Question: Plot of coupled nonlinear oscillators

Hello,

I would like to plot an non coupled non linear oscillator.

The equations are the following:

K:=Matrix([<0, -1, 1, -1>,<-1, 0, -1, 1>,<-1, 1, 0,-1>,<1, -1, -1,0>]);
omega[sw]:=beta/(1-beta)*omega[s];
for i to 4
do
r[i]:=sqrt((u[i](t)/(L/2))^2+(v[i](t)/H)^2):
omega[i]:=omega[st]/(1+exp(b*v[i](t)))+omega[sw]/(1+exp(-b*v[i](t))):
Equ[i]:=diff(u[i](t),t)=Au*(1-r[i]^2)*u[i](t)+omega[i]*(L/2)/H*v[i](t):
Eqv[i]:=diff(v[i](t),t)=Av*(1-r[i]^2)*v[i]+omega[i]*(L/2)/H*v[i](t)+MatrixVectorMultiply(K,<seq(v[i](t),i=1..4)>)[i]:
EqSys[i]:=[Equ[i],Eqv[i]]:
end do:

My parameters are the following:

paramsGeo:=L=0.015,H=0.015,beta=0.5,Vf=0.3;
omegaS:=eval(Pi*Vf/L, [paramsGeo]);
paramsCycle:=omega[s]=omegaS,Au=1,Av=1,b=100;
params:=paramsGeo,paramsCycle;

I'm not sure with my initial equations. But, may be it is possible to start with:

ic:=[u[1](0)=0.8, v[1](0)=0,u[2](0)=0.8, v[2](0)=0,u[3](0)=0.8, v[3](0)=0,u[4](0)=0.8, v[4](0)=0];

For these equations, I would like to obtain the following plots:
- plot 1: horizontal axis : u[1](t) vertical axis : v[1](t).
- plot 2: horizontal axis : u[2](t) vertical axis : v[2](t).
- plot 3: horizontal axis : u[3](t) vertical axis : v[3](t).
- plot 4: horizontal axis : u[4](t) vertical axis : v[4](t).
- plot 5: horizontal axis : t, vertical axis : v[1](t), v[2](t), v[3](t), v[4](t).

For this last plot, I would like to obtain this kind of curve:

I image that since my equations are coupled i can not use directly use Deplot function but Dsolve.

May you help me for defining a good syntax for solving my system and then deducing the following plots?

Thanks a lot for your help

Please Wait...