Question: IVP of 3 EQS u(t), v(t), w(t)

I seperate the variables in Real and Imigneray parts,  as follows:

restart:
Dijits:=20:
------------------------- Defining the nature of the variables used ----------------------
assume(t,real):

x(0):=-1:y(0):=1:z(0):=conjugate(y(0)):N:=10:Delta:=5:omega:=10^(6):N1:=1+2*N:M:=sqrt(N*(N+1)):
t0:=0.0:tN:=30.0: M1:=5000;:th:=evalf((tN-t0)/M1):
5000
ini1:=u(0)=Re(y(0)), v(0)=Im(z(0)),w(0)=x(0);
u(0) = 1, v(0) = 0, w(0) = -1
var:={u(t),v(t),w(t)}: 
dsys1 :=diff(w(t),t)=-(N1+M*cos(2*omega*t))*w(t)-1+2*u(t)*cos(2*omega*t)+2*v(t)*sin(2*omega*t), diff(u(t),t)=-N1*u(t)+Delta*v(t)-2*M+(2*M*u(t)-N1-w(t))*cos(2*omega*t)-2*M*v(t)*sin(2*omega*t), diff(v(t),t)=-N1*v(t)-Delta*u(t)-2*M+(2*M*u(t)-N1-w(t))*sin(2*omega*t)+2*M*v(t)*cos(2*omega*t):
dsol1 :=dsolve({dsys1,ini1},var,numeric, output=listprocedure, abserr=1e-9, relerr=1e-8,range=0..1,maxfun=5000):
Warning, cannot evaluate the solution further right of .46544244e-3, maxfun limit exceeded (see ?dsolve,maxfun for details)
dsolu:=subs(dsol1,u(t)):dsolv:=subs(dsol1,v(t)):dsolw:=subs(dsol1,w(t)):
t1:=array(0..M1,[]): u1:=array(0..M1,[]): v1:=array(0..M1,[]): w1:=array(0..M1,[]): pt1:=array(0..M1,[]):pt2:=array(0..M1,[]):pt3:=array(0..M1,[]): 
for i from 0 to M1 do t1[i]:=evalf(th*i):u1[i]:=evalf(dsolu(t1[i]));v1[i]:=evalf(dsolv(t1[i])):w1[i]:=evalf(dsolw(t1[i])):pt1[i]:=[t1[i],u1[i]]:pt2[i]:=[t1[i],v1[i]]:pt3[i]:=[t1[i],w1[i]]:od:
Error, (in dsolu) cannot evaluate the solution further right of 0.46544244e-3, maxfun limit exceeded (see ?dsolve,maxfun for details)


with(plots):
unassign('i'):mytab1:=[seq(pt1[i],i=0..M1)]:mytab2:=[seq(pt2[i],i=0..M1)]:mytab3:=[seq(pt3[i],i=0..M1)]:
plot(mytab3,t=0..5,tickmarks=[6, 6],axes=boxed);

but I got an error

Please Wait...