Question: How do I classify elements into sets in Maple?

Hello!

I would like to start with the following set of 9 elements,
A = { E11, E12, E21, E22, E11+E12, E11+E21, E12+E22, E21+E22, E11+E12+E21+E22 }.

I need a procedure that takes each of those elements and creates 3 new ones in the following way: Eij becomes Eij1, Eij2, Eij1+Eij2. So for example, E11 will become: E111, E112, and E111+E112. And for example the fifth element in A (i.e. E11+E12) will become the 3 new elements: E111+E121, E112+E122, and E111+E121 + E112+E122.

Since each of the 9 elements gets triplicated, there will be a new set, call it B, with 27 elements.

B = {E111, E112, E111+E112, E121, E122, E121+E122, ... }

Now I want to repeat this process of triplicating again so that, for example, E111 becomes: E1111, E1112, and E1111+E1112. And so on. This new set C will have 81 elements. Now I want to repeat this one last time. The final set, D, will have 243 (3^5) elements. 

Step 2: 

For every pair of elements x and y in D, I want to compute z:=(x+y)mod2. If z already belongs to D, discard it, otherwise, place z in the set D2. Do this until there are no more elements to add together (note that if x+y is computed then I don't want y+x to be computed also--that's inefficient). Maybe the most efficient way is to perform all possibly combinations of x+y mod 2 to create the set D2 and then just go: D2 setminus D.

Step 3: For x in D and y in D2 perform all possible combinations of z:=(x+y)mod2 and place these in D3 then perform set subtraction again: D3 minus D2 minus D.

Repeat this process again: x in D and y in D3 to create new elements in D4. Repeat again until Dm is empty (that is, D(m-1) will be the last set that contains new elements). I'm expecting around 12 sets... 

The issue with this whole algorithm is that I often run out of memory so I need a clever way to do this, since this algorithm is essentially classifying 2^32 elements into disjoint sets. Thank you! 

Please Wait...