 0.10e-2, (10) = 0.16e-2, (11) = 0.23e-2, (12) = 0.33e-2, (13) = 0.44e-2, (14) = 0.65e-2, (15) = 0.89e-2, (16) = 0.114e-1, (17) = 0.139e-1, (18) = 0.162e-1, (19) = 0.178e-1, (20) = 0.186e-1, (21) = 0.183e-1, (22) = 0.171e-1, (23) = 0.150e-1, (24) = 0.120e-1, (25) = 0.85e-2, (26) = 0.51e-2, (27) = 0.16e-2, (28) = -0.19e-2, (29) = -0.51e-2, (30) = -0.79e-2, (31) = -0.103e-1, (32) = -0.120e-1, (33) = -0.132e-1, (34) = -0.138e-1, (35) = -0.136e-1, (36) = -0.129e-1, (37) = -0.118e-1, (38) = -0.106e-1, (39) = -0.94e-2, (40) = -0.83e-2, (41) = -0.75e-2, (42) = -0.71e-2, (43) = -0.69e-2, (44) = -0.71e-2, (45) = -0.75e-2, (46) = -0.79e-2, (47) = -0.83e-2, (48) = -0.84e-2, (49) = -0.81e-2, (50) = -0.73e-2, (51) = -0.60e-2, (52) = -0.43e-2, (53) = -0.20e-2, (54) = 0.11e-2, (55) = 0.46e-2, (56) = 0.82e-2, (57) = 0.117e-1, (58) = 0.149e-1, (59) = 0.174e-1, (60) = 0.191e-1, (61) = 0.200e-1, (62) = 0.198e-1, (63) = 0.187e-1, (64) = 0.167e-1, (65) = 0.139e-1, (66) = 0.103e-1, (67) = 0.65e-2, (68) = 0.28e-2, (69) = -0.5e-3, (70) = -0.27e-2, (71) = -0.45e-2, (72) = -0.56e-2, (73) = -0.62e-2, (74) = -0.64e-2, (75) = -0.64e-2, (76) = -0.62e-2, (77) = -0.60e-2, (78) = -0.58e-2, (79) = -0.57e-2, (80) = -0.59e-2, (81) = -0.62e-2, (82) = -0.69e-2, (83) = -0.78e-2, (84) = -0.90e-2, (85) = -0.103e-1, (86) = -0.122e-1, (87) = -0.138e-1, (88) = -0.150e-1, (89) = -0.153e-1, (90) = -0.147e-1, (91) = -0.133e-1, (92) = -0.111e-1, (93) = -0.82e-2, (94) = -0.49e-2, (95) = -0.13e-2, (96) = 0.25e-2, (97) = 0.62e-2, (98) = 0.96e-2, (99) = 0.126e-1, (100) = 0.150e-1, (101) = 0.167e-1, (102) = 0.176e-1, (103) = 0.176e-1, (104) = 0.169e-1, (105) = 0.155e-1, (106) = 0.135e-1, (107) = 0.112e-1, (108) = 0.89e-2, (109) = 0.68e-2, (110) = 0.50e-2, (111) = 0.37e-2, (112) = 0.28e-2, (113) = 0.23e-2, (114) = 0.22e-2, (115) = 0.21e-2, (116) = 0.22e-2, (117) = 0.22e-2, (118) = 0.21e-2, (119) = 0.19e-2, (120) = 0.15e-2, (121) = 0.8e-3, (122) = -0., (123) = -0.11e-2, (124) = -0.25e-2, (125) = -0.40e-2, (126) = -0.68e-2, (127) = -0.97e-2, (128) = -0.127e-1, (129) = -0.154e-1, (130) = -0.175e-1, (131) = -0.189e-1, (132) = -0.193e-1, (133) = -0.187e-1, (134) = -0.171e-1, (135) = -0.146e-1, (136) = -0.113e-1, (137) = -0.76e-2, (138) = -0.42e-2, (139) = -0.9e-3, (140) = 0.23e-2, (141) = 0.52e-2, (142) = 0.76e-2, (143) = 0.96e-2, (144) = 0.110e-1, (145) = 0.118e-1, (146) = 0.121e-1, (147) = 0.118e-1, (148) = 0.110e-1, (149) = 0.100e-1, (150) = 0.91e-2, (151) = 0.84e-2, (152) = 0.78e-2, (153) = 0.75e-2, (154) = 0.76e-2, (155) = 0.79e-2, (156) = 0.85e-2, (157) = 0.92e-2, (158) = 0.98e-2, (159) = 0.103e-1, (160) = 0.103e-1, (161) = 0.98e-2, (162) = 0.88e-2, (163) = 0.72e-2, (164) = 0.51e-2, (165) = 0.24e-2, (166) = -0.15e-2, (167) = -0.57e-2, (168) = -0.99e-2, (169) = -0.137e-1, (170) = -0.164e-1, (171) = -0.184e-1, (172) = -0.196e-1, (173) = -0.197e-1, (174) = -0.189e-1, (175) = -0.171e-1, (176) = -0.146e-1, (177) = -0.115e-1, (178) = -0.81e-2, (179) = -0.47e-2, (180) = -0.16e-2, (181) = 0.8e-3, (182) = 0.24e-2, (183) = 0.34e-2, (184) = 0.40e-2, (185) = 0.43e-2, (186) = 0.43e-2, (187) = 0.42e-2, (188) = 0.41e-2, (189) = 0.41e-2, (190) = 0.43e-2, (191) = 0.47e-2, (192) = 0.53e-2, (193) = 0.62e-2, (194) = 0.76e-2, (195) = 0.92e-2, (196) = 0.109e-1, (197) = 0.127e-1, (198) = 0.146e-1, (199) = 0.160e-1, (200) = 0.166e-1, (201) = 0.162e-1, (202) = 0.149e-1, (203) = 0.128e-1, (204) = 0.99e-2, (205) = 0.65e-2, (206) = 0.28e-2, (207) = -0.10e-2, (208) = -0.47e-2, (209) = -0.82e-2, (210) = -0.112e-1, (211) = -0.137e-1, (212) = -0.154e-1, (213) = -0.164e-1, (214) = -0.166e-1, (215) = -0.159e-1, (216) = -0.147e-1, (217) = -0.129e-1, (218) = -0.110e-1, (219) = -0.90e-2, (220) = -0.73e-2, (221) = -0.59e-2, (222) = -0.49e-2, (223) = -0.44e-2, (224) = -0.41e-2, (225) = -0.41e-2, (226) = -0.42e-2, (227) = -0.43e-2, (228) = -0.43e-2, (229) = -0.41e-2, (230) = -0.36e-2, (231) = -0.29e-2, (232) = -0.18e-2, (233) = -0.3e-3, (234) = 0.16e-2, (235) = 0.38e-2, (236) = 0.62e-2, (237) = 0.88e-2, (238) = 0.121e-1, (239) = 0.151e-1, (240) = 0.175e-1, (241) = 0.192e-1, (242) = 0.198e-1, (243) = 0.194e-1, (244) = 0.181e-1, (245) = 0.159e-1, (246) = 0.122e-1, (247) = 0.80e-2, (248) = 0.34e-2, (249) = -0.9e-3, (250) = -0.41e-2, (251) = -0.68e-2, (252) = -0.87e-2, (253) = -0.98e-2, (254) = -0.103e-1, (255) = -0.103e-1, (256) = -0.98e-2, (257) = -0.92e-2, (258) = -0.86e-2, (259) = -0.80e-2, (260) = -0.76e-2, (261) = -0.75e-2, (262) = -0.77e-2, (263) = -0.82e-2, (264) = -0.89e-2, (265) = -0.98e-2, (266) = -0.109e-1, (267) = -0.117e-1, (268) = -0.121e-1, (269) = -0.119e-1, (270) = -0.111e-1, (271) = -0.96e-2, (272) = -0.74e-2, (273) = -0.46e-2, (274) = -0.7e-3, (275) = 0.36e-2, (276) = 0.80e-2, (277) = 0.121e-1, (278) = 0.150e-1, (279) = 0.173e-1, (280) = 0.188e-1, (281) = 0.193e-1, (282) = 0.189e-1, (283) = 0.176e-1, (284) = 0.155e-1, (285) = 0.128e-1, (286) = 0.98e-2, (287) = 0.67e-2, (288) = 0.38e-2, (289) = 0.15e-2, (290) = -0.1e-3, (291) = -0.12e-2, (292) = -0.18e-2, (293) = -0.21e-2, (294) = -0.22e-2, (295) = -0.22e-2, (296) = -0.21e-2, (297) = -0.22e-2, (298) = -0.24e-2, (299) = -0.27e-2, (300) = -0.33e-2, (301) = -0.42e-2, (302) = -0.54e-2, (303) = -0.68e-2, (304) = -0.85e-2, (305) = -0.103e-1, (306) = -0.130e-1, (307) = -0.154e-1, (308) = -0.170e-1, (309) = -0.177e-1, (310) = -0.173e-1, (311) = -0.160e-1, (312) = -0.138e-1, (313) = -0.108e-1, (314) = -0.75e-2, (315) = -0.38e-2, (316) = -0., (317) = 0.37e-2, (318) = 0.71e-2, (319) = 0.101e-1, (320) = 0.124e-1, (321) = 0.141e-1, (322) = 0.149e-1, (323) = 0.152e-1, (324) = 0.152e-1, (325) = 0.149e-1})

_rtable[18446746442173411926]

(1)

``

t := Vector(325, {(1) = 0, (2) = 0.67e-2, (3) = 0.134e-1, (4) = 0.202e-1, (5) = 0.269e-1, (6) = 0.336e-1, (7) = 0.403e-1, (8) = 0.471e-1, (9) = 0.538e-1, (10) = 0.637e-1, (11) = 0.736e-1, (12) = 0.836e-1, (13) = 0.935e-1, (14) = .1098, (15) = .1261, (16) = .1424, (17) = .1586, (18) = .1764, (19) = .1943, (20) = .2121, (21) = .2299, (22) = .2465, (23) = .2632, (24) = .2798, (25) = .2965, (26) = .3109, (27) = .3253, (28) = .3397, (29) = .3542, (30) = .3686, (31) = .3830, (32) = .3974, (33) = .4118, (34) = .4284, (35) = .4450, (36) = .4615, (37) = .4781, (38) = .4938, (39) = .5095, (40) = .5253, (41) = .5410, (42) = .5567, (43) = .5724, (44) = .5882, (45) = .6039, (46) = .6204, (47) = .6368, (48) = .6533, (49) = .6697, (50) = .6843, (51) = .6989, (52) = .7135, (53) = .7281, (54) = .7448, (55) = .7615, (56) = .7781, (57) = .7948, (58) = .8113, (59) = .8278, (60) = .8442, (61) = .8607, (62) = .8775, (63) = .8943, (64) = .9112, (65) = .9280, (66) = .9468, (67) = .9655, (68) = .9843, (69) = 1.0031, (70) = 1.0190, (71) = 1.0348, (72) = 1.0507, (73) = 1.0665, (74) = 1.0794, (75) = 1.0924, (76) = 1.1053, (77) = 1.1183, (78) = 1.1312, (79) = 1.1442, (80) = 1.1571, (81) = 1.1700, (82) = 1.1842, (83) = 1.1984, (84) = 1.2126, (85) = 1.2268, (86) = 1.2459, (87) = 1.2651, (88) = 1.2842, (89) = 1.3034, (90) = 1.3198, (91) = 1.3362, (92) = 1.3527, (93) = 1.3691, (94) = 1.3844, (95) = 1.3996, (96) = 1.4149, (97) = 1.4302, (98) = 1.4454, (99) = 1.4607, (100) = 1.4760, (101) = 1.4913, (102) = 1.5075, (103) = 1.5238, (104) = 1.5400, (105) = 1.5563, (106) = 1.5733, (107) = 1.5904, (108) = 1.6075, (109) = 1.6246, (110) = 1.6410, (111) = 1.6574, (112) = 1.6739, (113) = 1.6903, (114) = 1.7021, (115) = 1.7140, (116) = 1.7258, (117) = 1.7377, (118) = 1.7495, (119) = 1.7614, (120) = 1.7732, (121) = 1.7851, (122) = 1.7964, (123) = 1.8076, (124) = 1.8189, (125) = 1.8302, (126) = 1.8475, (127) = 1.8649, (128) = 1.8822, (129) = 1.8995, (130) = 1.9168, (131) = 1.9341, (132) = 1.9514, (133) = 1.9687, (134) = 1.9856, (135) = 2.0026, (136) = 2.0195, (137) = 2.0365, (138) = 2.0507, (139) = 2.0649, (140) = 2.0791, (141) = 2.0933, (142) = 2.1075, (143) = 2.1217, (144) = 2.1359, (145) = 2.1501, (146) = 2.1674, (147) = 2.1846, (148) = 2.2018, (149) = 2.2191, (150) = 2.2341, (151) = 2.2492, (152) = 2.2643, (153) = 2.2793, (154) = 2.2949, (155) = 2.3105, (156) = 2.3261, (157) = 2.3417, (158) = 2.3576, (159) = 2.3735, (160) = 2.3895, (161) = 2.4054, (162) = 2.4203, (163) = 2.4353, (164) = 2.4503, (165) = 2.4653, (166) = 2.4839, (167) = 2.5025, (168) = 2.5211, (169) = 2.5397, (170) = 2.5561, (171) = 2.5725, (172) = 2.5888, (173) = 2.6052, (174) = 2.6226, (175) = 2.6399, (176) = 2.6572, (177) = 2.6746, (178) = 2.6930, (179) = 2.7114, (180) = 2.7297, (181) = 2.7481, (182) = 2.7634, (183) = 2.7787, (184) = 2.7940, (185) = 2.8094, (186) = 2.8226, (187) = 2.8358, (188) = 2.8490, (189) = 2.8622, (190) = 2.8755, (191) = 2.8887, (192) = 2.9019, (193) = 2.9151, (194) = 2.9302, (195) = 2.9453, (196) = 2.9604, (197) = 2.9755, (198) = 2.9940, (199) = 3.0126, (200) = 3.0311, (201) = 3.0496, (202) = 3.0659, (203) = 3.0822, (204) = 3.0985, (205) = 3.1149, (206) = 3.1302, (207) = 3.1455, (208) = 3.1609, (209) = 3.1762, (210) = 3.1915, (211) = 3.2069, (212) = 3.2222, (213) = 3.2375, (214) = 3.2545, (215) = 3.2715, (216) = 3.2885, (217) = 3.3055, (218) = 3.3223, (219) = 3.3391, (220) = 3.3560, (221) = 3.3728, (222) = 3.3888, (223) = 3.4047, (224) = 3.4206, (225) = 3.4365, (226) = 3.4494, (227) = 3.4622, (228) = 3.4750, (229) = 3.4879, (230) = 3.5007, (231) = 3.5136, (232) = 3.5264, (233) = 3.5392, (234) = 3.5529, (235) = 3.5667, (236) = 3.5804, (237) = 3.5941, (238) = 3.6116, (239) = 3.6292, (240) = 3.6468, (241) = 3.6644, (242) = 3.6810, (243) = 3.6976, (244) = 3.7143, (245) = 3.7309, (246) = 3.7508, (247) = 3.7707, (248) = 3.7905, (249) = 3.8104, (250) = 3.8273, (251) = 3.8442, (252) = 3.8610, (253) = 3.8779, (254) = 3.8938, (255) = 3.9096, (256) = 3.9255, (257) = 3.9414, (258) = 3.9559, (259) = 3.9705, (260) = 3.9851, (261) = 3.9997, (262) = 4.0149, (263) = 4.0301, (264) = 4.0452, (265) = 4.0604, (266) = 4.0779, (267) = 4.0953, (268) = 4.1128, (269) = 4.1302, (270) = 4.1459, (271) = 4.1615, (272) = 4.1771, (273) = 4.1927, (274) = 4.2114, (275) = 4.2300, (276) = 4.2486, (277) = 4.2673, (278) = 4.2833, (279) = 4.2993, (280) = 4.3153, (281) = 4.3313, (282) = 4.3485, (283) = 4.3657, (284) = 4.3829, (285) = 4.4001, (286) = 4.4182, (287) = 4.4362, (288) = 4.4543, (289) = 4.4724, (290) = 4.4881, (291) = 4.5037, (292) = 4.5194, (293) = 4.5351, (294) = 4.5472, (295) = 4.5593, (296) = 4.5715, (297) = 4.5836, (298) = 4.5957, (299) = 4.6079, (300) = 4.6200, (301) = 4.6321, (302) = 4.6456, (303) = 4.6591, (304) = 4.6726, (305) = 4.6861, (306) = 4.7059, (307) = 4.7256, (308) = 4.7454, (309) = 4.7652, (310) = 4.7819, (311) = 4.7986, (312) = 4.8153, (313) = 4.8320, (314) = 4.8474, (315) = 4.8627, (316) = 4.8781, (317) = 4.8935, (318) = 4.9088, (319) = 4.9242, (320) = 4.9396, (321) = 4.9550, (322) = 4.9662, (323) = 4.9775, (324) = 4.9887, (325) = 5.0000})

_rtable[18446746442112534638]

(2)

``


 

Download mode_shapes.mw


 

a := Vector(325, {(1) = 0, (2) = 0., (3) = 0., (4) = 0.1e-3, (5) = 0.1e-3, (6) = 0.2e-3, (7) = 0.4e-3, (8) = 0.7e-3, (9) = 0.10e-2, (10) = 0.16e-2, (11) = 0.23e-2, (12) = 0.33e-2, (13) = 0.44e-2, (14) = 0.65e-2, (15) = 0.89e-2, (16) = 0.114e-1, (17) = 0.139e-1, (18) = 0.162e-1, (19) = 0.178e-1, (20) = 0.186e-1, (21) = 0.183e-1, (22) = 0.171e-1, (23) = 0.150e-1, (24) = 0.120e-1, (25) = 0.85e-2, (26) = 0.51e-2, (27) = 0.16e-2, (28) = -0.19e-2, (29) = -0.51e-2, (30) = -0.79e-2, (31) = -0.103e-1, (32) = -0.120e-1, (33) = -0.132e-1, (34) = -0.138e-1, (35) = -0.136e-1, (36) = -0.129e-1, (37) = -0.118e-1, (38) = -0.106e-1, (39) = -0.94e-2, (40) = -0.83e-2, (41) = -0.75e-2, (42) = -0.71e-2, (43) = -0.69e-2, (44) = -0.71e-2, (45) = -0.75e-2, (46) = -0.79e-2, (47) = -0.83e-2, (48) = -0.84e-2, (49) = -0.81e-2, (50) = -0.73e-2, (51) = -0.60e-2, (52) = -0.43e-2, (53) = -0.20e-2, (54) = 0.11e-2, (55) = 0.46e-2, (56) = 0.82e-2, (57) = 0.117e-1, (58) = 0.149e-1, (59) = 0.174e-1, (60) = 0.191e-1, (61) = 0.200e-1, (62) = 0.198e-1, (63) = 0.187e-1, (64) = 0.167e-1, (65) = 0.139e-1, (66) = 0.103e-1, (67) = 0.65e-2, (68) = 0.28e-2, (69) = -0.5e-3, (70) = -0.27e-2, (71) = -0.45e-2, (72) = -0.56e-2, (73) = -0.62e-2, (74) = -0.64e-2, (75) = -0.64e-2, (76) = -0.62e-2, (77) = -0.60e-2, (78) = -0.58e-2, (79) = -0.57e-2, (80) = -0.59e-2, (81) = -0.62e-2, (82) = -0.69e-2, (83) = -0.78e-2, (84) = -0.90e-2, (85) = -0.103e-1, (86) = -0.122e-1, (87) = -0.138e-1, (88) = -0.150e-1, (89) = -0.153e-1, (90) = -0.147e-1, (91) = -0.133e-1, (92) = -0.111e-1, (93) = -0.82e-2, (94) = -0.49e-2, (95) = -0.13e-2, (96) = 0.25e-2, (97) = 0.62e-2, (98) = 0.96e-2, (99) = 0.126e-1, (100) = 0.150e-1, (101) = 0.167e-1, (102) = 0.176e-1, (103) = 0.176e-1, (104) = 0.169e-1, (105) = 0.155e-1, (106) = 0.135e-1, (107) = 0.112e-1, (108) = 0.89e-2, (109) = 0.68e-2, (110) = 0.50e-2, (111) = 0.37e-2, (112) = 0.28e-2, (113) = 0.23e-2, (114) = 0.22e-2, (115) = 0.21e-2, (116) = 0.22e-2, (117) = 0.22e-2, (118) = 0.21e-2, (119) = 0.19e-2, (120) = 0.15e-2, (121) = 0.8e-3, (122) = -0., (123) = -0.11e-2, (124) = -0.25e-2, (125) = -0.40e-2, (126) = -0.68e-2, (127) = -0.97e-2, (128) = -0.127e-1, (129) = -0.154e-1, (130) = -0.175e-1, (131) = -0.189e-1, (132) = -0.193e-1, (133) = -0.187e-1, (134) = -0.171e-1, (135) = -0.146e-1, (136) = -0.113e-1, (137) = -0.76e-2, (138) = -0.42e-2, (139) = -0.9e-3, (140) = 0.23e-2, (141) = 0.52e-2, (142) = 0.76e-2, (143) = 0.96e-2, (144) = 0.110e-1, (145) = 0.118e-1, (146) = 0.121e-1, (147) = 0.118e-1, (148) = 0.110e-1, (149) = 0.100e-1, (150) = 0.91e-2, (151) = 0.84e-2, (152) = 0.78e-2, (153) = 0.75e-2, (154) = 0.76e-2, (155) = 0.79e-2, (156) = 0.85e-2, (157) = 0.92e-2, (158) = 0.98e-2, (159) = 0.103e-1, (160) = 0.103e-1, (161) = 0.98e-2, (162) = 0.88e-2, (163) = 0.72e-2, (164) = 0.51e-2, (165) = 0.24e-2, (166) = -0.15e-2, (167) = -0.57e-2, (168) = -0.99e-2, (169) = -0.137e-1, (170) = -0.164e-1, (171) = -0.184e-1, (172) = -0.196e-1, (173) = -0.197e-1, (174) = -0.189e-1, (175) = -0.171e-1, (176) = -0.146e-1, (177) = -0.115e-1, (178) = -0.81e-2, (179) = -0.47e-2, (180) = -0.16e-2, (181) = 0.8e-3, (182) = 0.24e-2, (183) = 0.34e-2, (184) = 0.40e-2, (185) = 0.43e-2, (186) = 0.43e-2, (187) = 0.42e-2, (188) = 0.41e-2, (189) = 0.41e-2, (190) = 0.43e-2, (191) = 0.47e-2, (192) = 0.53e-2, (193) = 0.62e-2, (194) = 0.76e-2, (195) = 0.92e-2, (196) = 0.109e-1, (197) = 0.127e-1, (198) = 0.146e-1, (199) = 0.160e-1, (200) = 0.166e-1, (201) = 0.162e-1, (202) = 0.149e-1, (203) = 0.128e-1, (204) = 0.99e-2, (205) = 0.65e-2, (206) = 0.28e-2, (207) = -0.10e-2, (208) = -0.47e-2, (209) = -0.82e-2, (210) = -0.112e-1, (211) = -0.137e-1, (212) = -0.154e-1, (213) = -0.164e-1, (214) = -0.166e-1, (215) = -0.159e-1, (216) = -0.147e-1, (217) = -0.129e-1, (218) = -0.110e-1, (219) = -0.90e-2, (220) = -0.73e-2, (221) = -0.59e-2, (222) = -0.49e-2, (223) = -0.44e-2, (224) = -0.41e-2, (225) = -0.41e-2, (226) = -0.42e-2, (227) = -0.43e-2, (228) = -0.43e-2, (229) = -0.41e-2, (230) = -0.36e-2, (231) = -0.29e-2, (232) = -0.18e-2, (233) = -0.3e-3, (234) = 0.16e-2, (235) = 0.38e-2, (236) = 0.62e-2, (237) = 0.88e-2, (238) = 0.121e-1, (239) = 0.151e-1, (240) = 0.175e-1, (241) = 0.192e-1, (242) = 0.198e-1, (243) = 0.194e-1, (244) = 0.181e-1, (245) = 0.159e-1, (246) = 0.122e-1, (247) = 0.80e-2, (248) = 0.34e-2, (249) = -0.9e-3, (250) = -0.41e-2, (251) = -0.68e-2, (252) = -0.87e-2, (253) = -0.98e-2, (254) = -0.103e-1, (255) = -0.103e-1, (256) = -0.98e-2, (257) = -0.92e-2, (258) = -0.86e-2, (259) = -0.80e-2, (260) = -0.76e-2, (261) = -0.75e-2, (262) = -0.77e-2, (263) = -0.82e-2, (264) = -0.89e-2, (265) = -0.98e-2, (266) = -0.109e-1, (267) = -0.117e-1, (268) = -0.121e-1, (269) = -0.119e-1, (270) = -0.111e-1, (271) = -0.96e-2, (272) = -0.74e-2, (273) = -0.46e-2, (274) = -0.7e-3, (275) = 0.36e-2, (276) = 0.80e-2, (277) = 0.121e-1, (278) = 0.150e-1, (279) = 0.173e-1, (280) = 0.188e-1, (281) = 0.193e-1, (282) = 0.189e-1, (283) = 0.176e-1, (284) = 0.155e-1, (285) = 0.128e-1, (286) = 0.98e-2, (287) = 0.67e-2, (288) = 0.38e-2, (289) = 0.15e-2, (290) = -0.1e-3, (291) = -0.12e-2, (292) = -0.18e-2, (293) = -0.21e-2, (294) = -0.22e-2, (295) = -0.22e-2, (296) = -0.21e-2, (297) = -0.22e-2, (298) = -0.24e-2, (299) = -0.27e-2, (300) = -0.33e-2, (301) = -0.42e-2, (302) = -0.54e-2, (303) = -0.68e-2, (304) = -0.85e-2, (305) = -0.103e-1, (306) = -0.130e-1, (307) = -0.154e-1, (308) = -0.170e-1, (309) = -0.177e-1, (310) = -0.173e-1, (311) = -0.160e-1, (312) = -0.138e-1, (313) = -0.108e-1, (314) = -0.75e-2, (315) = -0.38e-2, (316) = -0., (317) = 0.37e-2, (318) = 0.71e-2, (319) = 0.101e-1, (320) = 0.124e-1, (321) = 0.141e-1, (322) = 0.149e-1, (323) = 0.152e-1, (324) = 0.152e-1, (325) = 0.149e-1})

_rtable[18446746442173411926]

(1)

``

t := Vector(325, {(1) = 0, (2) = 0.67e-2, (3) = 0.134e-1, (4) = 0.202e-1, (5) = 0.269e-1, (6) = 0.336e-1, (7) = 0.403e-1, (8) = 0.471e-1, (9) = 0.538e-1, (10) = 0.637e-1, (11) = 0.736e-1, (12) = 0.836e-1, (13) = 0.935e-1, (14) = .1098, (15) = .1261, (16) = .1424, (17) = .1586, (18) = .1764, (19) = .1943, (20) = .2121, (21) = .2299, (22) = .2465, (23) = .2632, (24) = .2798, (25) = .2965, (26) = .3109, (27) = .3253, (28) = .3397, (29) = .3542, (30) = .3686, (31) = .3830, (32) = .3974, (33) = .4118, (34) = .4284, (35) = .4450, (36) = .4615, (37) = .4781, (38) = .4938, (39) = .5095, (40) = .5253, (41) = .5410, (42) = .5567, (43) = .5724, (44) = .5882, (45) = .6039, (46) = .6204, (47) = .6368, (48) = .6533, (49) = .6697, (50) = .6843, (51) = .6989, (52) = .7135, (53) = .7281, (54) = .7448, (55) = .7615, (56) = .7781, (57) = .7948, (58) = .8113, (59) = .8278, (60) = .8442, (61) = .8607, (62) = .8775, (63) = .8943, (64) = .9112, (65) = .9280, (66) = .9468, (67) = .9655, (68) = .9843, (69) = 1.0031, (70) = 1.0190, (71) = 1.0348, (72) = 1.0507, (73) = 1.0665, (74) = 1.0794, (75) = 1.0924, (76) = 1.1053, (77) = 1.1183, (78) = 1.1312, (79) = 1.1442, (80) = 1.1571, (81) = 1.1700, (82) = 1.1842, (83) = 1.1984, (84) = 1.2126, (85) = 1.2268, (86) = 1.2459, (87) = 1.2651, (88) = 1.2842, (89) = 1.3034, (90) = 1.3198, (91) = 1.3362, (92) = 1.3527, (93) = 1.3691, (94) = 1.3844, (95) = 1.3996, (96) = 1.4149, (97) = 1.4302, (98) = 1.4454, (99) = 1.4607, (100) = 1.4760, (101) = 1.4913, (102) = 1.5075, (103) = 1.5238, (104) = 1.5400, (105) = 1.5563, (106) = 1.5733, (107) = 1.5904, (108) = 1.6075, (109) = 1.6246, (110) = 1.6410, (111) = 1.6574, (112) = 1.6739, (113) = 1.6903, (114) = 1.7021, (115) = 1.7140, (116) = 1.7258, (117) = 1.7377, (118) = 1.7495, (119) = 1.7614, (120) = 1.7732, (121) = 1.7851, (122) = 1.7964, (123) = 1.8076, (124) = 1.8189, (125) = 1.8302, (126) = 1.8475, (127) = 1.8649, (128) = 1.8822, (129) = 1.8995, (130) = 1.9168, (131) = 1.9341, (132) = 1.9514, (133) = 1.9687, (134) = 1.9856, (135) = 2.0026, (136) = 2.0195, (137) = 2.0365, (138) = 2.0507, (139) = 2.0649, (140) = 2.0791, (141) = 2.0933, (142) = 2.1075, (143) = 2.1217, (144) = 2.1359, (145) = 2.1501, (146) = 2.1674, (147) = 2.1846, (148) = 2.2018, (149) = 2.2191, (150) = 2.2341, (151) = 2.2492, (152) = 2.2643, (153) = 2.2793, (154) = 2.2949, (155) = 2.3105, (156) = 2.3261, (157) = 2.3417, (158) = 2.3576, (159) = 2.3735, (160) = 2.3895, (161) = 2.4054, (162) = 2.4203, (163) = 2.4353, (164) = 2.4503, (165) = 2.4653, (166) = 2.4839, (167) = 2.5025, (168) = 2.5211, (169) = 2.5397, (170) = 2.5561, (171) = 2.5725, (172) = 2.5888, (173) = 2.6052, (174) = 2.6226, (175) = 2.6399, (176) = 2.6572, (177) = 2.6746, (178) = 2.6930, (179) = 2.7114, (180) = 2.7297, (181) = 2.7481, (182) = 2.7634, (183) = 2.7787, (184) = 2.7940, (185) = 2.8094, (186) = 2.8226, (187) = 2.8358, (188) = 2.8490, (189) = 2.8622, (190) = 2.8755, (191) = 2.8887, (192) = 2.9019, (193) = 2.9151, (194) = 2.9302, (195) = 2.9453, (196) = 2.9604, (197) = 2.9755, (198) = 2.9940, (199) = 3.0126, (200) = 3.0311, (201) = 3.0496, (202) = 3.0659, (203) = 3.0822, (204) = 3.0985, (205) = 3.1149, (206) = 3.1302, (207) = 3.1455, (208) = 3.1609, (209) = 3.1762, (210) = 3.1915, (211) = 3.2069, (212) = 3.2222, (213) = 3.2375, (214) = 3.2545, (215) = 3.2715, (216) = 3.2885, (217) = 3.3055, (218) = 3.3223, (219) = 3.3391, (220) = 3.3560, (221) = 3.3728, (222) = 3.3888, (223) = 3.4047, (224) = 3.4206, (225) = 3.4365, (226) = 3.4494, (227) = 3.4622, (228) = 3.4750, (229) = 3.4879, (230) = 3.5007, (231) = 3.5136, (232) = 3.5264, (233) = 3.5392, (234) = 3.5529, (235) = 3.5667, (236) = 3.5804, (237) = 3.5941, (238) = 3.6116, (239) = 3.6292, (240) = 3.6468, (241) = 3.6644, (242) = 3.6810, (243) = 3.6976, (244) = 3.7143, (245) = 3.7309, (246) = 3.7508, (247) = 3.7707, (248) = 3.7905, (249) = 3.8104, (250) = 3.8273, (251) = 3.8442, (252) = 3.8610, (253) = 3.8779, (254) = 3.8938, (255) = 3.9096, (256) = 3.9255, (257) = 3.9414, (258) = 3.9559, (259) = 3.9705, (260) = 3.9851, (261) = 3.9997, (262) = 4.0149, (263) = 4.0301, (264) = 4.0452, (265) = 4.0604, (266) = 4.0779, (267) = 4.0953, (268) = 4.1128, (269) = 4.1302, (270) = 4.1459, (271) = 4.1615, (272) = 4.1771, (273) = 4.1927, (274) = 4.2114, (275) = 4.2300, (276) = 4.2486, (277) = 4.2673, (278) = 4.2833, (279) = 4.2993, (280) = 4.3153, (281) = 4.3313, (282) = 4.3485, (283) = 4.3657, (284) = 4.3829, (285) = 4.4001, (286) = 4.4182, (287) = 4.4362, (288) = 4.4543, (289) = 4.4724, (290) = 4.4881, (291) = 4.5037, (292) = 4.5194, (293) = 4.5351, (294) = 4.5472, (295) = 4.5593, (296) = 4.5715, (297) = 4.5836, (298) = 4.5957, (299) = 4.6079, (300) = 4.6200, (301) = 4.6321, (302) = 4.6456, (303) = 4.6591, (304) = 4.6726, (305) = 4.6861, (306) = 4.7059, (307) = 4.7256, (308) = 4.7454, (309) = 4.7652, (310) = 4.7819, (311) = 4.7986, (312) = 4.8153, (313) = 4.8320, (314) = 4.8474, (315) = 4.8627, (316) = 4.8781, (317) = 4.8935, (318) = 4.9088, (319) = 4.9242, (320) = 4.9396, (321) = 4.9550, (322) = 4.9662, (323) = 4.9775, (324) = 4.9887, (325) = 5.0000})

_rtable[18446746442112534638]

(2)

``


 

Download mode_shapes.mw

Hi

I would like to know if recent Maples's verion (> 2015) contain methods for solving functional equations ?
Functional_equation

TIA

I'm trying to graph the solution to:

[7.72-7.72*B]*[-7.717267500*a] = 662204.4444*B^2

with a as the independent variable (X-Axis) and B as the dependant variable (Y-Axis). I've been using the command:

 

implicitplot([7.72-7.72*B]*[-7.717267500*a] = 662204.4444*B^2, a = 10 .. 15000, B = 0.1e-1 .. 1)

 

I dont get any errors, but the graph is ust a blank graph that is -10..10 for both axis (at least they are labelled correctly)

Any help as to how to solve this woud be greatly apprecated (either fixing syntax or recommending another command).

Note: These ranges are correct....a will be something between 0 and 20,000 and B will be between 0 and 1

 

Thank you! - Bob

How these system of relations can be defined and plotted?(with any possible assumptions)

 

restart

x[n+1]=1/3*(2*x[n]*y[n]+4*x[n]*z[n])+1/12*(2*x[n-1]*y[n-1]+4*x[n-1]*z[n-1])

x[n+1] = (2/3)*x[n]*y[n]+(4/3)*x[n]*z[n]+(1/6)*x[n-1]*y[n-1]+(1/3)*x[n-1]*z[n-1]

(1)

y[n+1]=1/3*(1/4*x[n]*z[n]+y[n])+1/12*(1/4*x[n-1]*z[n-1]+y[n-1])

y[n+1] = (1/12)*x[n]*z[n]+(1/3)*y[n]+(1/48)*x[n-1]*z[n-1]+(1/12)*y[n-1]

(2)

z[n+1]=1/3*(x[n]*z[n]+2*y[n]*z[n])+1/12*(x[n-1]*z[n-1]+2*y[n-1]*z[n-1])

z[n+1] = (1/3)*x[n]*z[n]+(2/3)*y[n]*z[n]+(1/12)*x[n-1]*z[n-1]+(1/6)*y[n-1]*z[n-1]

(3)

 


 

Download problem.mw

Determine the polynomials P∈R₃ [X] such that P (-1) = - 18 and whose remainders in the Euclidean division by X-1, X-2 and X-3 are equal to 6.

Error, (in pdsolve/numeric/process_PDEs) number of dependent variables and number of PDE must be the same

restart;
PDE := diff(u(x, t), t) - Laplacian(u(x, t), [x]) - u(x, t) + x - 2*sin(2*x)*cos(x) = 0;

IBC := D[1](u)(Pi/2, t) = 1, u(0, t) = 0, u(x, 0) = x;

pds := pdsolve(eval(PDE), {IBC}, type = numeric);
Error, (in pdsolve/numeric/process_PDEs) number of dependent variables and number of PDE must be the same
 

Where can I find a description of the []() syntax?

I have the polynomial :P=X⁴+X³+aX²+√2X+b

Determine a and b so that (1 + i) is zero of P; then calculate all the zeros of P

I have an equation E:=2*x^(7) -x^(6) -4*x^(5) -15*x^(4) -14 x^(3)+19*x^(2) +28*x+30

I want to the list of solutions which are real numbers (resp. which have a strictly positive imaginary part); can anyone help me !

Hello! 
I have this theta model:

And a problem, that sounds like: 
Use Maple's dsolve command with type = numeric, and odeplot
to solve the Theta model for different values of A with the initial condition: 
My question is, how do you use the commands "type = numeric", and "odeplot" to dsolve the model? 
Hope you understand my question, and maybe send a picture of the method to solve this math problem

 

Hello!

Using a geometry package, I ran into a problem: the area() function returns the wrong value for square elements.

What am I doing wrong?

_local(D)

with(geometry)

b := 2

h := 1

square(sq1, [point(A, 0, 0), point(B, b, 0), point(C, b, h), point(D, 0, h)])

evalf(area(sq1))

2.500000000

(1)

draw([sq1, A(printtext = true), B(printtext = true), C(printtext = true), D(printtext = true)])

 

triangle(tr1, [point(A, 0, 0), point(B, b, 0), point(C, b, h)])

evalf(area(tr1))

1.

(2)

draw([tr1, A(printtext = true), B(printtext = true), C(printtext = true)])

 

NULLNULL

NULL

b := .1

h := 1

square(sq2, [point(A, 0, 0), point(B, b, 0), point(C, b, h), point(D, 0, h)])

evalf(area(sq2))

.5050000000

(3)

draw([sq2, A(printtext = true), B(printtext = true), C(printtext = true), D(printtext = true)])

 

triangle(tr2, [point(A, 0, 0), point(B, b, 0), point(C, b, h)])

evalf(area(tr2))

0.5000000000e-1

(4)

draw([tr2, A(printtext = true), B(printtext = true), C(printtext = true)])

 

``


 

Download GeometryAreaTest.mw

h1=-i(c1*exp(A)-c2*exp(-A));

h2=c2*exp(A)+c1*exp(-A);

A=(i*a/2)*(x+b*t);

c1=sqrt(a+2*lambda)/a;

c2=sqrt(a-2*lambda)/a;

How to simplify the product of h1 and h2 in terms of trignometric functions?

h1*h2=?

Hi,

In the attached file I have added four equations and four unknown values. I would like to find the unknown values a[1], b[1], A[1], and B[1]. At the moment Maple cannot find the solutions. Can I add some conditions to help this?

 

SimulteniousEq.mw

Thanks,

Baharm31

1 2 3 4 5 6 7 Last Page 1 of 1855