Question: How do I extracting values from RootOf

I am trying to assess stability from real roots of Eigenvalues that are returned in the RootOf from. I tried allvalues(), evalf() both return the same RootOf list. If memory serves me correctly any square matrix should have and Eigenvalue solution.

Any suggestions?

Eignevalues.mw
 

NULL

with(LinearAlgebra)

Xd := 1.81
Xq := 1.76; Xpd := .3; Xe := .65; re := 0.3e-2; et := 1.0

M := 7; Tdo := 8; Ke := 200; Te := 0.2e-1

Q := -2.7; k := 0.2e-1; m := 1; FORW := 1

D curve PointsPoints      
             
           Pt__a := 0, .66

Pt__b := .56, .55 
Pt__c := .94, .34; Pt__d := 1.0, 0; Pt__h := 1.0, 0; Pt__g := .95, -.311; Pt__f := .59, -.398; Pt__e := 0, -.428
PSS

KSTAB := 9.6

     
TW := 1.4; T1 := .154

T2 := 0.33e-1

P := 1

Q := -.5

eto := abs(et); Ipo := P/eto; Iqo := Q/eto; Eqo := sqrt((Iqo*Xq+eto)^2+(Ipo*Xq)^2); Eo := sqrt((-Ipo*re-Iqo*Xe+eto)^2+(Ipo*Xe-Iqo*re)^2); `sinδo` := (eto*Ipo*(Xq+Xe)-re*Xq*(Ipo^2+Iqo^2)-eto*Iqo*re)/(Eqo*Eo); `cosδo` := (eto*(eto+Iqo*(Xq-Xe)-Ipo*re)-Xe*Xq*(Ipo^2+Iqo^2))/(Eqo*Eo); iqo := (Ipo*(Iqo*Xq+eto)-Iqo*Ipo*Xq)/Eqo; ido := (Ipo^2*Xq+Iqo*(Iqo*Xq+eto))/Eqo; eqo := eto*(Iqo*Xq+eto)/Eqo; edo := iqo*Xq; A := re^2+(Xe+Xpd)*(Xq+Xe); K1 := Eqo*Eo*(re*`sinδo`+(Xe+Xpd)*`cosδo`)/A+iqo*Eo*((Xq-Xpd)*(Xq+Xe)*`sinδo`-re*(Xq-Xpd)*`cosδo`)/A; K2 := re*Eqo/A+iqo*(1+(Xq+Xe)*(Xq-Xpd)/A); K3 := 1/(1+(Xq+Xe)*(Xd-Xpd)/A); K4 := Eo*(Xd-Xpd)*(Xq+Xe)*`sinδo`/A-re*`cosδo`; K5 := edo*Xq*(re*Eo*`sinδo`+(Xe+Xpd)*Eo*`cosδo`)/(eto*A)+eqo*Xpd*(re*Eo*`cosδo`-(Xq+Xe)*Eo*`sinδo`)/(eto*A); K6 := eqo*(1-Xpd*(Xq+Xe)/A)/eto+edo*Xq*re/(eto*A); A4 := Matrix(6, 6, {(1, 1) = 0, (1, 2) = 377, (1, 3) = 0, (1, 4) = 0, (1, 5) = 0, (1, 6) = 0, (2, 1) = -K1/M, (2, 2) = 0, (2, 3) = -K2/M, (2, 4) = 0, (2, 5) = 0, (2, 6) = 0, (3, 1) = -K4/Tdo, (3, 2) = 0, (3, 3) = -1/(K3*Tdo), (3, 4) = -1/Tdo, (3, 5) = 0, (3, 6) = 0, (4, 1) = K5*Ke/Te, (4, 2) = 0, (4, 3) = K6*Ke/Te, (4, 4) = -1/Te, (4, 5) = Ke/Te, (4, 6) = 0, (5, 1) = -K1*KSTAB*T1/(T2*M), (5, 2) = 0, (5, 3) = -K2*KSTAB*T1/(T2*M), (5, 4) = 0, (5, 5) = -`#mn("1")`/TW, (5, 6) = -(T1+TW)/(T2*TW), (6, 1) = -K1*KSTAB/M, (6, 2) = 0, (6, 3) = -K2*KSTAB/M, (6, 4) = 0, (6, 5) = 0, (6, 6) = -`#mn("1")`/TW}); Eig := Eigenvalues(A4)

allvalues(Eig)

evalf(Eig[1])

RootOf(10000000000*_Z^6+(14285714290*`#mn("1")`+503236834300)*_Z^5+(5102040817*`#mn("1")`^2+718909763500*`#mn("1")`+1193248786000)*_Z^4+(256753486900*`#mn("1")`^2+1704641123000*`#mn("1")`-94259434520000)*_Z^3+(608800401100*`#mn("1")`^2-52350222800000*`#mn("1")`+1273591282000000)*_Z^2+(10698531930000*`#mn("1")`^2+632925408400000*`#mn("1")`+1000000)*_Z+226044788700000*`#mn("1")`^2-10000000)

(1)

``


 

Download Eignevalues.mw
 

 


 

Download Eignevalues.mw

 

 

Please Wait...